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Time-domain calculation of forerunners in Drude dispersive media without collisions
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The forerunners of the step-modulated sine pulse propagating in Drude dispersive media are calculated in the
time domain. Two such problems are solved analytically. In the first problem, the plane source of the electric
field is inside the medium. And the second problem considers the normal incidence of a linearly polarized wave
from a vacuum upon a half-space medium. The obtained forerunners are identified as Sommerfeld precursors
but the frequency of the oscillations and their amplitudes are closer to the exact solutions than the predictions of
canonical Sommerfeld precursor. Moreover, the obtained periodicity of the forerunners is in perfect agreement
with the exact solution. The developed analytics is an important contribution to the time-domain theory of
the forerunners. The obtained data will be helpful for an experimental study of the forerunners and for the
comparison with the forerunners in other dispersive media or with other waveforms of the incident pulse.
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I. INTRODUCTION

The recent centenary of publishing the Sommerfeld-
Brillouin theory of the pulse dynamics in the dispersive media
[1–3] revived an interest in this canonical problem. The fore-
runners as the particular results of this and other theories of the
pulse propagation in the dispersive media are still interesting
for plasmonic waveguides [4], ground-penetrating radars [5],
body-based applications [6], photonic crystals [7] and under-
water communications [8]. There are the recommendations
for optimal pulse penetrations in remote sensing and medical
imaging using the Sommerfeld and Brillouin forerunners [9].
The present day experiments allow us even to measure the
speed of the forerunners [10].

Recent reviews of the theory development during the cen-
tury [11,12] classified and summarized the main obtained
results and gave an idea that some important aspects of the
pulse dynamics can be described by the modern analytics. The
present paper proposes an insight into the pulse dynamics in
the time domain, where some results can be obtained more
precisely and without complicated integration, which is usu-
ally the basis of the frequency-domain consideration.

In his original paper [1,3], Sommerfeld studied the veloc-
ity of wave propagation in dielectrics with a Lorentz model
of the resonance polarization. He concluded that the signal
cannot propagate with a velocity larger than the velocity of
light and that the signal front propagates with the velocity
of light. Simultaneously, Brillouin described in detail the
signal evolution in the Lorentz medium [2,3]. He discussed
the calculations of the signal velocity and applied the newly
developed saddle-point method of integration. A very weak
signal which appears at first at a certain depth in the medium
was called a forerunner and was also described by the theory.
One can find an extensive review of these fundamental works
in Ref. [11]. The extension of the theory due to Haskell and
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Case [13] for a Drude model of dielectrics (the particular
case of the Lorentz model if the resonance frequency of the
polarization is equal to zero) was also reviewed in Ref. [11].
This extension is very important for the present study where
the same problem is considered but in the time domain.

The second part of the review by the same authors
[12] presented the modern asymptotic description of the
Sommerfeld-Brillouin theory. The latter is based on the theory
of the uniform asymptotic expansions of integrals developed
by Oughstun and Sherman [14–16] for the propagated field.
The analysis of the saddle-point locations is crucial for the
expansions. The review [12] concluded with the problem of
the signal transmission into a dispersive half space which, in
fact, differs from the problem stated by Sommerfeld where the
signal source is inside the medium. The present paper studies
both of these problems: the signal source is inside and outside
the medium.

Usually, the frequency-domain theory of the forerunners
distinguishes the first forerunner (Sommerfeld forerunner or
Sommerfeld precursor) and the second forerunner (Brillouin
forerunner or Brillouin precursor), which correspond to the
high-frequency and low-frequency contributions from the fre-
quency spectrum of the incident pulse, respectively. The
simple asymptotic forms for Sommerfeld and Brillouin pre-
cursors were obtained in Ref. [17]. The modulated light pulses
propagating in a dense Lorentz medium were considered
there. The medium was opaque over a broad spectral region
including the signal carrier frequency. The different time mod-
ulations of the pulse amplitude including the canonical step
modulation of the sine signal were studied. The results were
obtained by the standard Laplace-Fourier procedures, which
were simpler then the uniform saddle-point methods reported,
for example, in Ref. [18]. But at short propagation distances
these two forerunners overlapped, and the overlapping caused
the optical precursor [19].

A more general definition of the precursors than that
given by Sommerfeld and Brillouin [1–3] was introduced
in Ref. [20]. The forerunner obtained in the time-domain,
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of course, cannot be classified in a similar way as in the
frequency-domain. In the time-domain, there is only a single
forerunner as the early time behavior of the signal at a certain
coordinate. However, the forerunner can be identified accord-
ing to the frequency-domain terminology a posteriori.

The optical precursors and their interference with the main
signal for the small optical depths were studied both experi-
mentally and numerically in Ref. [21]. The authors performed
a simple modification of the asymptotic precursor theory to
distinguish between the Sommerfeld and the Brillouin precur-
sors. A time-domain analysis of the pulse propagation under
similar conditions cannot separate these two precursors from
each other (just as the separation cannot be seen from the
experimental data).

The hybrid-asymptotic method was applied in Ref. [22]
to identify the main signal and the precursors in the case
of the step-modulated pulse transmission through a medium
with the electromagnetically induced transparency (the EIT
media). The authors proposed a robust control of transmis-
sions or delays between the precursors and the main signal.
The last one is important in biomedical imaging and optical
communication.

The difficulties of the experimental observation of the pre-
cursors was discussed in Ref. [23]. As a result, the special
media (slow-light systems) with a natural transparency win-
dow or a EIT window were proposed for the experiments
where the pulse carrier frequency should coincide with the
center of the window.

Since the Lorentz model of dielectrics includes a reso-
nance frequency, there is the contribution from the resonance
part of the frequency spectrum to the precursors. For some
conditions this contribution is important and even dominant.
In the case of narrow material resonance, sufficiently small
medium plasma frequency, and the pulse carrier frequency
being nearly equal to the medium resonance frequency, the
precursors were calculated in Ref. [24]. The singular dis-
persion limit of the precursor propagation was obtained in
Ref. [25]. In the study, the damping approached zero and
the medium dispersion was concentrated near the resonance
frequency. Such effects of the resonance frequency on the pre-
cursor evolution cannot appear in our study of the nonresonant
media, therefore they are not reviewed in more detail.

The modal analysis of the wave propagation in the disper-
sive media was reported recently in Ref. [26] where the signal
was incident on a dispersive slab. In that case the closed-form
expression for the transmitted field was derived through the
modal expansion. The time dependence of the transmitted
signal was written as the discrete sum over the frequency
modes, which can be directly translated to the integral over
the frequency domain. Thus, such a modal analysis cannot be
considered as a time-domain solution. Also, the authors re-
ported the significantly improved description of the precursor
amplitude and oscillation period. We agree that the obtained
formula are more accurate than presented by Sommerfeld.
However, a more precise formula for the Sommerfeld precur-
sor can be obtained in the time domain.

A first description of the forerunners in the time do-
main was done in Ref. [27] by the propagator technique.
The medium dispersion in this technique was modeled
by the time-domain electric susceptibility. But usually the

electric susceptibility is not known in the time domain and its
evaluation from the frequency-domain is a separate difficult
problem. The authors tried to stay in the time domain as much
as possible but the time-domain kernels used refer again to the
frequency domain.

The effects of the incident signal waveform (including the
rise-time effects) on the characteristics of the forerunners are
not studied in the present paper. Therefore, a large number
of related works is not reviewed here. Also, this introduction
cannot cover the many other aspects of the precursor studies,
but they can be found, for example, in a new edition of the
book by Oughstun [18] and in the reviews [11,12].

Most of the studies discussed above (except the EIT media)
deal with the Lorentz dispersive media having one or a few
resonance frequencies. But some dispersive media have no
resonance frequencies at all. They are, for example, the metals
or the isotropic plasmas. Dispersion in such media is usually
referred to as the Drude dispersive model due to Drude’s the-
ory of metal conductivity [28,29]. Mathematically, the Drude
model is obtained from the Lorentz model with the absence of
a resonance frequency.

The temporal and frequency evolution of Sommerfeld and
Brillouin forerunners in the metals was studied in Ref. [30].
The authors concluded that the precursor fields are important
for studying the propagating pulse dynamics and cannot be
neglected in both the microwave and optical bands.

The problem of the step-modulated sine pulse propagation
in the Drude dispersive media was solved by Haskell and
Case [13] in the frequency domain by using the general-
ized saddle-point integration everywhere except at the signal
wavefront. The solution for the wavefront was obtained by a
high-frequency expansion technique. The results reproduced
completely the Sommerfeld precursor from Refs. [1–3]. The
perfect summary of the results obtained by Haskell and Case
can be found in Ref. [11]. The exact solution of the same
problem but in the time domain was reported recently in
Ref. [31]. The last one is the ground for the forerunner study
in the present paper.

The method of the asymptotic expansion was applied in
Ref. [32] to study the step-modulated sine pulse propagation
in a Drude dispersive media. As usual, in the framework of
this method, the general solution of the problem was the sum
of three different contributions: the Sommerfeld precursor,
the Brillouin precursor, and the signal contribution. Each was
obtained from different parts of the frequency spectrum of
the incident pulse. The analysis in Ref. [32] was carried out
for the case when the carrier frequency of the incident pulse
was below the plasma frequency of the medium (an opaque
medium). This fact does not allow us to compare directly the
results from Ref. [32] with the results of the present paper
where the medium is transparent (opposite inequality between
the frequencies is valid).

The objective of the present paper is to calculate the fore-
runners of the step-modulated sine pulse propagation in the
Drude dispersive media in the framework of a time-domain
consideration. Usually [1–3], the forerunner in the Lorentz
dispersive media is obtained as the high-frequency limit of the
integration and does not depend on the resonance frequency.
Therefore we believe that the results obtained in the present
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paper will describe more precisely the forerunners of the
Lorentz dispersive media as well.

The forerunner of the pulse caused by a plane source of the
electric field inside the medium is calculated in Sec. II. The
forerunners of the linearly polarized wave which is normally
incident upon the vacuum-medium interface are calculated in
Sec III. The results of the study are discussed and summarized
in Sec. IV.

II. ELECTRIC-FIELD SOURCE INSIDE THE MEDIUM

The canonical Sommerfeld problem [1–3] of signal propa-
gation in a dispersive medium is studied in this section for a
medium with the Drude model of dielectric dispersion. The
sinusoidal plane source of the electric field with a carrier
frequency ωc is placed in an infinite Drude dispersive medium.
Let the source plane be the surface x = 0 and the source
is switched on at time t = 0. Thus the problem becomes
one-dimensional along coordinate x. Time dependence of the
external source electric field is defined as

E (0, t ) = sin (ωct )H (t ), (1)

where H (t ) denotes the Heaviside unit step function. The
electric-field amplitude is normalized to be unity. In fact,
this problem is different from the problem of normal wave
incidence from vacuum into the dispersive medium that Som-
merfeld intended to solve in Refs. [1,3]. Therefore, the last
one will be additionally considered in Sec. III.

The Drude model of the dielectric dispersion is based on
the electron motion equation [28,29], which in the case of the
negligible collisions can be written as

∂ j(x, t )

∂t
= ω2

p

4π
E (x, t ), (2)

where j(x, t ) is the electron current density, ω2
p ≡ 4πnee2

me
is

the square of the plasma frequency, ne is the number density
of electrons, e is the electron charge, and me is the electron
mass. Since here the problem is completely considered in
the time domain, the conductivity or permittivity derived by
Drude in the frequency domain [28,29] are not used as the
electric properties of the medium. Instead of this, the motion
Eq. (2) is used to derive the time-domain equation for the
electric-field evolution. But the relationship between the sig-
nal carrier frequency ωc and the plasma frequency ωp is used
in the form which coincides with the usual representation of
the permittivity

ε ≡ 1 − ω2
p

ω2
c

. (3)

In other words, the developed analytics does not operate with
any other frequency (as a variable of the frequency domain)
except ωp and ωc.

The changes in the medium under the action of the prop-
agating signal is defined by the motion equation (2), but the
initial state of the medium is also important for the analytical
study. According to Sommerfeld [1,3], initially (before the
wavefront arrival at a certain coordinate) the electrons of the
medium are at rest and do not oscillate (the thermal motion
does not affect the signal propagation in the approximation

considered). This allows us to write down the initial con-
dition for the electron current density as j(x, 0) = 0. Since
initially both electric and magnetic fields also do not exist
in the medium, the problem of the mathematical physics for
the electric field in the medium consists of the Klein-Gordon
equation

∂2E (x, t )

∂x2
= 1

c2

∂2E (x, t )

∂t2
+ ω2

p

c2
E (x, t ), (4)

where c is the velocity of light in vacuum. The initial condi-
tions are

E (x, 0) = 0, (5)

∂E

∂t

∣∣∣∣
t=0

= 0, (6)

and the boundary condition is

E (0, t ) = sin (ωct ). (7)

The set of Eqs. (4)–(7) is Sommerfeld’s problem of wave
propagation through a Drude dispersive medium (which is a
particular case of the Lorentz medium) in the time domain.

The problem (4)–(7) has been solved in Ref. [31]. The
wave magnetic field from Ref. [31] is the solution of the same
problem in mathematical physics. Therefore,

E (x, t ) = k
∫ ct

x
cos[k

√
ε(g − x)]J0

(ωp

c

√
c2t2 − g2

)
dg, (8)

where k = ωc/c is the vacuum wave vector and Jn(x) denotes
the Bessel function of the first kind of integer order n. The
objective of the present study is to get the early time behavior
of the electric field at a certain coordinate x from Eq. (8). Since
the lower limit of the integral in Eq. (8) should be close to the
upper limit, the following variable replacement is carried out:
z ≡ (1 − g2

c2t2 )1/2. As a result, Eq. (8) becomes

E (x, t ) = ωct
∫ δ

0

z√
1 − z2

× cos[
√

ε(ωct
√

1 − z2 − kx)]J0(ωptz)dz, (9)

where δ = (1 − x2

c2t2 )1/2.
Now the small parameter of the consideration can be intro-

duced as

δ2 = 1 − x2

c2t2
� 1. (10)

Then the square roots in the integrand can be expanded as
(1 − z2)1/2 ≈ 1 − z2/2. The approximate expression for the
early time behavior of the electric field becomes

EF (x, t ) = ωct
∫ δ

0
z

(
1 + z2

2

)

× cos

{√
ε

[
ωct

(
1 − z2

2

)
− kx

]}
J0(ωptz)dz.

(11)

The cosine of the integrand of Eq. (11) is the rapidly
oscillating function, therefore the expansion of its argument
can lead to a wrong result. The validity of the expansion is
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verified a posteriori. Equation (11) can be integrated by using
the table of integrals 1.8.2.8 [33]:

EF (x, t ) = 1√
ε

U1(x, t ) + 1

εωct
U2(x, t ) − 1 − ε

2ε3/2
U3(x, t ),

(12)
where

Un(x, t ) ≡
∞∑

m=0

(−1)m

( √
ε√

1 − ε
δ

)2m+n

J2m+n(ωptδ). (13)

Usually, for the physically interesting cases, ωct � 1,
therefore the second term in Eq. (12) can be neglected. The
sum of Eq. (13) can be truncated if

ε

1 − ε
δ2 � 1. (14)

In this approximation, the forerunner becomes

EF (x, t ) = δ√
1 − ε

J1(ωptδ) − 1 + ε

2(1 − ε)3/2 δ3J3(ωptδ).

(15)
The first term of Eq. (15) is known as Sommerfeld

forerunner or Sommerfeld precursor. It can be rewritten in

the variables of Sommerfeld’s problem [1–3] ξ = ω2
p

2c x and
τ = t − x

c (the retarded time) to make possible the direct
comparison:

ES (x, t ) = ωc

√
τ

ξ

√
τω2

p/ξ + 4

τω2
p/ξ + 2

J1(
√

4τξ + (ωpτ )2). (16)

In the limit τω2
p/ξ −→ 0, Eq. (16) coincides with the canon-

ical Sommerfeld forerunner [1–3]. The expression (16) has
lower amplitude of the oscillations and higher frequency of
the oscillations than the canonical expression for the Som-
merfeld precursor. But both the amplitude and frequency of
the whole forerunner (15) are higher (that will be seen from
the analysis below).

But, in fact, the forerunner can be written from Eq. (12)
without the sum truncation if ε

1−ε
δ2 < 1. Since the inequal-

ity ωptδ � 1 is fulfilled almost always (except a few initial
periods), the function Un(x, t ) can be approximated as

Un(x, t ) =
√

2

π

1√
ωct

εn/2δ(2n−1)/2

(1 − ε)(2n−3)/4[1 − ε(1 + δ2)]

× cos
(
ωptδ − π

2
n − π

4

)
. (17)

Then the forerunner becomes

EF (x, t ) =
√

2

π

√
δ

ωct

(1 − ε)1/4(1 + δ2/2)

1 − ε(1 + δ2)

× sin (ωptδ − π/4). (18)

Equation (18) becomes even simpler in the approximation
(14):

EF (x, t ) =
√

2

π

√
δ

ωct

1

(1 − ε)3/4

(
1 + 1 + ε

2(1 − ε)
δ2

)

× sin(ωptδ − π/4). (19)

FIG. 1. The temporal behavior of the transmitted step-modulated
sine pulse at the distance of 25 vacuum wavelengths from the
electric-field source in a medium with ε = 0.16. The signal is nor-
malized by the amplitude of the source electric field. The exact
solution of the problem from Eq. (8).

Equations (18) or (19) allow us to calculate the amplitude
of the forerunner. An instantaneous frequency of the fore-
runner is ω = d

dt (ωptδ) = ωp

δ
. The instantaneous frequency

in the variables of the Sommerfeld’s problem [1–3] is ω =√
ξ

τ

τω2
p/ξ+2

(τω2
p/ξ+4)1/2 . It means that the canonical Sommerfeld fore-

runner underestimates the frequency of the oscillations.
The time dynamics of the step-modulated sine pulse at the

distance of 25 vacuum wavelengths λv ≡ 2πc/ωc is shown
in Fig. 1 for a medium with ε = 0.16. The same distance
is equal to 10 wavelengths in the medium λm ≡ 2πc/

√
εωc

in this case. The dependence is built as the exact solution
of the problem from Eq. (8) and normalized by the source
electric-field amplitude. The forerunner (as early time behav-
ior of the electric field) can be seen at small coordinates. The
main signal buildup is seen at large coordinates and has been
discussed in Ref. [31]. The objective of this study is the early
time behavior at the interval ct/x ∈ [0; 1.2] only, because the
applicability of the used approximation (10) is well grounded
in this range.

Figure 2 is the increased part of Fig. 1 with some additional
curves for comparison. All the data are normalized by the
amplitude of the source electric field. Figure 2 shows the fore-
runner from the exact solution (8) (solid line), Sommerfeld
forerunner from Refs. [1,3] (dashed line), the approximate
forerunner as the first term of Eq. (15) (dash-dotted line), and
the approximate forerunner as both terms of Eq. (15) (dotted
line). The envelope of the forerunner oscillations is built as the
amplitude of the oscillations from Eq. (19) (thin solid line).

The obtained result (15) for the forerunner is very close to
the exact solution of the problem if the both terms are taken
into account. The instantaneous frequency of the obtained
forerunner is in perfect agreement with the instantaneous fre-
quency of the exact solution and reproduces the result from
Refs. [1,3] which is valid in the limit x −→ ∞. In general,
the Sommerfeld precursor [1,3] underestimates both the in-
stantaneous frequency and the amplitude of the forerunner.
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FIG. 2. The forerunner of the step-modulated sine pulse at the
distance of 25 vacuum wavelengths from the electric-field source
in a medium with ε = 0.16: the exact solution of the problem from
Eq. (8) (solid line), Sommerfeld precursor from Refs. [1,3] (dashed
line), the first term of Eq. (15) (dash-dotted line), and both terms of
Eq. (15) (dotted line). The data are normalized by the amplitude of
the source electric field. The envelope of the forerunner is shown as
the amplitude of the oscillations from Eq. (19) (thin solid line).

The forerunner at the distance of 250 vacuum wavelengths
(100 wavelengths in the medium) from the electric-field
source is shown in Fig. 3. The lines are built from the same
expressions as explained for Fig. 2. The forerunner is the
rapidly oscillating function at such a scale. Therefore, the inset
in Fig. 3 zooms in on the range of a few oscillation periods to
see the details of the dependencies. The dependencies of Fig. 3
confirm the conclusions from Fig. 1.

III. NORMAL INCIDENCE OF THE WAVE UPON THE
VACUUM-MEDIUM INTERFACE

The forerunners in a Drude dispersive half space are
also studied in the case, when the linearly polarized,

FIG. 3. Same as Fig. 2 at the distance of 250 vacuum wave-
lengths. The inset in the figure zooms in on a few periods of the
oscillations to see the details.

step-modulated sine wave is normally incident from a vac-
uum half space upon the vacuum-medium interface. Vacuum
occupies the half space x < 0, and the half space x > 0 is the
Drude dispersive medium. The electric field of the incident
wave is oriented along the y axis and its magnetic field is
oriented along the z axis. The incident wave is defined in the
vacuum half space by the waveform

Ey(x, t ), Bz(x, t ) = sin (ωct − kx)H (t )H (−x). (20)

The amplitudes of both electric and magnetic fields are
normalized to unity. The relationship between the carrier fre-
quency of the incident wave ωc and the plasma frequency of
the medium ωp is defined, as previously, by ε from Eq. (3).

Initially, at time t = 0, the electrons of the medium are at
rest and do not oscillate. Therefore the wavefront propagates
in the medium with the velocity of light. But the electrons of
the medium behind the wavefront start to oscillate in the wave
electric field. Generated polarization current in the medium
changes the electrical permittivity of the medium which was
initially equal to the vacuum permittivity and affects the elec-
tromagnetic field of propagating wave. As a consequence, the
incident wave is partially reflected from the medium interface
and partially transmitted into the medium. This phenomenon
is the main difference from the problem considered in Sec. II
where the electric field is defined by the plane source in the
medium (there was no reflection).

The electron current density and the electric and mag-
netic fields in the medium are described by the Klein-Gordon
equation (4) with zero initial conditions (initially, there is no
electron motion and the electromagnetic field in the medium).
The above-stated problem was solved in Ref. [34]. The
objective of this section is to get both electric and mag-
netic forerunners in the medium from the exact solution of
Ref. [34]:

Ey(x, t ) = − 2

(1 − ε)1/2

ct − x√
c2t2 − x2

J1

(ωp

c

√
c2t2 − x2

)

+ 2

1 − ε

(
kI1 −

√
ε

c

∂I2

∂t

)
, (21)

Bz(x, t ) = 2

(1 − ε)1/2

ct − x√
c2t2 − x2

J1

(ωp

c

√
c2t2 − x2

)

− 2

1 − ε

(
εkI1 −

√
ε

c

∂I2

∂t

)
, (22)

where

I1(x, t ) ≡
∫ ct

x
cos[k

√
ε(g − x)]J0

(ωp

c

√
c2t2 − g2

)
dg, (23)

I2(x, t ) ≡
∫ ct

x
sin[k

√
ε(g − x)]J0

(ωp

c

√
c2t2 − g2

)
dg. (24)

The integral I1(x, t ) is evaluated in the approximation (10)
in Sec. II. The forerunners can be calculated by evaluating the
expression

1

c

∂

∂t
I2(x, t ) = sin[

√
ε(ωct − kx)]− ωpt

∫ ct

x

sin[k
√

ε(g− x)]√
c2t2 − g2

× J1

(ωp

c

√
c2t2 − g2

)
dg (25)
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in the same approximation. After replacing the variable of
integration, the integral∫ δ

0

dz√
1 − z2

sin[
√

ε(ωct
√

1 − z2 − kx)]J1(ωptz) (26)

is calculated by using the above-reported expansion of the
square roots and the table of integrals 1.8.2.8 [33]. As a result,

1

c

∂

∂t
I2(x, t ) ≈ U1(x, t ) − 1 − ε

2ε
U3(x, t ). (27)

The electric and magnetic forerunners in this section are
denoted EF

y (x, t ) and BF
z (x, t ), respectively, to be different

from the electric forerunner EF (x, t ) in Sec. II. The ap-
proximation ωct � 1 allows us to neglect the term which is
proportional to U2(x, t ) in the expression for I1(x, t ). Then

BF
z (x, t ) = 2√

1 − ε

√
1 − x/ct√
1 + x/ct

J1(ωptδ), (28)

EF
y (x, t ) = 2EF (x, t ) − BF

z (x, t ). (29)

One can see that the magnetic forerunner does not depend
on the integrals (23) and (24). The electric forerunner in
the approximation (14) when the sum (13) can be truncated
becomes

EF
y (x, t ) = 2√

1 − ε

x

ct

√
1 − x/ct√
1 + x/ct

J1(ωptδ)

− 1 + ε

(1 − ε)3/2 δ3J3(ωptδ). (30)

The first term of Eq. (30) associated with the Sommerfeld
precursor underestimates essentially the electric field. This
follows from the fact that the amplitude of the electric fore-
runner in the medium with ε < 1 should be larger than the
amplitude of the magnetic forerunner (28). Therefore, the
second term in Eq. (30) cannot be neglected in the present
consideration.

In the approximation ωptδ � 1 the magnetic forerunner
becomes

BF
z (x, t ) =

√
2

π

√
δ

ωct

(1 + δ2/4)

(1 − ε)3/4 sin (ωptδ − π/4), (31)

and the sum truncation is not required to calculate the electric
forerunner:

EF
y (x, t ) =

√
2

π

√
δ

ωct

(
− 1 + δ2/4

(1 − ε)3/4

+ 2(1 − ε)1/4

1 − ε(1 + δ2)
(1 + δ2/2)

)
sin(ωptδ − π/4)

(32)

if ε
1−ε

δ2 < 1, or

EF
y (x, t ) =

√
2

π

√
δ

ωct

1

(1 − ε)3/4

(
1 + 3 + 5ε

4(1 − ε)
δ2

)

× sin(ωptδ − π/4) (33)

if ε
1−ε

δ2 � 1.

FIG. 4. The forerunners of the transmitted step-modulated sine
wave at the distance of 25 vacuum wavelengths from the vacuum-
medium interface in a medium with ε = 0.16: the exact solution for
the electric field from Eq. (21) (solid line), the exact solution for
the magnetic field from Eq. (22) (dashed line), Sommerfeld precur-
sor from Refs. [1,3] (thick solid line), the electric forerunner from
Eq. (30) (dotted line), and the magnetic forerunner from Eq. (28)
(dashed-dotted line). The data are normalized by the amplitude of
the incident wave. The envelopes of the forerunners are shown as
the amplitudes of the oscillations from Eqs. (33) and (31) (thin solid
lines). See Fig. 5 for details.

The magnetic forerunner (28) can be written in the vari-
ables of Sommerfeld’s problem [1,3] to see the difference
from the Sommerfeld forerunner:

BF
z (x, t ) = ωc

√
τ

ξ

2√
τω2

p/ξ + 4
J1(

√
4τξ + (ωpτ )2). (34)

The magnetic and electric forerunners at the distance of
25 vacuum wavelengths (10 wavelengths in the medium)
from the vacuum-medium interface are shown in Figs. 4 and
5. The fields are normalized by the amplitude of the inci-
dent wave. Figures 4 and 5 show the electric and magnetic

FIG. 5. Same as Fig. 4 but for a few periods of the oscillations to
see the details.
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FIG. 6. The Poynting vector of the forerunner at the distance
of 25 vacuum wavelengths from the vacuum-medium interface in
a medium with ε = 0.16. The Poynting vector is normalized by the
Poynting vector amplitude of the incident wave. Solid line is obtained
from the exact solution of the problem [Eqs. (21) and (22)]. Dashed
line is obtained from the magnetic and electric forerunners [Eqs. (28)
and (30)].

forerunners as the exact solution of the problem from
Eqs. (21) and (22), respectively (solid and dashed lines, re-
spectively), Sommerfeld forerunner from Refs. [1,3] (thick
solid line), and the approximate electric and magnetic fore-
runners from Eqs. (30) and (28), respectively (dotted and
dash-dotted lines, respectively). The horizontal axis is built
for the range from 1 to 1.2, since this approximation (10) is
well applicable in this range. The envelopes of the electric
and magnetic oscillations are built as the amplitudes of the
oscillations from Eqs. (33) and (31), respectively (thin solid
lines). Figure 5 zooms in on a few oscillation periods of Fig. 4
to see the details of the dependencies.

As previously in the problem of Sec. II, the Sommerfeld
forerunner underestimates both the instantaneous frequency
and the amplitude of the electric forerunner but reproduces
surprisingly well the amplitude of the magnetic forerunner.

The Poynting vector (Sx = cEyBz/4π ) of the propagating
wave at the distance of 25 vacuum wavelengths (10 wave-
lengths in the medium) from the vacuum-medium interface
is shown in Fig. 6. It is normalized by the Poynting vector
amplitude of the incident wave. Solid and dashed lines are
obtained from exact [Eqs. (21) and (22)] and approximate
[Eqs. (28) and (30)] solutions to the problem, respectively.
The approximate solution is in good agreement with the exact
result but, of course, underestimates the Poynting vector when
the parameter ct = x is increased. The data are presented to
compare the power magnitude of the forerunner with that of
the incident power.

IV. CONCLUSIONS

The forerunners of the step-modulated sine signal in
the Drude dispersive media are calculated in time domain.

Two problems are considered: the plane source of the electric
field is inside the medium, and the linearly polarized wave is
incident normally from vacuum upon the half-space medium.
The forerunners are obtained from the exact solutions of the
problems (8) and (21), (22). The approximate formulas for
the forerunners (15) and (28), (30) agree quite well with the
exact solutions. The canonical Sommerfeld forerunner [1,3] is
shown to underestimate both the frequency of the oscillations
and the amplitude of the electric-field oscillations.

All forerunners are obtained as the early time behavior of
the signal at a certain coordinate in the approximation δ2 � 1
[Eqs. (12), (28), and (29)]. In the additional approximation

ε
1−ε

δ2 � 1 they become Eqs. (15), (28), and (30). If a few
initial periods of the oscillations are neglected in the approxi-
mation ωptδ � 1, the forerunners read as (18), (31), and (32)
if ε

1−ε
δ2 < 1 or (19), (31), and (33) if ε

1−ε
δ2 � 1.

Since the problems are solved completely in the time do-
main, the contributions to the obtained forerunners from the
different parts of the frequency spectrum of the incident pulse
cannot be separated from each other. Only the knowledge of
frequency-domain theory allows us to identify the obtained
forerunner as a Sommerfeld precursor (the high-frequency
contribution which propagates almost at the velocity of light).
In one sense the time-domain theory of forerunners is simpler
because it does not require any preliminary analysis of the fre-
quency spectrum for locating the saddle points and choosing
the integration paths.

The forerunners are calculated for the transparent Drude
media only (the carrier frequency ωc is larger than the plasma
frequency of the medium ωp, or ε > 0), since the calculations
are based on the previously developed analytics for the trans-
parent media [31,34]. It means that we cannot reproduce the
data, for example, from Ref. [32] where the considered Drude
medium is opaque. The time-domain calculation of the fore-
runners in the opaque Drude media requires a development
of the analytics for the transient propagation. The analytics is
more complicated than in the case of the transparent medium
but it does not look impossible. At least the authors made
essential progress in its development and hope to have promis-
ing results soon.

The transmitted signal damping in the medium is usually
taken into consideration by including the electron collisions
in the motion equation. Unfortunately, this increases the order
of the differential Eq. (4) and its solution is not obtained yet
in the time domain. Intuitively, the effect of collisions can
be included in the presented results through the exponential
multiplier exp[−2γ (t − x/c)] to the forerunners [2,17,24],
where γ is the damping constant of the medium. But more ac-
curate treatment of the collisions in the time domain requires
developing the analytics.

The calculated forerunners are identified as Sommerfeld
precursors. But a Sommerfeld precursor in the Lorentz me-
dia is the high-frequency contribution of the incident pulse
spectrum to the transmitted signal, which does not depend
on the resonance frequency. It means that the forerunners
calculated here for Drude dispersive media should be close
to the forerunners of Lorentz dispersive media if the high-
frequency contribution of the incident signal spectrum to the
forerunner is dominant (Sommerfeld precursor is dominant in
the forerunner). The obtained frequency and amplitudes of the
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forerunners are closer to the exact solutions than the predic-
tion by canonical Sommerfeld precursor [1,3]. Therefore, the
obtained data can be helpful for a direct comparison with the
exact results for the forerunners in the Lorentz dispersive me-
dia and for an experimental detection of the forerunners. Also,
the presented analytics can be used for further development of
the time-domain theory.

ACKNOWLEDGMENTS

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018 and
2019–2020 under Grant Agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission.

[1] A. Sommerfeld, Über die Fortpflanzung des Lichtes in dis-
perdierenden Medien, Ann. Phys. (Berlin, Ger.) 349, 177
(1914).

[2] L. Brillouin, Über die Fortpflanzung des Lichtes in dis-
pergierenden Medien, Ann. Phys. (Berlin, Ger.) 349, 203
(1914).

[3] L. Brillouin, Wave Propagation and Group Velocity (Academic
Press, New York, 1960).

[4] P. Compaijen, V. Malyshev, and J. Knoester, Time-dependent
transport of a localized surface plasmon through a linear array
of metal nanoparticles: Precursor and normal mode contribu-
tions, Phys. Rev. B 97, 085428 (2018).

[5] S. Arcone and L. Liu, Spatial attenuation rates of interfacial
waves: Field and numerical tests of Sommerfeld theory using
ground-penetrating radar pulses, J. Appl. Geophys. 81, 122
(2012).

[6] A. Alejos, M. Dawood, E. Aguirre, F. Falcone, D. Outerelo,
A. Naghar, and O. Agzhout, Influence of impairments due to
dispersive propagation on the antenna design for body-based
applications, J. Electromagn. Waves Appl. 29, 2355 (2015).

[7] R. Uitham and B. Hoenders, The Sommerfeld precursor in
photonic crystals, Opt. Commun. 262, 211 (2006).

[8] S.-H. Choi and U. Österberg, Observation of Optical Precursors
in Water, Phys. Rev. Lett. 92, 193903 (2004).

[9] K. Oughstun, Optimal pulse penetration in Lorentz-model di-
electrics using the Sommerfeld and Brillouin precursors, Opt.
Express 23, 26604 (2015).

[10] C.-F. Li, Z.-Q. Zhou, H. Jeong, and G.-C. Guo, Approach to
accurately measuring the speed of optical precursor, Phys. Rev.
A 84, 043803 (2011).

[11] N. Cartwright and K. Oughstun, Precursors and Dispersive
Pulse Dynamics, A Century after the Sommerfeld-Brillouin The-
ory: Part I. The Original Theory, Progress in Optics (Elsevier,
Amsterdam, 2014), Vol. 59, pp. 209–265.

[12] N. Cartwright and K. Oughstun, Precursors and Dispersive
Pulse Dynamics, A Century after the Sommerfeld-Brillouin The-
ory: Part II. The Modern Asymptotic Theory, Progress in Optics
(Elsevier, Amsterdam, 2015), Vol. 60, pp. 263–344.

[13] R. Haskell and C. Case, Transient signal propagation in loss-
less, isotropic plasmas, IRE Trans. Antennas Propag. 15, 458
(1967).

[14] K. Oughstun and G. Sherman, Propagation of electromagnetic
pulses in a linear dispersive medium with absorption (the
Lorentz medium), J. Opt. Soc. Am. B 5, 817 (1988).

[15] K. Oughstun and G. Sherman, Uniform asymptotic descrip-
tion of electromagnetic pulse propagation in a linear dispersive

medium with absorption (the Lorentz medium), J. Opt. Soc.
Am. A 6, 1394 (1989).

[16] K. Oughstun and G. Sherman, Electromagnetic Pulse Prop-
agation in Casual Dielectrics, Springer Series on Wave
Phenomena (Springer Science & Business Media, 2012),
Vol. 16.

[17] B. Macke and B. Ségard, Simple asymptotic forms for Som-
merfeld and Brillouin precursors, Phys. Rev. A 86, 013837
(2012).

[18] K. Oughstun, Electromagnetic and Optical Pulse Propagation.
Volume 2: Temporal Pulse Dynamics in Dispersive Attenuative
Media, Springer Series in Optical Sciences (Springer Interna-
tional Publishing, 2019), Vol. 225.

[19] B. Macke and B. Ségard, From Sommerfeld and Brillouin
forerunners to optical precursors, Phys. Rev. A 87, 043830
(2013).

[20] U. Österberg, D. Andersson, and M. Lisak, On precur-
sor propagation in lineal dielectrics, Opt. Commun. 277, 5
(2007).

[21] H. Jeong, A. Dawes, and D. Gauthier, Carrier-frequency depen-
dence of a step-modulated pulse propagating through a weakly
dispersive single narrow-resonance absorber, J. Mod. Opt. 58,
865 (2011).

[22] H. Jeong and S. Du, Two-way transparency in the light-
matter interaction: Optical precursors with electromagneti-
cally induced transparency, Phys. Rev. A 79, 011802(R)
(2009).

[23] B. Macke and B. Ségard, Optical precursors in transparent
media, Phys. Rev. A 80, 011803(R) (2009).

[24] W. LeFew, S. Venakides, and D. Gauthier, Accurate de-
scription of optical precursors and their relation to weak-
field coherent optical transients, Phys. Rev. A 79, 063842
(2009).

[25] K. Oughstun, N. Cartwright, D. Gauthier, and H. Jeong, Optical
precursors in the singular and weak dispersion limits, J. Opt.
Soc. Am. B 27, 1664 (2010).

[26] M. Abdelrahman and B. Gralak, Modal analysis of wave prop-
agation in dispersive media, Phys. Rev. A 97, 013824 (2018).

[27] A. Karlsson and S. Rikte, Time-domain theory of forerunners,
J. Opt. Soc. Am. A 15, 487 (1998).

[28] P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys.
(Berlin, Ger.) 306, 566 (1900).

[29] P. Drude, The Theory of Optics (Dover Publication, New York,
1959).

[30] A. Alejos, M. Dawood, and F. Falcone, Temporal and frequency
evolution of Brillouin and Sommerfeld precursors through

013518-8

https://doi.org/10.1002/andp.19143491002
https://doi.org/10.1002/andp.19143491003
https://doi.org/10.1103/PhysRevB.97.085428
https://doi.org/10.1016/j.jappgeo.2011.11.007
https://doi.org/10.1080/09205071.2015.1103667
https://doi.org/10.1016/j.optcom.2005.12.077
https://doi.org/10.1103/PhysRevLett.92.193903
https://doi.org/10.1364/OE.23.026604
https://doi.org/10.1103/PhysRevA.84.043803
https://doi.org/10.1109/TAP.1967.1138953
https://doi.org/10.1364/JOSAB.5.000817
https://doi.org/10.1364/JOSAA.6.001394
https://doi.org/10.1103/PhysRevA.86.013837
https://doi.org/10.1103/PhysRevA.87.043830
https://doi.org/10.1016/j.optcom.2007.04.050
https://doi.org/10.1080/09500340.2011.575961
https://doi.org/10.1103/PhysRevA.79.011802
https://doi.org/10.1103/PhysRevA.80.011803
https://doi.org/10.1103/PhysRevA.79.063842
https://doi.org/10.1364/JOSAB.27.001664
https://doi.org/10.1103/PhysRevA.97.013824
https://doi.org/10.1364/JOSAA.15.000487
https://doi.org/10.1002/andp.19003060312


TIME-DOMAIN CALCULATION OF FORERUNNERS IN … PHYSICAL REVIEW A 104, 013518 (2021)

dispersive media in THz-IR bands, IEEE Trans. Antennas
Propag. 60, 5900 (2012).

[31] I. Pavlenko, I. Girka, O. Trush, D. Melnyk, and Y. Velizhanina,
Plasma transient processes and plane-wave formation in sim-
ulations by FDTD method, IEEE Trans. Antennas Propag. 67,
6957 (2019).

[32] N. Cartwright and K. Oughstun, Ultrawideband pulse propaga-
tion through a homogeneous, isotropic, lossy plasma, Radio Sci.
44, RS4013 (2009).

[33] A. Prudnikov, Y. Brychkov, and O. Marichev, In-
tergals and Series, Special Functions (Gordon and
Breach Science Publishers, New York, London, 1986),
Vol. 2.

[34] I. Pavlenko, I. Girka, O. Trush, and D. Melnyk, Exact analytical
calculation and numerical modelling by finite-difference time-
domain method of the transient transmission of electromagnetic
waves through cold plasmas, J. Plasma Phys. 86, 905860310
(2020).

013518-9

https://doi.org/10.1109/TAP.2012.2211323
https://doi.org/10.1109/TAP.2019.2925156
https://doi.org/10.1029/2009RS004201
https://doi.org/10.1017/S0022377820000367

