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Time-domain formulation of electromagnetic scattering based on a polarization-mode expansion
and the principle of least action
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An approach to the full wave analysis of the time evolution of the polarization induced in the electromagnetic
scattering from dispersive nonmagnetic particles is presented. It is based on the combination of the Hopfield
model for the polarization field, the expansion of the polarization field in terms of static longitudinal and
transverse modes of the particle, the expansion of the radiation field in terms of transverse wave modes of
free space, and the principle of least action. The polarization field is linearly coupled to the electromagnetic
field. The losses of the matter are described thorough a linear coupling of the polarization field to a bath
of harmonic oscillators with a continuous range of natural frequencies. The set of linear ordinary differential
integral equations of convolution type of the overall system is reduced by eliminating both the radiation degrees
of freedom and the bath degrees of freedom, and the reduced system of equations is studied. The role played by
the radiation field in the coupling between the longitudinal and transverse mode amplitudes of the polarization
is described. The principal characteristics of the temporal evolution of the mode amplitudes are found as the
particle size varies, including the impulse response. Results are presented for the analytically solvable spherical
particle. The proposed approach leads to a general method for the analysis of the temporal evolution of the
polarization field induced in dispersive particles of any shape, as well as for the computation of transients and
steady states.
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I. INTRODUCTION

The interaction of light with collective oscillations of mat-
ter in conducting and dielectric materials is one of the most
active branches of optics; it enables the subwavelength con-
finement of electromagnetic fields and the enhancement of
light-matter interaction (see, e.g., [1,2]). The analysis and the
design of ultrafast devides require the description of this inter-
action in the temporal domain (see, e.g., [3–5]). The temporal
evolution of linear time-invariant systems can be studied by
using finite-difference time-domain methods or semianalyti-
cal methods based on concepts such as natural mode, natural
frequency, decay rate, impulse response, and coupled modes.

Time-domain electromagnetic scattering by metal particles
with arbitrary shapes has been investigated in terms of natural
modes using the quasielectrostatic approximation and disre-
garding the coupling to radiation [6]; radiative corrections
have been evaluated by applying perturbative techniques [7].
Time-domain electromagnetic scattering by spherical parti-
cles has been studied by either using the combination of
the Mie theory, Debye series, and Fourier transform [8,9] or
solving time-domain integral equations [10]. The electromag-
netic scattering in the time domain from particles of arbitrary
shape is studied by combining the Fourier transform with an
expansion in terms of quasinormal modes [11–14], which are
also called resonant states [15]. The concept of a quasinormal
mode traces back to the theory of natural electromagnetic
oscillations, given by Stratton [16]. Time-domain modal ex-

pansions in the low-frequency regime [17,18] have obtained
by combining the Fourier transform and asymptotic analysis.
The decay rate and the frequency shift of the plasmon modes
in arbitrarily shaped metal nanoparticles have been studied by
using the Fano-Hopfield approach and the pole approximation
[19].

In this paper we propose a different full-wave approach
to the study of the linear electromagnetic scattering from
dispersive particles in the time domain. It is based on (i) the
separation of the degrees of freedom of the electromagnetic
field from the induced polarization field, (ii) a discrete expan-
sion of the polarization field in terms of static longitudinal
and transverse modes of the particle, and (iii) a continuum
expansion of the radiation field in terms of transverse vector
wave modes. The separation of the degrees of freedom of
matter and the radiation field allows a detailed description of
the field-matter interaction. The set of the static longitudinal
and transverse modes of the particle is a basis for the space
of the square-integrable solenoidal vector fields defined in the
region occupied by the particle.

By following the seminal works of Fano [20] and Hopfield
[21], we represent the induced polarization as a vector field
of coherent harmonic oscillators that is confined within the
particle and it is linearly coupled to the electromagnetic field.
The polarization field is also linearly coupled to a bath of
harmonic oscillators with a continuous range of natural fre-
quencies to describe phenomenologically the absorption of
the matter [22]. Both the polarization density field and the
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bath field are expanded in terms of the static longitudinal and
transverse modes of the particle. The electromagnetic field is
represented in terms of the longitudinal component, i.e., the
Coulomb field, and the transverse component, i.e., the radia-
tion field. The longitudinal electric field is expressed in terms
of the longitudinal degrees of freedom of the polarization
field, while the transverse electric field is expanded in terms of
transverse vector wave modes of the electromagnetic field in
free space. The equations of motion of the mode amplitudes
are obtained by applying the principle of least action to the
entire system composed of the polarization-field, bath-field,
and the radiation field by using the Lagrangian in the Coulomb
gauge (see, e.g., [23]). The system of equations governing
the time evolution of the mode amplitudes of the polarization
field is obtained by eliminating the degrees of freedom of the
bath field and of the radiation field. The coupling between the
polarization and the radiation field determines the self- and
mutual interactions of the longitudinal and transverse mode
amplitudes of the polarization. In general, the interaction be-
tween the amplitude of the mode Ua

p(r) and the amplitude of
the mode Ub

p′ (r) is expressed through a convolution integral
with a kernel proportional to

∫
V d3r

∫
V d3r′Ua

p(r)←→g ⊥(r −
r′; t )Ub

p′ (r′), where ←→g ⊥(r − r′; t ) is the transverse Green’s
function for the vacuum in the time domain. This double
integral describes the exchange of electromagnetic energy
between the two modes, which is a nonconservative process
due to the electromagnetic energy radiated toward the infinity.

The expansion of the polarization density field in terms of
the static longitudinal and transverse modes of the particle has
several advantages. (i) The static longitudinal and transverse
modes of the particle are an orthonormal basis for the space of
square-integrable solenoidal functions defined on the particle
domain. (ii) The static longitudinal modes diagonalize the
Coulomb energy contribution to the Lagrangian of the system.
This greatly simplifies the system of equations governing the
time evolution of the mode amplitudes of the polarization,
because the coupling between the polarization degrees of
freedom is limited to the coupling due to the radiation field.
(iii) The static transverse modes of the particle diagonalize
the contribution of the singular term of ←→g ⊥ to the interaction
integral of two generic transverse modes. (iv) As consequence
of (ii) and (iii) the static longitudinal and transverse modes
of the particle are the natural modes (normal modes) of the
polarization field in the small-size limit. (v) Although the
radiation field couples the longitudinal and transverse mode
amplitudes of the polarization, the coupling actually involves
only a limited number of degrees of freedom, which depends
on the ratio between the particle size and a characteristic
wavelength of the material.

The paper is organized as follows. In Sec. II we present the
longitudinal and transverse modes of a particle that we use to
represent the polarization field. In Sec. III we introduce the
Lagrangian of the system composed of the polarization-field,
bath-field, and radiation-field, the principle of least action, and
the Lagrangian in the Coulomb gauge. In Sec. IV we introduce
the mode expansions for the matter field, the bath field, and
the radiation field. In Sec. V we apply the principle of least
action to the Lagrangian expressed in terms of the mode am-
plitudes and obtain the Lagrange equations for the degrees of

freedom of the entire system. In Sec. VI we derive the system
of ordinary integro-differential equations of convolution type
governing the mode amplitudes of the polarization field. In
Sec. VII we present the results for the analytically solvable
spherical particle and we validate them. We discuss the main
results and summarize in Sec. VIII.

II. STATIC LONGITUDINAL AND TRANSVERSE
MODES OF THE PARTICLE

Throughout this paper we denote by V the region occupied
by the particle, by ∂V the boundary of V , by n̂ the normal to
the surface ∂V pointing outward, and by V∞ the entire space.
We introduce the scalar product

〈F, G〉W =
∫

W
F∗(r) · G(r)d3r (1)

and the norm ‖F‖W = √〈F, F〉W . If the integration domain is
not explicitly indicated, the scalar product is defined over V .

In this paper we consider the linear electromagnetic scatter-
ing by a dispersive, nonmagnetic, isotropic, and homogeneous
particle. Due to the hypothesis of homogeneity, the induced
polarization field is solenoidal in V and its normal component
on ∂V is in general different from zero.

The particle has two sets of orthogonal static modes ac-
cording to the scalar product 〈F, G〉 through which we can
represent any square-integrable solenoidal vector field defined
on V , with nonzero normal component to ∂V . They are the
static longitudinal modes and the static transverse modes of
the particle. They only depend on the geometry of the particle
and are independent of the particle material. The static longi-
tudinal modes are irrotational and solenoidal in V , but their
normal component to ∂V is different from zero; we denote
them by the superscript ‖. The static transverse modes are
solenoidal in V and their normal component to ∂V is equal
to zero; we denote them by the superscript ⊥.

The static longitudinal (electrostatic) modes of the particle
are solutions of the eigenvalue problem [24,25]

∇
∮

∂V

U‖
p(r′) · n̂(r′)

4π |r − r′| d2r′ = 1

κ
‖
p

U‖
p(r) in V, (2)

where κ‖
p is the eigenvalue associated with the eigenmode

U‖
p(r). Apart from the factor 1/ε0, the integro-differential

operator on the left-hand side of Eq. (2) gives the electrostatic
field generated by a surface charge distribution as a function
of the surface charge density. The eigenvalues are discrete,
real, positive, and equal to or greater than 2, κ‖

p � 2. The
eigenmodes and the eigenvalues depend only on the shape of
V ; they do not depend on its size. Two eigenmodes U‖

p′ and U‖
p

associated with distinct eigenvalues are orthogonal according
to the scalar product 〈F, G〉. The set {U‖

p(r)} is a base for the
space of square-integrable irrotational and solenoidal vector
fields defined on V that have a nonzero normal component on
∂V . The solution of the problem (2) can be obtained using the
method outlined in Refs. [26,27].
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The static transverse (magnetostatic) modes of the particle
are solutions of the eigenvalue problem [28,29]

∫
V

U⊥
p (r′)

4π |r − r′|d3r′ = 1

κ⊥
p

U⊥
p (r) in V, (3)

with

U⊥
p (r) · n̂(r) = 0 on ∂V, (4)

where κ⊥
p is the eigenvalue associated with the eigenmode U⊥

p .
Apart from the factor μ0, the integral operator on the left-hand
side of Eq. (3) gives the static magnetic vector potential in the
Coulomb gauge generated by a volume current distribution as
a function of the current density field. Equation (3) with the
constraint (4) holds in a weak form in the functional space
equipped with the inner product 〈F, G〉 and composed of the
vector fields that are solenoidal in V and have a zero normal
component to ∂V . The eigenvalues are discrete, real, and
positive. Two eigenmodes U⊥

p′ (r) and U⊥
p (r) associated with

distinct eigenvalues are orthogonal according to the scalar
product 〈F, G〉. The set {U⊥

p (r)} is a base for the space of the
square-integrable solenoidal vector fields defined on V with
normal components to ∂V equal to zero. Since Eq. (3) with the
constraint (4) holds in a weak form, the normal component on
∂V of the static vector potential generated by U⊥

p is in general
different from zero. The problem (3) can be solved by using
standard tools of computational electromagnetism as outlined
in Ref. [29].

The set of static longitudinal modes {U‖
p(r)} is orthogonal

to the set of static transverse modes {U⊥
p (r)} according to

the scalar product 〈F, G〉. Any square-integrable solenoidal
vector field defined on V can be represented by using both
these sets of modes.

In this paper we expand the polarization density field
P(t ; r) in the region V as

P(t ; r) =
∑

p

[p‖
p(t )U‖

p(r) + p⊥
p (t )U⊥

p (r)], (5)

where {p‖
p(t )} are the longitudinal degrees of freedom of the

polarization field and {p⊥
p (t )} are the transverse degrees of

freedom. The modes {U‖
p} and {U⊥

p } are dimensionless quan-
tities, normalized in such a way that ‖U‖

p‖ = ‖U⊥
p ‖ = 1. We

apply the principle of least action (see, e.g., [23]) to obtain the
equations governing the temporal evolution of the degrees of
freedom of the polarization field, {p‖

p(t )} and {p⊥
p (t )}.

III. FORMULATION OF THE ELECTROMAGNETIC
SCATTERING PROBLEM

In this paper we describe the polarization field induced in
the particle through the Hopfield model [20,21]. The polariza-
tion is represented as a continuum of harmonic oscillators with
natural frequency ω0, linearly coupled to the electromagnetic
field. The displacement vector field X(t ; r), referred to as the
matter field, describes the continuum of harmonic oscillators;
it is defined on V . The induced polarization density field P is

related to the matter field X,

P(t ; r) =
{−α0X(t ; r) in V

0 in V∞\V.
(6)

The parameter α0 determines the strength of the coupling
between the electromagnetic field and the matter field. It
has the dimension of an electric charge per unit of volume.
The effects of the material losses are introduced through the
phenomenological approach proposed by Huttner and Barnett
[22] in which the matter field is also linearly coupled to a
bath of harmonic oscillators with a continuous range of natural
frequencies. The bath is described by the vector field Y ν (t ; r),
referred to as the bath field, defined in V and labeled by the
frequency ν. The coupling of the bath field Y ν to the matter
field X is described by a parameter υν . The bath field has
the dimension of a length divided by the square root of a
frequency; υv has the dimension of mass per unit of volume
times the square root of a frequency. The natural frequency ω0,
the mass density of harmonic oscillators ρ0, and the coupling
parameters α0 and υν are assumed to be uniform in V . By
choosing υν/ρ0 = √

2γ /π , α0 = en0, and ρ0 = men0 (e is the
absolute value of the electron charge and me is the electron
mass) we obtain the Drude-Lorentz model with plasma fre-
quency ωP, resonant frequency ω0, and damping rate γ . For
dielectrics, n0 is the number density of bound electrons and
ω0 is the natural frequency of the bound electrons. For metals
n0 is the number density of free electrons and ω0 is equal to
zero. The extension of the Hopfield model to include a gener-
alized Lorentz description with multiple effective oscillators
is possible.

A. Standard Lagrangian

The particle is excited by an incident electromagnetic field
Einc(t ; r) that is assumed to be equal to zero for t < 0; thus
the entire system is at rest at t = 0. The field Einc is solenoidal
in V .

The field X(t ; r) is the natural generalized coordinate of
the matter and the field Y ν (t ; r) is the natural generalized
coordinate of the bath at frequency ν. For the electromagnetic
field the magnetic vector potential is a convenient generalized
coordinate. We introduce the induced vector potential A(t ; r)
(Hamiltonian or temporal gauge [30]),

A(t ; r) = −
∫ t

0
E(τ ; r)dτ, (7)

where E(t ; r) is the induced electric field; the incident vector
potential is given by Ainc(t ; r) = − ∫ t

0 Einc(τ ; r)dτ .
The degrees of freedom of the entire matter–bath–

electromagnetic-field system are X(t ; r), Y ν (t ; r), and A(t ; r).
The variables r and ν play the role of continuous indices for
the degrees of freedom. The standard Lagrangian of the entire
system L is the sum of five terms: the matter term Lm, the
electromagnetic field term Lem, the interaction term between
the matter and the electromagnetic field Lint

em, the bath term
Lbath, and the interaction term between the matter and the bath
Lint

bath. We have [22,31]

L = Lm + (
Lem + Lint

em

) + (
Lbath + Lint

bath

)
, (8)
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where

Lm(X, Ẋ) =
∫

V
d3r

ρ0

2

(
Ẋ2 − ω2

0X2
)
, (9a)

Lem(A, Ȧ) =
∫

V∞
d3r

(
ε0

2
Ȧ

2 − 1

2μ0
(∇ × A)2

)
, (9b)

Lint
em(Ẋ, A) = −

∫
V

d3r α0Ẋ · (A + Ainc), (9c)

Lbath(Y ν, Ẏ ν ) =
∫

V
d3r

∫ ∞

0
dν

ρ0

2

(
Ẏ

2
ν − ν2Y 2

ν

)
, (9d)

Lint
bath(X, Ẏ ν ) = −

∫
V

d3r
∫ ∞

0
dν υνX · Ẏ ν . (9e)

The overdot indicates the partial derivative with respect to
time.

B. Principle of least action

The Maxwell-Lorentz equations arise naturally from the
principle of least action (see, e.g., [23]). The action of the
system in the time interval (t1, t2) is

S =
∫ t2

t1

L(t )dt . (10)

One considers the variation of S when the matter field X(t ; r)
is varied by a quantity δX(t ; r), the bath field is varied by a
quantity δY ν (t ; r), and the induced vector potential is varied
by a quantity δA(t ; r), where δX(t ; r), δY ν (t ; r), and δA(t ; r)
are equal to zero at times t1 and t2. By requiring that S is
extremal, δS = 0, and by imposing that the induced vector
potential is equal to zero at infinity, one gets the Lagrange
equations governing the generalized coordinates of the system
(e.g., [31]),

Ẍ + ω2
0X = α0

ρ0
(Ȧ + Ȧinc) −

∫ ∞

0

υν

ρ0
Ẏ νdν in V, (11)

Ÿ ν + ν2Y ν = υν

ρ0
Ẋ in V for 0 � ν < ∞, (12)

Ä + c2
0∇ × ∇ × A = 1

ε0
×

{−α0Ẋ(t ; r) in V
0 in V∞\V,

(13)

where c0 is the light velocity in vacuum. Equation (11) gov-
erns the time evolution of the matter field, Eq. (12) governs
the time evolution of the bath field, and Eq. (13) governs the
induced vector potential. Since the external vector potential is
solenoidal in V , from Eqs. (11)–(13) it follows that the matter
field, the bath field, and the induced vector potential field are
solenoidal in V too. Furthermore, Eq. (13) indicates that there
is a surface polarization charge on ∂V with surface density
σ (t ; r) given by

σ = −α0Xn on ∂V, (14)

where Xn = X · n̂.
Due to the intrinsic spatial inhomogeneity of the problem,

the direct solution of the system of equations (11)–(13) in the
time domain is very challenging. We overcome the problem in
the following way. First, we expand the matter field, the bath
field, and the vector potential in terms of suitable sets of vector
fields depending only on space (modal expansion). Then we

require that S is extremal in order to determine the equations
governing the expansion coefficients, which only depend on
time. In particular, we obtain the equations governing the time
evolution of the expansion coefficient for the matter field in a
closed form. They are ordinary integro-differential equations
of convolution type, which can be studied and solved by using
standard techniques. Once the matter field has been evaluated,
the electromagnetic field can be evaluated inside the particle
by using Eqs. (11) and (12) and outside the particle by using
the electromagnetic potentials.

C. Coulomb gauge Lagrangian

The vector potential A(t ; r) is defined on V∞. It is conve-
nient to represent it as

A = A‖ + A⊥ in V∞, (15)

where A‖(t ; r) is the irrotational component of A and A⊥(t ; r)
is the solenoidal component; A⊥ is the vector potential in the
Coulomb gauge. The normal components of A⊥ is continuous
across ∂V , while the normal component of A‖ is discontinu-
ous. Indeed, from (13) [and according to (14)] we obtain

n̂ · (Ȧ‖
out − Ȧ‖

in ) = − 1

ε0
σ on ∂V, (16)

where A‖
out denotes the value of A‖ on the external face of ∂V

and A‖
in the value on the internal face of ∂V . The vector fields

A‖ and A⊥ are orthogonal according to the scalar product
〈F, G〉V∞ .

Equation (16) allows us to eliminate from the Lagrangian
the longitudinal component of the vector potential, which is
not a true degree of freedom of the system. By using the
decomposition (15) and Eq. (16) we obtain the expression for
Lem + Lint

em,

Lem + Lint
em = Lc + Lrad + Lint

rad, (17)

where

Lc = −
∫

∂V
d2r

∫
∂V

d2r′ α2
0

2ε0

Xn(t ; r)Xn(t ; r′)
4π |r − r′| , (18a)

Lrad =
∫

V∞
d3r

(
ε0

2
(Ȧ

⊥
)2 − 1

2μ0
(∇ × A⊥)2

)
, (18b)

Lint
rad = −

∫
V

d3r α0Ẋ · (A⊥ + Ainc). (18c)

The term −Lc is the Coulomb interaction energy between the
surface polarization charges induced on ∂V , while Lrad and
Lint

rad are the contributions due the radiation field.

IV. REPRESENTATION OF THE VECTOR
FIELDS X, Y ν, AND A⊥

We now introduce the expansion for the vector fields
X(t ; r), Y ν (t ; r), and A⊥(t ; r) that we use in the paper to
evaluate the expression of the Lagrangian of the entire system
to which we apply the principle of least action.
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A. Matter field X and bath field Y ν

The vector fields X and Y ν are solenoidal in V , but their
normal components to ∂V are different from zero. We repre-
sent them by using the Helmholtz decomposition theorem for
vector fields defined on a bounded region.

The matter field is represented as the sum of two terms
X = X‖ + X⊥ where (i) the longitudinal vector field X‖ is
irrotational and solenoidal in V and its normal component to
∂V is equal to X · n̂ and (ii) the transverse vector field X⊥ is
solenoidal in V and its normal component on ∂V is equal to
zero. The vector fields X‖ and X⊥ are orthogonal according to
the scalar product 〈F, G〉. The vector field Y ν is represented
in the same way.

The set of static longitudinal modes of the particle {U‖
p(r)},

which are solutions of the eigenvalue problem (2), is a basis
for space of longitudinal vector fields defined on V . The set of
static transverse modes of the particle {U⊥

p (r)}, which are the
solutions of the eigenvalue problem (3), is a basis for the space
of transverse vector fields defined on V . We choose them to
represent the longitudinal and transverse components of X and
Y ν . As we will see, this choice turns out to be very appropriate
because (i) the static longitudinal and transverse modes of the
particle are the natural modes of polarization of the particle in
the small-size limit and (ii) a limited set of static longitudinal
and transverse modes is needed for particles with size of the
order of the characteristic wavelength of the material.

The fields X‖ and Y ‖
ν are represented as

X‖(t ; r) =
∑

p

x‖
p(t )U‖

p(r), (19)

Y ‖
ν (t ; r) =

∑
n

y‖
ν,p(t )U‖

p(r), (20)

where {x‖
p(t )} are the longitudinal degrees of freedom of the

matter field and {y‖
ν,p(t )} are the longitudinal degrees of free-

dom of the bath field. The fields X⊥ and Y ⊥
ν are represented

as

X⊥(t ; r) =
∑

p

x⊥
p (t )U⊥

p (r), (21)

Y ⊥
ν (t ; r) =

∑
p

y⊥
ν,p(t )U⊥

p (r), (22)

where {x⊥
p (t )} are the transverse degrees of freedom of the

matter field and {y⊥
ν,p(t )} are the transverse degrees of freedom

of the bath field. We recall that the modes {U‖
p} and {U⊥

p }
are dimensionless quantities, normalized in such a way that
‖U‖

p‖ = ‖U⊥
q ‖ = 1.

The polarization-field degrees of freedom and the matter-
field degrees of freedom are related by

p‖
p = −α0x‖

p, (23)

p⊥
p = −α0x⊥

p . (24)

In the following, we denote by P the set of values of the
discrete index p.

B. Radiation field A⊥

We now introduce the basis for representing the vector
field A⊥(t ; r), which is solenoidal everywhere in V∞. Let us
consider the solutions of the eigenvalue problem

∇ × ch = khdh in V∞, (25a)

∇ × dh = khch in V∞ (25b)

that are regular at infinity. They are solutions of the vector
Helmholtz equation in free space. The eigenvalue kh is contin-
uous, real, and positive, i.e., 0 < kh < ∞. The eigenfunctions
are real and orthonormal according to the scalar product
〈F, G〉V∞ . They are a basis for the space of square-integrable
solenoidal vector fields defined in V∞. We now introduce the
complex functions

f(h,±)(r) = ch(r) ± idh(r). (26)

We denote by the label q the pair (h,+) and by the label −q
the pair (h,−). The functions fq and f−q are two independent
solutions of the eigenvalue problem (25a) and (25b) with the
same eigenvalue kh, which we denote by kq. The label q runs
over a continuous or discrete set, which we denote by Q.

The set {f}q is also an orthonormal basis for the space of
square-integrable solenoidal vector fields defined in V∞. We
represent A⊥(t ; r) as

A⊥(t ; r) =
∑

q

aq(t )fq(r), (27)

where {aq(t )} are the degrees of freedom of the radiation field.
Since A⊥ is real and f∗

q = f−q, we have a∗
q = a−q. The vector

fields {fq} are dimensionless quantities.
In this paper we use both the transverse vector plane waves

and the transverse vector spherical waves as a basis for rep-
resenting A⊥ (see Appendix A). In particular, we use the
transverse plane waves to show that the interaction between
the polarization degrees of freedom is governed by the trans-
verse component of the Green’s function for the vacuum. We
use the transverse spherical modes to study the responses of
the spherical particle.

V. LAGRANGE’S EQUATIONS

We first evaluate the expression of the terms of the La-
grangian in the Coulomb gauge by using the expansions
(19)–(22) and (27). Then we derive Lagrange’s equations for
the degrees of freedom of the entire system.

A. Expansion of the Lagrangian terms

The expression of Lm in terms of the degrees of freedom
of the matter field is

Lm =
∑

p

ρ0

2

[(
ẋ‖2

p − ω2
0x‖2

p

) + (
ẋ⊥2

p − ω2
0x⊥2

p

)]
. (28)

The orthogonality of the longitudinal and transverse modes
of the particle guarantees the diagonal structure of the matter
term.
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Only the longitudinal component of the matter field con-
tributes to the Coulomb term Lc. Its expression is

Lc = −
∑

p

ρ0

2
�2

px‖2
p , (29)

where

�p = ωP

√
1

κ
‖
p

, (30)

with κ‖
p the eigenvalue associated with the pth static longitu-

dinal mode of the particle and

ωP =
√

α2
0

ρ0ε0
(31)

the plasma frequency of the continuum of oscillators. The
static longitudinal (electrostatic) modes of the particles diag-
onalize the Coulomb term of the Lagrangian. We recall that,
in the Lorentz atomic model of a dielectric α0 = −n0e, ρ0 =
nbme, and ω2

P = nbe2/ε0me, where nb is the number density of
bound electrons contributing to the polarization. In a metal,
the number density nb is replaced by the number density of
free electrons.

The expression of Lrad in terms of the degrees of freedom
of the radiation field is

Lrad = ε0

2

∑
q

(
ȧ∗

qȧq − ω2
qa∗

qaq
)
, (32)

where

ω2
q = c2

0k2
q . (33)

The orthogonality of the transverse vector waves used to
represent the radiation field preserves the diagonal structure
of the term Lrad. The expression of the matter–radiation-field
coupling term Lint

rad as a function of the degrees of freedom of
the matter field and of the radiation field is

Lint
rad = −α0

∑
p,q

(〈U‖
p, fq〉ẋ‖

p + 〈U⊥
p , fq〉ẋ⊥

p )aq

−α0

∑
p

(〈U‖
p, Ainc〉ẋ‖

p + 〈U⊥
p , Ainc〉ẋ⊥

p ). (34)

We note that 〈Ua
p, fq〉 is the coefficient of the expansion of

the vector field Ua
p in terms of transverse vector waves given

in Eq. (27) where a =‖,⊥. The expression of the bath term
Lbath as a function of the degrees of freedom of the bath field
is

Lbath =
∑

p

ρ0

2

∫ ∞

0

(
ẏ‖2
ν,p − ν2y‖2

ν,p

)
dν

+
∑

p

ρ0

2

∫ ∞

0

(
ẏ⊥2
ν,p − ν2y⊥2

ν,p

)
dν. (35)

Finally, the expression of the interaction term Lint
bath as a func-

tion of the degrees of freedom of the bath field and of the
matter field is

Lint
bath = −

∑
p

∫ ∞

0
υν (ẏ‖

ν,px‖
p + ẏ⊥

ν,px⊥
p )dν. (36)

B. Lagrange’s equations

We now apply the principle of least action to the La-
grangian in the Coulomb gauge

L = Lm + Lc + Lrad + Lint
rad + Lbath + Lint

bath, (37)

where the terms on the right-hand side are given by the ex-
pressions (28), (29), (32), and (34)–(36) as a function of the
degrees of freedom {x‖

p(t )}, {x⊥
p (t )}, {y‖

ν,p(t )}, {y⊥
ν,p(t )}, and

{aq(t )}. By applying the principle of least action we obtain
the set of Lagrange equations for the entire system, which are
of the form

d

dt

∂L
∂ u̇

− ∂L
∂u

= 0, (38)

where u = x‖
p, x⊥

p , y‖
ν,p, y⊥

ν,p, and aq; the derivatives with re-
spect to y‖

ν,p, y⊥
ν,p, and aq are functional derivatives.

The equations governing the time evolution of x‖
p and x⊥

p′ ,
for any p and p′ belonging to P , are

ẍ‖
p+

(
ω2

0 + �2
p

)
x‖

p−
α0

ρ0

∑
q

〈U‖
p, fq〉ȧq+

∫ ∞

0

υν

ρ0
ẏ‖
ν,pdν = f ‖

p ,

(39)

ẍ⊥
p′ + ω2

0x⊥
p′ − α0

ρ0

∑
q

〈U⊥
p′ , fq〉ȧq +

∫ ∞

0

υν

ρ0
ẏ⊥
ν,p′dν = f ⊥

p′ ,

(40)

where

f a
p (t ) = α0

ρ0

〈
Ua

p, Ȧinc
〉
, (41)

with a =‖,⊥. The equations governing the time evolution
of the bath degrees of freedom y‖

p and y⊥
p′ , for any p and p′

belonging to P and 0 � ν < ∞, are

ÿ‖
ν,p + ν2y‖

ν,p − υν

ρ0
ẋ‖

p = 0, (42)

ÿ⊥
ν,p′ + ν2y⊥

ν,p′ − υν

ρ0
ẋ⊥

p′ = 0. (43)

The equation governing the degrees of freedom of the radia-
tion field aq, for any q belonging to Q, is

äq + ω2
qaq + α0

ε0

∑
p

(〈fq, U‖
p〉ẋ‖

p + 〈fq, U⊥
p 〉ẋ⊥

p ) = 0. (44)

We highlight that the way the radiation field contributes to the
dynamics of the matter field resembles in some sense that of
the bath field. Indeed, since the entire system is initially at
rest, from Eqs. (42)–(44) we obtain

ẏ‖
νp(t ) = υν

ρ0

∫ ∞

0
wν (t − τ )ẋ‖

p(τ )dτ, (45)

ẏ⊥
νp(t ) = υν

ρ0

∫ ∞

0
wν (t − τ )ẋ⊥

p (τ )dτ, (46)

ȧq(t ) = −α0

ε0

∑
p

∫ ∞

0
wωq (t − τ )[〈fq, U‖

p〉ẋ‖
p(τ )

+〈fq, U⊥
p 〉ẋ⊥

p (τ )]dτ, (47)

where

wω(t ) = θ (t ) cos(ωt ), (48)

with θ (t ) the Heaviside function.
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VI. EQUATIONS OF MOTION FOR THE DEGREES OF
FREEDOM OF THE POLARIZATION FIELD

We first reduce the set of Lagrange equations obtained
in the preceding section to a system of equations governing
the time evolution of the degrees of freedom of the matter
field. Then we apply the Laplace transform to reveal the es-
sential features of the coupling between the longitudinal and
transverse degrees of freedom of the polarization due to the
radiation field.

A. Time domain

By substituting Eqs. (46) and (47) into the differential
equations (39) and (40), we obtain the system of integro-
differential equations of convolution type for the degrees of
freedom of the matter field, for any p and p′ belonging to P ,[

ẍ‖
p + (γbath ∗ ẋ‖

p) + ω2
0x‖

p

] + �2
px‖

p

+ ω2
P

∑
p′′

[(s‖‖
pp′′ ∗ ẋ‖

p′′ ) + (s‖⊥
pp′′ ∗ ẋ⊥

p′′ )] = f ‖
p (t ), (49)

[
ẍ⊥

p′ + (γbath ∗ ẋ⊥
p′ ) + ω2

0x⊥
p′
]

+ ω2
P

∑
p′′

[(s⊥‖
p′ p′′ ∗ ẋ‖

p′′ ) + (s⊥⊥
p′ p′′ ∗ ẋ⊥

p′′ )] = f ⊥
p′ (t ), (50)

where

(g1 ∗ g2)(t ) =
∫ ∞

0
g1(t − τ )g2(τ )dτ (51)

is the convolution integral of g1(t ) and g2(t ),

sab
pp′ (t ) =

∑
q

〈
Ua

p, fq
〉〈

fq, Ub
p′
〉
wωq (t ) (52)

with a, b =‖,⊥, and

γbath(t ) =
∫ ∞

0

(
υν

ρ0

)2

wν (t )dν. (53)

The degrees of freedom of the polarization field are propor-
tional to the degrees of freedom of the matter field, and thus
Eqs. (49) and (50) also describe the evolution of p‖

p(t ) =
−α0x‖

p and p⊥
p (t ) = −α0x⊥

p . The interaction of the polariza-
tion field with the radiation field couples Eqs. (49) and (50).

In the first pair of square brackets (from the left) in
Eqs. (49) and (50), the first term describes the effects of inertia
of the coherent oscillators representing the polarization field.
The convolution integral describes the action of the bath field
on the polarization, which phenomenologically accounts for
the material losses. The simplest phenomenological model is
obtained by choosing υν/ρ0 = √

2γ /π , where γ is a constant
representing the decay rate due to the material losses. In this
case γbath(t ) = γ δ(t ) and in both equations the expressions
in the first set of square brackets return the Drude-Lorentz
model. The third term describes the force keeping the elec-
trons bound to the atom for dielectrics; it is equal to zero for
metals.

The fourth term (from the left) in Eq. (49) arises from
the interaction of the polarization with the Coulomb electric
field; it is not present in Eq. (50). Indeed, this interaction

only involves the longitudinal degrees of freedom of the po-
larization field and it does not couple them because the static
longitudinal (electrostatic) modes diagonalize the Coulomb
term of the Lagrangian Lc. The frequency �p only depends
on the material characteristics and the particle shape; it does
not depend on the particle size. This interaction is responsible
for the plasmonic oscillations in metals.

In the second pair of square brackets (from the left) in
Eqs. (49) and (50) the convolution integrals, with kernels
{sab

pp′ (t )}, describe the interaction between the polarization
degrees of freedom mediated by the radiation field. These
interactions couple the longitudinal and transverse degrees of
freedom of the polarization; each degree of freedom interacts
with itself and with the other degrees of freedom. The interac-
tion kernels {sab

pp′ (t )} depend on the particle size. Throughout
the paper, we denote by a the radius of the smallest sphere
that encloses the particle, that is, its largest linear dimension.
The amplitude of the interaction kernels scale as (kPa)2 as the
dimensionless parameter kPa varies, where kP ≡ ωP/c0. As
we will see, the parameter kPa plays a very important role:
The plasma wavelength λP ≡ 2π/kP appears as the natural
characteristic dimension to describe how the matter interacts
with the electromagnetic field.

We notice that the quantity ẋ‖
p(t )(s‖‖

pp′′ ∗ ẋ‖
p′′ )(t ) is propor-

tional to the work per unit of time done on the longitudinal
pth polarization mode by the transverse electric field gener-
ated by the longitudinal p′′th polarization mode, the quantity
ẋ‖

p(t )(s‖⊥
pp′′ ∗ ẋ⊥

p′′ )(t ) is proportional to the work per unit of
time done on the longitudinal pth polarization mode by the
transverse electric field generated by the transverse p′′th po-
larization mode, and so on. The energy exchange between the
polarization modes is a nonconservative process due to the
electromagnetic energy radiated toward infinity.

The response of the polarization field can be character-
ized either by the natural modes of the system or by the
impulse response of the mode amplitudes. The natural modes
are the solutions of the system of equations (49) and (50)
with f ‖

p (t ) = f ⊥
p′ (t ) = 0. When kPa 
 1, which we call the

small-size limit throughout the paper, the coupling between
the equations of the system (49) and (50) is weak and the
natural modes of the polarization are the static longitudinal
and transverse modes of the particle (see Appendix D). The
longitudinal natural modes arise from the interplay between
the energy stored in the electric field and the energy stored in
the polarization, while the transverse natural modes arise from
the interplay between the energy stored in the magnetic field
and the energy stored in the polarization. The self-interaction
resulting from the coupling of each polarization discrete de-
gree of freedom with the continuum degrees of freedom of
the radiation field is responsible for the frequency shift and
the radiative decay of the natural modes. In this case, the
mutual interaction between the modes mainly transfers energy
between them. For kPa ∼ 1 the coupling between the longitu-
dinal and transverse modes is important and standing waves
arise from the interplay between the energies stored in the
electric field and in the magnetic field. The impulse response
hab

pp′ (t ), where a, b =‖,⊥ and p and p′ belong to P , is the time
evolution of the degree of freedom p of the a component of
the polarization field when f b

p′ (t ) = δ(t ), the forcing terms of
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all the other degrees of freedom are set equal to zero, and the
initial conditions of the degrees of freedom at t = 0− are equal
to zero. The impulse responses are linear combinations of the
natural modes. They enable the direct determination of the
forced evolution of the system. In this paper we mainly study
the impulse responses of the amplitudes of the polarization
modes.

B. Laplace domain

The consequences of the coupling of the polarization
with the radiation field can be better understood by studying
Eqs. (49) and (50) in the Laplace domain. Let us indicate
with U (s) the Laplace transform of a function u(t ) (which is
equal to zero for t < 0), U (s) = ∫ ∞

0 u(t )e−st dt . The region of
convergence includes the imaginary axis because of the matter
and radiation losses.

Since the entire system is initially at rest, Eqs. (49) and (50)
give, respectively,(

ω2
P

χ
+ �2

p

)
X ‖

p + ω2
P

∑
p′′

s(S‖‖
pp′′X

‖
p′′ + S‖⊥

pp′′X ⊥
p′′ ) = F ‖

p (54)

and

ω2
P

χ
X ⊥

p′ + ω2
P

∑
p′′

s(S⊥‖
p′ p′′X

‖
p′′ + S⊥⊥

p′ p′′X ⊥
p′′ ) = F⊥

p′ , (55)

where X ‖
p (s) and X ⊥

p (s) are the Laplace transforms of x‖
p(t )

and x⊥
p (t ), respectively;

�bath(s) =
∫ ∞

0

(
υν

ρ0

)2 s

s2 + ν2
dν (56)

is the Laplace transform of γbath(t );

Sab
pp′ (s) =

∑
q

〈
Ua

p, fq
〉〈

fq, Ub
p′
〉 s

s2 + c2
0k2

(57)

is the Laplace transform of the interaction kernel sab
pp′ ; and

χ (s) = ω2
P

s2 + s�bath(s) + ω2
0

(58)

is the susceptibility of the particle material. If υν/ρ0 =√
2γ /π , then �bath(s) = γ and we obtain the susceptibility of

the Drude-Lorentz model for a dispersive material. The form
of the system of equations (54) and (55) is very important:
We infer from them that the result we have obtained can be
extended to a particle with any susceptibility χ (s).

We denote by Hab
pp′ (s) the Laplace transform of the im-

pulse response hab
pp′ (t ). Since the region of convergence

of the Laplace transform contains the imaginary axis, we
can evaluate the impulse response by performing the in-
verse Fourier transform of the frequency response Hab

pp′ (ω) =
Hab

pp′ (s = iω + ε), where −∞ < ω < +∞ and ε ↓ 0. In this
way we can easily manage the improper integrals with respect
to the wave number k appearing in the expression of the
coefficients Sab

pp′ (iω + ε) by using the relation 1/(x − iε) =
iπδ(x) + Pf (1/x), where Pf denotes the principal value (for
more details see Appendix D). The Dirac function contri-

bution gives the imaginary terms that describe the radiation
losses.

C. Physical meaning of the coupling coefficient Sab
pp′ (s)

In the Laplace domain the interaction kernels {Sab
pp′ (s)} are

meromorphic functions of s with an infinite numbers of poles,
which are connected to the retardation. This clearly emerges
by using the transverse plane waves as the basis for the radia-
tion field. We rewrite the expression (57) as

Sab
pp′ (s) = s

c2
0

∫
V

d3r
∫

V
d3r′Ua

p(r)
←→
G ⊥(r − r′; s)Ua

p′ (r′),

(59)
where

←→
G ⊥(r − r′; s) is the dyad

←→
G ⊥(r − r′; s) =

∑
q

1

k2 + s2/c2
0

fq(r) ⊗ f∗
q (r′). (60)

By using the expression (A1) for fq(r) we have

←→
G ⊥(r; s) = 1

(2π )3

∫ ←→G ⊥(k; s)eik·rd3k, (61)

where

←→G ⊥(k; s) = 1

k2 + s2/c2
0

(
←→

I − k̂ ⊗ k̂) (62)

is the transverse Green’s function for the vacuum in the wave-
number domain. By evaluating the Fourier integral (61) we
obtain [32]

←→
G ⊥(r; s) = (

←→
I − r̂ ⊗ r̂)

1

4πr
e−sr/c0

+ (
←→

I − 3r̂ ⊗ r̂)
c2

0

4πsr2

×
(

1

c0
e−sr/c0 − 1

sr
(1 − e−sr/c0 )

)
. (63)

This is the full-wave transverse dyadic Green’s function for
the vacuum in the Laplace domain. The expression of the
corresponding function in the time domain is immediate; the
factor e−sr/c0 gives the retardation r/c0. Equations (59) and
(63) are very useful to evaluate numerically Sab

pp′ (s) in the
frequency domain for arbitrarily shaped particles.

The interaction integrals Sab
pp′ (s) describe the energy ex-

change between the particle polarization modes that is
mediated by the radiation field, which is represented by the
full-wave transverse dyadic Green’s function for the vacuum.
Since the longitudinal and transverse modes are normalized,
the amplitude of ω2

PSab
pp′ (s) scales according to the dimension-

less parameter (kPa)2 as kPa varies.

D. Natural modes of polarization in the small-size limit

Although in this paper we mainly study the impulse re-
sponses of the degrees of freedom of the polarization, for
various important reasons we also analyze the natural modes
of the polarization in the small-size limit. In the Laplace
domain the natural modes of the polarization field are the
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solutions of the nonlinear eigenvalue problem(
ω2

P

χ (ζ )
+ �2

p

)
Z‖

p

+ω2
P

∑
p′′

ζ [S‖‖
pp′′ (ζ )Z‖

p′′ + S‖⊥
pp′′ (ζ )Z⊥

p′′ ] = 0 (64)

and

ω2
P

χ (ζ )
Z⊥

p′ + ω2
P

∑
p′′

ζ [S⊥‖
p′ p′′ (ζ )Z‖

p′′ + S⊥⊥
p′ p′′ (ζ )Z⊥

p′′] = 0, (65)

where ζ is the eigenvalue and Z‖
p1

, Z‖
p2

, . . . , Z⊥
p′

1
, Z⊥

p′
2
, . . . are

the components of the corresponding eigenvector. It can be
reduced to a linear eigenvalue problem by introducing auxil-
iary degrees of freedom for taking into account the dynamics
of both the matter and the radiation fields. To do this, we need
the poles and the corresponding residuals of the susceptibility
χ (ζ ) and of the coefficients Sab

pp′ (ζ ). There are techniques that
allow the approximation of meromorphic functions through
rational functions with a finite number of dominant poles.
In particular, the vector fitting technique [33–35] allows us
to calculate the dominant poles and residues from the fre-
quency responses. The resulting approximation guarantees
stable poles that are real or come in complex conjugate pairs,
and the model can be directly converted into a state-space
model.

The coupling between the degrees of freedom of the polar-
ization field in Eqs. (64) and (65) [as well as in Eqs. (54) and
(55) and in Eqs. (49) and (50)] is weighted by the dimension-
less size parameter of the particle β = kPa. In the limit β → 0
the system of equations (64) and (65) reduces to a system
of uncoupled equations (see Appendix E). Thus, the static
longitudinal (electrostatic) modes and the static transverse
(magnetostatic) modes of the particle are the natural oscil-
lation modes of the polarization for β 
 1. The transverse
natural modes are degenerate because they have the same
natural frequency for β = 0. Nevertheless, this degeneration
disappears by taking into account the nonzero size of the
particle. By retaining the leading-order terms in β we obtain,
for the natural frequency �‖

p of the longitudinal pth mode and
for the natural frequency �⊥

p of the transverse pth mode (see
Appendix E),

�‖
p
∼=

√
ω2

0 + �2
p(1 − β2R‖ ‖

pp ) (66)

and

�⊥
p

∼= ω0

(
1 − β2

2a2κ⊥
p

)
, (67)

respectively. The parameter 1/a2κ⊥
p does not depend on the

size of the particle; it depends only on the shape.
The choice to expand the polarization field in terms of the

static longitudinal and transverse modes of the particles turns
out to be very appropriate to describe the electromagnetic
scattering from dispersive particles with size of the order of
1/kP because they are the natural modes of polarization in
the small-size limit kPa 
 1. The static longitudinal modes
of the particles are natural modes of polarization in the small-
size limit because they diagonalize the Coulomb term of the

Lagrangian. Likewise, the static transverse modes of the par-
ticles are natural modes of polarization in the small-size limit
because in this limit they diagonalize the interaction matrix
with coefficients S⊥⊥

pp′ .

VII. RESULTS FOR SPHERICAL PARTICLES

In this section we apply the proposed approach to the
case of a dispersive spherical particle of radius a, which can
be solved semianalytically. In particular, we focus on the
effect of coupling between polarization and radiation fields
as the dimensionless size parameter β = kPa varies (where
kP = ωP/c0), disregarding the material losses.

A. Static longitudinal and transverse modes of a sphere

The static longitudinal and transverse modes of a sphere
have the analytical expressions given in Appendix C. In Fig. 1
we show the longitudinal modes with multipolar order n =
1, 2, 3, namely, the electric dipole, quadrupole, and octupole.
The transverse modes are divided into two subsets: the ones
of E type and the ones of H type [36]. In Fig. 1 we show the
ones with n = 1, 2, 3 and � = 1, 2, 3.

In the small-size limit, these modes are the natural modes
of the polarization of a spherical particle. The longitudinal
modes resonate in a metal sphere at the frequency given
by Eq. (66). The transverse modes resonate in a dielec-
tric sphere at the frequency given by Eq. (67), while they
are off-resonance in a metal sphere. Although these modes
are orthogonal, they interact through radiative coupling due
to the nonzero size of the particle. Their interaction prop-
erties are characterized by the coefficient Sab

pp′ (s) evaluated
in Appendix D for s = iω + ε in the limit ε ↓ 0. Here we
summarize the main properties: (i) Each mode interacts with
itself, (ii) only modes with the same multipolar order n may
interact, (iii) transverse modes of H type do not interact with
either longitudinal modes or transverse modes of the E type,
and (iv) longitudinal modes and transverse modes of E type
interact. This is exemplified in Fig. 1, where the modes located
in the same row interact.

B. Frequency shift and decay rate of the longitudinal and
transverse natural modes and validation

In the small-size limit, the natural modes of polarization
are the static longitudinal and transverse modes of the particle.
Due to the nonzero size effects, the values of the natural
frequencies of these modes deviate from those obtained in
the limit β → 0. Furthermore, the modes’ amplitudes decay
exponentially due to the radiation losses. We denote by ��a

p
the difference between the nonzero-size natural frequency of
the pth mode of a type and the value obtained for β = 0
(frequency shift of the natural frequency) where a =‖,⊥. We
denote by �a

p the radiative decay rate.
The frequency shift and the radiative decay rate of the lon-

gitudinal and transverse polarization modes can be evaluated
approximately by using the pole approximation technique
[19]. It consists in approximating the coupling coefficients
Sab

pp′ (s) with their values at s = i� + ε, where � is the natural
frequency of the mode for β = 0 and ε ↓ 0. In this paper we
evaluate the frequency shifts and the radiative decay rates by
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n
=

3
n

=
2

n
=

1
n

=
1

n
=

2
n

=
3

static longitudinal modes

� = 1

static transverse modes of E-type (s = 2)

� = 2 � = 3

� = 1

static transverse modes of H-type (s = 1)

� = 2 � = 3

0 max

FIG. 1. Static longitudinal modes of a sphere with multipolar
order n = 1, 2, 3, i.e., the electric dipole, quadrupole, and octupole.
The static transverse modes of a sphere are divided into two subsets:
the ones of E type (with s = 2) and the ones of H type (with s = 1),
for n = 1, 2, 3 and � = 1, 2, 3 [36]. Modes located on the same row
interact due to the radiation coupling.

using the asymptotic expansions of the interaction coefficients
given in Appendix E 3 and by solving perturbatively the
eigenvalue problem (64) and (65). We obtain approximated
analytical expressions for 0 � β < 1. In Fig. 2 we compare
them against the corresponding quantities obtained from the
poles of the Mie coefficients as a function of β. In Figs. 2(a)
and 2(b) we consider the longitudinal mode U‖

m1v with n =
1 (electric dipole) of a metal particle (where ω0 = 0). In
Figs. 2(c) and 2(d) we consider the H-type transverse mode
U⊥

m111v with n = 1, s = 1, and � = 1 (magnetic dipole) for a
dielectric particle with ω0 = ωP/4. Eventually, in Figs. 2(e)
and 2(f) we consider the E -type transverse mode U⊥

m121v with
n = 1, s = 2, and � = 1 (also known as toroidal dipole) for a
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FIG. 2. (a), (c), and (e) Frequency shift and (b), (d), and (f) ra-
diative decay rate of the longitudinal and transverse natural modes of
the particle, normalized to their natural frequencies in the small-size
limit, as a function of β = kPa, where kP = ωP/c0: (a) and (b) lon-
gitudinal mode with p = (m1v) (electric dipole) in a metal sphere
(ω0 = 0), (c) and (d) transverse H -type mode with p = (mn1lv)
(magnetic dipole), and (e) and (f) transverse E -type mode with
p = (mn2lv) in a dielectric sphere with ω0 = ωp/4. Two different
approaches have been used: the one proposed in this paper (solid
line) and the poles of the Mie coefficients (dashed line).

dielectric particle with ω0 = ωP/4. Good agreement is found
in any case.

In the following we give the asymptotic expressions of
��a

p and �a
p for β 
 1. For a metal spherical particle (where

ω0 = 0) the frequency shift and the radiative decay rate of the
longitudinal mode p = (mnv) are given by

��‖
p

�p

∼= − n + 1

(3 + 2n)(4n2 − 1)
β2, (68)

�‖
p

�p

∼= (n + 1)(2n + 1)

n[(2n + 1)!!]2

( n

2n + 1

)(n+1/2)
β2n+1; (69)

here �p denotes the natural frequency of the mode for β = 0
and ω0 = 0. For dielectric particles, the frequency shift and
the radiative decay rate of the transverse mode of H type p =
(mn1lv) are given by

��⊥
p

ω0

∼= − 1

2z2
n−1,�

β2, (70)

�⊥
p

ω0

∼= 2

[(2n − 1)!!]2

1

z4
n−1,�

(ω0

ωP

)2n+1
β2n+3, (71)
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FIG. 3. (a), (e), and (i) Frequency response H‖ ‖
pp and (b), (f), and (j) impulse response h‖ ‖

pp of the longitudinal mode amplitude with p =
(m1ν ) and forcing term F ‖

p = 1 and (c), (g), and (k) frequency response H⊥‖
p′ p and (d), (h), and (l) impulse response h⊥‖

p′ p of the transverse
mode amplitude with p′ = (m121v). We consider a lossless metal sphere (ω0 = 0 and � = 0) with (a)–(d) β = π/2, (e)–(h) β = π , and (i)–(l)
β = 2π , where β = kPa, with a the radius and kP = ωP/c0.

where zn−1,� is the �th zero of the spherical Bessel function
of order n − 1. For the transverse mode of E type with p =
(mn2lv) they are given by

��⊥
p

ω0

∼= − 1

2z2
n,�

β2, (72)

�⊥
p

ω0

∼= 2

n2[(2n − 1)!!]2

1

z4
n,�

(
ω0

ωP

)2n+3

β2n+5, (73)

where zn,� is the �th zero of the spherical Bessel function of
order n.

C. Frequency and impulse response of the mode
amplitudes in a metal particle

We now investigate the response of a metal particle (ω0 =
0) beyond the small-size limit, as β = kPa varies in the inter-
val [0, 2π ]. The longitudinal modes and the transverse modes

of E type with the same multipolar order are coupled through
the radiation field. In particular, we consider the response of
the amplitude of the longitudinal mode U‖

p with p = (m1v)
and the response of the amplitude of the transverse mode
of E type U⊥

p′ with p′ = (m121v). In the system of equa-
tions (54) and (55) [(49) and (50)] we have set F ‖

p (s) = 1
[ f ‖

p (t ) = δ(t )] and the remaining forcing terms equal to zero.
For 0 � β � 2π it is sufficient to consider only the transverse
modes of E type with � = 1, 2, 3. In Fig. 3 we show the
frequency responses H‖ ‖

pp (ω) and H⊥‖
p′ p (ω) and the impulse

responses h‖ ‖
pp (t ) and h⊥‖

p′ p(t ) for increasing normalized particle
size β: β = π/2 [Figs. 3(a)–3(d)], β = π [Figs. 3(e)–3(h)],
and β = 2π [Figs. 3(i)–3(l)].

For β = π/2 the first peak (from the left) of the amplitude
of H‖ ‖

pp (ω), labeled with a triangle in Fig. 3(a), is located in
proximity to the natural frequency of the electric dipole mode
U‖

m1v , accordingly to Eq. (66). A bump is present at higher
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FIG. 4. (a) Imaginary and (b) negative real parts of the first
two dominant poles, with (c) the corresponding magnitude of the
residues, of the frequency response H ‖ ‖

pp with p = (m1ν ) of a lossless
metal sphere (ω0 = 0 and � = 0) as a function of β = kPa, where a
is the radius and kP = ωP/c0. These quantities are obtained by using
the vector fitting technique.

frequency (labeled with a circle), which subtends the presence
of a second pole in the frequency response. In Fig. 3(b) we
show the corresponding impulse response h‖ ‖

pp (t ). The fre-

quency response H⊥‖
p′ p (ω) shown in Fig. 3(c) and the impulse

response h⊥‖
p′ p(t ) shown in Fig. 3(d) show the same behavior

of H‖ ‖
pp (ω) and h‖ ‖

pp (t ), respectively, but their amplitudes are
roughly an order of magnitude smaller.

For β = π the frequency response undergoes a broad-
ening around the first peak [Fig. 3(e)], while the previous
bump becomes a secondary peak. The contribution of the
longitudinal-transverse coupling starts to be significant. The
faster decay of the corresponding impulse response h‖ ‖

pp (t )
[Fig. 3(f)] reflects the broadening of the amplitude response
around the first peak, while the beating subtends the inter-
action between the poles associated with the first two peaks.
Figures 3(g) and 3(h) show the frequency response H⊥‖

p′ p (ω)

and the impulse response h⊥‖
p′ p(t ), respectively.

For β = 2π the second peak of the frequency response
becomes dominant [Fig. 3(i)]. The corresponding impulse
response oscillates with a frequency close to the frequency
position of the second peak [Fig. 3(j)]. Moreover, the number
of oscillations is higher than in Fig. 3(f), corresponding to a
lower decay rate. Figures 3(k) and 3(l) show the frequency
response H⊥‖

p′ p (ω) and the impulse response h⊥‖
p′ p(t ), respec-

tively. They also show the same behavior and the same order
of magnitude of H‖ ‖

pp (ω) and h‖ ‖
pp (t ), respectively.

Figure 3 shows that in metal particles the frequency re-
sponse of the fundamental longitudinal mode is dominated
by multiple peaks which move as a function of β, and the
impulse response is characterized by multiple harmonics. To

further investigate this behavior, we use a rational function
approximation of the frequency response evaluated by the
vector fitting technique [33–35]. We consider the first two
dominant poles of H‖ ‖

pp (ω) with p = (m1ν), which we refer
to as pole 1 and pole 2. Figure 4 shows the real and imaginary
parts of both poles as a function of β, together with the
magnitudes of the corresponding residues. Pole 1 corresponds
to the peak labeled with a triangle in Figs. 3(a), 3(e), and 3(i),
while pole 2 corresponds to the peak labeled with a circle.
In the small-size limit the imaginary part of pole 1 tends to
the natural frequency of the longitudinal dipole mode U‖

m1v

normalized to ωP. Pole 2, as we will see, is associated with a
transverse electromagnetic standing wave of the particle. As
shown in Fig. 4(a), the imaginary part of both poles decreases
as β increases. The absolute value of the real part of pole 1
increases, reaches a maximum, and slowly decreases, while
the absolute value of pole 2 monotonically decreases. Fig-
ure 4(c) shows that while in the small-size limit the residue
of pole 1 prevails by several orders of magnitude, as the size
of the particle increases, the residue of pole 2 increases and
eventually becomes dominant.

We now investigate the responses for β > 2π (a >

2π/kp = λP), where the longitudinal-transverse coupling is
strong. Figure 5 shows the amplitude responses |H‖ ‖

pp (ω)|
[Fig. 5(a)] and |H⊥‖

p′ p (ω)| [Fig. 5(c)] and the impulse responses

h‖ ‖
pp (t ) [Fig. 5(b)] and h⊥‖

p′ p(t ) [Fig. 5(d)] for β = 3π , 4π , and
5π . In these cases, we have considered the coupling between
the longitudinal dipole mode and the transverse mode of E
type with � = 1, 2, 3, 4. As β increases, the first peak in both
amplitude responses [Figs. 5(a) and 5(c)], which are located
on the left of ω/ωP = 1, continues to move toward lower
frequencies as in Fig. 3. The second peak, while moving to
the left, remains confined to the immediate right of ω/ωP = 1.
Moreover, it becomes narrower and grows in amplitude. The
other minor peaks to the right of ω/ωP = 1 behave in the same
way as β increases. All the peaks to the right of ω/ωP = 1
are associated with the natural frequencies of the standing
transverse electromagnetic waves of the particle, which are
cut off for ω < ωP. For β > 2π the impulse responses h‖ ‖

p′ p(ω)

and h⊥‖
p′ p(ω) are dominated by the component associated with

the second peak in the amplitude responses, which gives rise
to beatings [Figs. 5(b) and 5(d)]. The decay rate of the im-
pulse responses decreases as the second peak in the amplitude
becomes narrower, as β increases.
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FIG. 5. (a) Amplitude response |H ‖ ‖
pp | and (b) impulse response h‖ ‖

pp with p = (m1ν ) and forcing term F ‖
p = 1 and (c) amplitude response

|H⊥‖
p′ p| and (d) impulse response h⊥‖

p′ p with p′ = (m121v). We consider a lossless metal sphere (ω0 = 0 and � = 0) with β = 3π , 4π , and 5π ,
where β = kPa, with a the radius and kP = ωP/c0.
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Other scenarios have been investigated: the frequency and
impulse response of higher-order multipolar longitudinal and
transverse modes of E type; in both scenarios the forcing term
is either longitudinal or transverse (E type). We have found
that the frequency response of longitudinal modes of higher
order does not qualitatively differ from the one described
here. When the forcing terms are transverse (of E type),
the coupling with the longitudinal modes is very significant
even in the small-size limit, because the longitudinal mode
may resonate. The opposite was not true, since the transverse
modes are off-resonance in metal particles.

D. Frequency and impulse response of the mode
amplitudes in a dielectric particle

We now investigate the response of a dielectric particle
with ω0 = ωP/4 and � = 0, beyond the small-size limit as
β = kPa varies in the interval [0, 2π ]; in this case the sus-
ceptibility at ω = 0 is equal to 16. For 0 � β � 2π the
susceptibility of the Drude-Lorentz model assumes both posi-
tive and negative values.

1. Transverse modes of H type

We analyze here the response of the amplitudes of the
transverse modes of H type. We consider the frequency re-
sponse H⊥⊥

pp (ω) of the amplitude of the transverse magnetic
dipole mode U⊥

p , with p = (m111v), namely, n = 1, s = 1,
and � = 1; in the system of equations (54) and (55) we have
set F ‖

p = 1 and the remaining forcing terms equal to zero.
This transverse mode is coupled through radiation only to the
transverse modes of the same type having the same multipolar
order n. For 0 � β � 2π it is sufficient to consider only the
coupling with the modes with � = 1, 2, 3. In Fig. 6 we show
the frequency response H⊥⊥

pp (ω) and the corresponding im-
pulse response h⊥⊥

pp (t ) for increasing particle size: β = π/2
[Figs. 6(a) and 6(b)], β = π [Figs. 6(c) and 6(d)], β = 2π

[Figs. 6(e) and 6(f)].
For β = π/2 [Fig. 6(a)] the peak of the amplitude response

(labeled with a triangle) is located in the neighborhood of the
natural frequency of magnetic dipole mode U⊥

p , accordingly
to Eq. (67). As for the response of the longitudinal modes in
metal particles, a bump arises at higher frequencies (labeled
with a circle), which is associated with a second pole in
the frequency response arising from the transverse electro-
magnetic standing waves of the particle. The corresponding
impulse response, shown in Fig. 6(b), exhibits a very small
decay rate.

In Fig. 6(c) a larger value of β is considered, β = π . The
first peak undergoes a broadening, while the high-frequency
bump becomes a second (minor) peak. The impulse response
shown in Fig. 6(d) has a higher radiative decay rate compared
to the previous case.

For β = 2π the effects of the coupling with the modes
with � = 2, 3 are important but only at higher frequencies,
modifying the response in the neighborhood of the second
peak [Fig. 6(e)]. Nevertheless, the first peak is still dominant
and it characterizes the impulse response shown in Fig. 6(f).

We now use the vector fitting technique [33–35] to study
the behavior of the two dominant poles of H⊥⊥

pp (ω) and of

10−1 100 101

0

−π
2

−π

ω/ωP

�
H

⊥
⊥

p
p

10−2
10−1
100
101

|H
⊥
⊥

p
p
|

0 × 100 5 × 102 1 × 103

−0.2

0

0.2

ωP t

h
⊥
⊥

p
p

10−1 100 101

0

−π
2

−π

ω/ωP

|H
⊥
⊥

p
p
|

10−2

100

102

|H
⊥
⊥

p
p
|

0 × 100 2.5 × 103 5 × 103
−1

−0.5

0

0.5

1

ωP t

h
⊥
⊥

p
p

10−1 100 101

0

−π
2

−π

ω/ωP

�
H

⊥
⊥

p
p

10−2

100

102

|H
⊥
⊥

p
p
|

0 × 100 1 × 104 2 × 104
−2

−1

0

1

2

ωP t

h
⊥
⊥

p
p

(e) (f)

(c) (d)

(a) (b)

FIG. 6. (a), (c), and (e) Frequency response H⊥⊥
pp and (b), (d), and

(f) impulse response h⊥⊥
pp of the transverse magnetic dipole mode am-

plitude with p = (m111v) of a lossless dielectric sphere (ω0 = ωP/4
and � = 0) with (a) and (b) β = π/2, (c) and (d) β = π , and (e) and
(f) β = 2π , where β = kPa, with a the radius and kP = ωP/c0.

the corresponding residues as β varies (see Fig. 7). In the
small-size limit, the blue curve associated with pole 1 tends to
the natural frequency of the transverse magnetic dipole mode
U‖

m1v . Pole 2, shown with a red curve, is associated with a
transverse electromagnetic standing wave of the particle. In
Figs. 6(a), 6(c), and 6(e) the triangles and circles are associ-
ated with the imaginary parts of poles 1 and 2, respectively.

The peaks in the amplitude responses, with the exception
of the first one, are confined to the right of ω/ωc, where

ωc =
√

ω2
0 + ω2

P is the cutoff frequency of the medium. These

0.1 π/2 2π
10−1

100

101

β

Im
{ζ

}/
ω

P

pole 1
pole 2

0.1 π/2 2π
10−8

10−3

102

β

−R
e{

ζ
}/

ω
P

0.1 π/2 2π

10−2

10−1

100

101

β

ρ

(a) (b) (c)

FIG. 7. (a) Imaginary and (b) real parts of the first two dominant
poles, with (c) the corresponding magnitude of the residues of the
frequency response H⊥⊥

pp of the H -type transverse mode (n = 1 and
l = 1) of a lossless dielectric sphere (ω0 = ωP/4 and � = 0) as a
function of β = kPa, where a is the radius and kP = ωP/c0. These
quantities are obtained by using the vector fitting technique.
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FIG. 8. (a), (e), and (i) Frequency response H⊥‖
p′ p and (b), (f), and (j) impulse response h⊥‖

p′ p of the E -type transverse mode amplitude with
p = (m1ν ), p′ = (m121ν ), and forcing term F ‖

p = 1 and (c), (g), and (k) frequency response H‖ ‖
pp and (d), (h), and (l) impulse response h‖ ‖

pp

of the p longitudinal mode amplitude. We consider a lossless dielectric sphere (ω0 = ωP/4, � = 0) with (a)–(d) β = π/2, (e)–(h) β = π , and
(i)–(l) β = 2π , where β = kPa, a is the radius and kP = ωP/c0.

peaks are associated with the natural frequencies of the stand-
ing transverse electromagnetic waves of the particle.

2. Transverse modes of E type and longitudinal modes

Now we analyze the response of the longitudinal modes
and of the transverse modes of E type, which are cou-
pled through the radiation field. Due to the longitudinal-
transverse coupling, the behavior is richer than in the previous
case.

We study the frequency response H⊥‖
p′ p (ω) of the E -type

transverse mode U⊥
p′ amplitude with p′ = (m121v) and p =

(m1v), and the frequency response H‖ ‖
pp (ω) of the longitudinal

mode U‖
p amplitude. In the system of equations (54) and (55)

we have set F ‖
p = 1 and the remaining forcing terms equal to

zero. In the investigated interval of β it is sufficient to consider
only the transverse modes of E type with � = 1, 2, 3.

First, we consider the case β = π/2. The amplitude of
H⊥‖

p′ p , shown in Fig. 8(a), has two peaks and one bump. The
first peak (labeled with a triangle) is located in proximity to
the natural frequency of E -type transverse mode U⊥

p′ , accord-
ing to Eq. (67). The second peak (labeled with a circle) is
located in proximity to the natural frequency of the longitu-
dinal mode U‖

p, accordingly to Eq. (66). The magnitude of
H‖ ‖

pp , shown in Fig. 8(c), shows only a peak in proximity to
the natural frequency of the longitudinal mode, because a zero
cancels the pole associated with the natural frequency of the
E -type transverse mode. The impulse response h⊥‖

p′ p is domi-

nated by the transverse mode, while the h‖ ‖
p′ p is dominated by

the longitudinal mode. The decay rate of h⊥‖
p′ p is much smaller

than the one of h‖ ‖
p′ p, consistent with the analysis carried out

above in Sec. VII B. Increasing the value of β, the second peak
in the amplitude of H⊥‖

p′ p disappears and the high-frequency
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FIG. 9. (a) Imaginary and (b) real parts of the first three dominant
poles with (c) the corresponding magnitude of the residues of fre-
quency response H⊥‖

p′ p of the E -type transverse mode (n = 1, � = 1,
and s = 2) of a lossless dielectric sphere (ω0 = ωP/4, � = 0) as a
function of β = kPa, where a is the radius and kP = ωP/c0. These
quantities are obtained by using the vector fitting technique.

bump, denoted by a square, becomes a peak [Fig. 8(e)]. It
is due to the transverse electromagnetic standing waves of
the particle. The phase also shows several oscillations. This
behavior also occurs for H‖ ‖

pp and gives arise to the impulse
response shown in Fig. 8(h).

For β = 2π [Fig. 8(i)], several interferences among the
three dominant poles arise, determining dips in the magnitude
and oscillations in the phase of H⊥‖

p′ p . The frequency response
H‖ ‖

pp [Fig. 8(k)] shows similar features. Moreover, the am-
plitude of H‖ ‖

pp is dominated by the third peak. The peaks
in the amplitude responses, except for the first two, are also

confined to the right of ω/ωc, where ωc =
√

ω2
0 + ω2

P is the
cutoff frequency of the medium. These peaks are associated
with the natural frequencies of the transverse electromagnetic
standing waves of the particle.

The impulse responses h⊥‖
p′ p and h‖ ‖

p′ p shown in Figs. 8(j) and
8(l), respectively, show an initial rapid oscillation dominated
by the radiative coupling, which decays very quickly. This is
particularly intense in the case of h‖ ‖

p′ p. After the decay of this
frequency component, both impulse responses show a long
period of oscillation.

We now use the vector fitting technique [33–35] to study
the behavior of the three dominant poles of H⊥‖

p′ p and of the
corresponding residues as β varies (see Fig. 9). In the small-
size limit, the blue and red curves, associated with poles 1 and
2, respectively, tend to the natural frequency of the transverse
mode U⊥

p′ of E type and of the longitudinal mode U‖
m1v . Pole

3, shown with a red curve, is associated with a transverse
electromagnetic standing wave of the particle. In Figs. 8(a),
8(e), and 8(i), the triangles, circles, and squares are associated
with the imaginary parts of poles 1, 2, and 3, respectively.

VIII. CONCLUSION

We have introduced a formulation for the full-wave anal-
ysis of time evolution of the polarization induced in the
electromagnetic scattering by dispersive particles. In the
framework of the Hopfield model for dielectrics, we expanded
the polarization field in terms of the static longitudinal (elec-
trostatic) and transverse (magnetostatic) modes of the particle,
and the radiation field in terms of the transverse electromag-
netic wave modes of free space. This choice allowed us to
separate effectively the role of the polarization field from the
role of the radiation field and to analyze their interaction. We
used the principle of least action to determine the equations

governing the time evolution of the mode amplitudes. We also
introduced the losses of the matter through a linear coupling
of the polarization field to a bath of harmonic oscillators with
a continuous range of natural frequencies. We then reduced
the set of linear integro-differential equations governing the
overall system by eliminating the degrees of freedom of the
radiation field and of the bath field. The reduced system gov-
erns the time evolution of the amplitude of the longitudinal
and transverse polarization modes. We studied this system in
detail and found the principal characteristics of its temporal
evolution, with emphasis on the impulse responses. We found
that the temporal evolution is strongly influenced by the self-
and mutual coupling between the degrees of freedom of the
polarization field that are mediated by the radiation field.

The parameter kPa, where kP = ωP/c0 and a is the radius
of the smallest sphere enclosing the particle, plays an essen-
tial role. The plasma wavelength λP = 2π/kP appears as the
natural characteristic dimension to describe how the matter
interacts with the electromagnetic field.

To investigate the role of the coupling, we analyzed the
system of equations in the Laplace domain. We found that
the coupling between the polarization modes is mediated by
the full-wave transverse dyadic Green’s function in the vac-
uum. We also found that the static longitudinal (electrostatic)
modes and the static transverse (magnetostatic) modes of the
particle are the natural oscillation modes of the polarization
in the small-size limit a 
 λP and we provided their natural
frequencies in a closed form.

We applied the developed approach to a spherical particle
of radius a. Its static longitudinal and transverse polarization
modes have analytic expressions. The transverse modes are
divided into two subsets: the ones of E type and the ones of
H type. We determined the semianalytical expressions of the
coupling coefficients governing their interactions and deduced
a set of selection rules: (i) Each mode interacts with itself,
(ii) only modes with the same multipolar order may interact,
(iii) the transverse modes of H type do not interact with
either longitudinal modes or transverse modes of E type, and
(iv) longitudinal modes and transverse modes of E type inter-
act. After validating the proposed approach, we investigated
the frequency and impulse responses of metal and dielectric
particles for 0 � a � 2.5λP. In metal particles, we analyzed
the evolution of the electric dipole mode amplitude, which in-
teracts significantly only with a few E -type transverse modes
of the same multipolar order. In a dielectric particle, we an-
alyzed two scenarios. In the first one, we excited the sphere
along a transverse degree of freedom of H type, which inter-
acts significantly only with a few H-type transverse modes
of the same multipolar order, and then we followed the evo-
lution of the magnetic dipole mode amplitude. In the second
scenario, we excited the dielectric sphere along a longitudinal
degree of freedom and then we monitored the evolution of
both longitudinal and E -type transverse mode amplitudes.
Moreover, in this case the radiation couples significantly the
longitudinal mode with a few E -type transverse modes. In
all cases investigated, the frequency response is dominated
by multiple peaks that move as the radius of the particle
increases. There are peaks associated with the natural fre-
quencies of the static longitudinal and transverse modes of
the particle and peaks associated with the natural frequencies
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of the transverse electromagnetic standing waves of the parti-
cle. These standing waves exhibit a cutoff frequency greater

than
√

ω2
0 + ω2

P. This behavior was investigated in detail,
employing the vector fitting technique to achieve a rational
function approximation of the frequency response. The im-
pulse responses reflect the frequency behavior and it is often
characterized by a beating between different frequencies, with
different decay times.

Specifically, we found that in the small-size limit a 

λP, the principal characteristics of the impulse responses are
mainly determined by the radiative self-coupling of the static
longitudinal and transverse modes of the particle, which are
the natural modes of the polarization. The self-coupling is
responsible for the shift of their natural frequencies and for
the decay. Instead, the mutual coupling mainly determines
the energy transfer between the static transverse and longi-
tudinal modes, which is a nonconservative process due to the
radiation losses. This mutual coupling is weak for small-size
particles, but it becomes relevant as the size of the particle
increases. The choice to expand the polarization in terms of
the static longitudinal and transverse modes of the particles
turns out to be very appropriate to describe the electromag-
netic scattering from dispersive particles with size of the
order of λP. Since the longitudinal and transverse modes of
the particle are the natural modes of the polarization in the
small-size limit, the interaction due to the radiation involves
only a few longitudinal and transverse modes in particles with
a ∼ λP. For a > λP, the role of the transverse electromagnetic
standing waves becomes important and higher-order trans-
verse polarization modes are excited.

The proposed approach leads to a general method for
the analysis of the temporal evolution (transients and steady
states) of the polarization field induced in dispersive particles
of any shape. It has the following advantages in comparison to
frequency-domain analysis of the electromagnetic scattering.
It leads to the separation of the contribution of the matter
(polarization) from that of the radiation enabling the physical
description of the electromagnetic-field–matter interaction,
especially when the near-field coupling is dominant. It also
allows the description of the inference between the discrete
modes of the matter and the continuum of the radiation
field. Only a few static longitudinal and transverse modes are
needed to properly describe the response of an object even
when its size is larger than the characteristic wavelength asso-
ciated with the material. Once the polarization field is known,
the time evolution of the scattered electromagnetic field can
be computed through electromagnetic potentials. It also offers
a framework where the quantization of the electromagnetic-
field–matter interaction can be carried out for particles of any
shape.

APPENDIX A: TRANSVERSE WAVE MODES
FOR THE FREE SPACE

In this paper we use both the transverse vector plane waves
and the transverse vector spherical waves as a basis for repre-
senting A⊥.

1. Transverse vector plane-wave modes

The transverse vector plane wave mode is given by

fq(r) = 1

(2π )3/2
εs,keik·r, (A1)

where k ∈ R3 is the propagation vector and {εs,k} are the
polarization unit vectors with εs,k = εs,−k and s = 1, 2 (see,
e.g., [23]). The two polarization vectors are orthogonal among
them, ε1,k · ε2,k = 0, and both are transverse to the propaga-
tion vector, ε1,k · k = ε2,k · k = 0. Indeed, it is

ε1,k ⊗ ε1,k + ε2,k ⊗ ε2,k + k̂ ⊗ k̂ = ←→
I , (A2)

where
←→

I is the identity dyad and ⊗ is the dyadic product. In
this case q is a multi-index corresponding to the pair of param-
eters k and s, q = (k, s), and

∑
q(·) denotes

∑2
s=1

∫
R3 d3k(·).

Since A⊥ is real we have a∗
q = a−q, where the index −q

denotes the pair (−k, s). The set of functions {fq} is orthonor-
mal:

〈fq′ , fq〉V∞ = δs′,sδ(k − k′). (A3)

2. Transverse vector spherical-wave modes

To describe the vector spherical wave modes, we need the
spherical coordinates. We denote by (r, θ, φ) the spherical
coordinates of the point with position vector r. The transverse
vector spherical wave functions Mmn(r; k) and Nmn(r; k) are
given by (see, e.g., [37])

Mmn = ∇ × (rψmn), (A4a)

Nmn = 1

k
∇ × ∇ × (rψmn), (A4b)

where (generating function)

ψmn(r; k) =
√

2

π

k√
n(n + 1)

jn(kr)Y m
n (θ, φ), (A5)

0 � k < ∞, n = 1, 2, . . ., −n � m � +n, jn(kr) is the spher-
ical Bessel function of order n, and Y m

n (θ, φ) is the spherical
harmonic of degree n and order m.

The vector fields Mmn(r; k) and Nmn(r; k′) are orthog-
onal in the three-dimensional space [namely, Mmn(r; k) ·
Nmn(r; k′) = 0] and satisfy the symmetrical relations

Nmn = 1

k
∇ × Mmn, (A6a)

Mmn = 1

k
∇ × Nmn (A6b)

and

M−mn = M∗
mn, (A7a)

N−mn = N∗
mn. (A7b)

They are also orthonormal in the Hilbert space:

〈Mm′n′ (k′), Mmn(k)〉V∞ = δm′,mδn′,nδ(k − k′), (A8a)

〈Nm′n′ (k′), Nmn(k)〉V∞ = δm′,mδn′,nδ(k − k′). (A8b)

For the transverse vector spherical wave functions, the
label q is a multi-index consisting of the set of parameters
(m, n, s, k) with s = 1 if fq = Mmn (H-type modes) and s = 2
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if fq = Nmn (E -type modes) [37]. The symbol
∑

q(·) denotes∑2
s=1

∑n
m=−n

∑∞
n=1

∫ ∞
0 dk(·). Since A⊥ is real we have a∗

q =
a−q, where now the label −q denotes the set (−m, n, s, k). To
carry out the calculations, it is convenient to express the vec-
tor spherical wave functions in terms of the vector spherical
harmonics (see Appendix B).

APPENDIX B: VECTOR SPHERICAL HARMONICS

We now use a spherical coordinate system. The spherical
coordinates of the point with position vector r are (r, θ, φ)
(with 0 � r < ∞, 0 � θ < π , and 0 � φ < 2π ). The basis
for the three-dimensional vector space is the set (r̂, θ̂, φ̂),
where r̂ is the radial unit vector, θ̂ is the polar unit vector,
and φ̂ is the azimuthal unit vector.

The spherical harmonic Y m
n (θ, φ) of degree n and order m,

with n = 0, 1, 2, . . . and −n � m � +n, is given by

Y m
n (θ, φ) = CmnP|m|

n (cos θ )eimφ, (B1)

where Pm
n (cos θ ) is the associated Legendre polynomial of

degree n and order m and Cmn is a normalization coefficient.
The spherical harmonics are orthogonal in the Hilbert space.
We normalize them in such a way that∫ ∣∣Y m

n (θ, φ)
∣∣2

d� = 1, (B2)

where
∫

(·)d� = ∫ π

0 dθ sin θ
∫ 2π

0 dφ(·). The normalization
coefficient Cmn is equal to

Cmn =
√

2n + 1

4π

(n − m)!

(n + m)!
. (B3)

The vector spherical harmonics Ym
n (θ, φ), Xm

n (θ, φ), and
Wm

n (θ, φ) are defined as

Ym
n = r̂Y m

n , (B4a)

Xm
n = 1√

n(n + 1)
∇Y m

n × r, (B4b)

Wm
n = r̂ × Xm

n = 1√
n(n + 1)

r∇Y m
n . (B4c)

They are orthogonal in the three-dimensional space,
namely, Ym

n (θ, φ) · Xm
n (θ, φ) = 0, Xm

n (θ, φ) · Wm
n (θ, φ) = 0,

and Wm
n (θ, φ) · Xm

n (θ, φ) = 0, and are orthonormal in the
Hilbert space, ∫

Ym′∗
n′ · Ymnd� = δm′mδn′n, (B5a)∫

Xm′∗
n′ · Xmnd� = δm′mδn′n, (B5b)∫

Wm′∗
n′ · Wmnd� = δm′mδn′n. (B5c)

The spherical vector wave functions Mmn(r; k) and
Nmn(r; k) can be expressed in terms of the vector spherical

harmonics as

Mmn =
√

2

π
k jn(kr)Xm

n (θ, φ), (B6)

Nmn =
√

2

π

1

r

{√
n(n + 1) jn(kr)Ym

n (θ, φ)

+ [r jn(kr)]′Wm
n (θ, φ)

}
, (B7)

where jn(kr) is the spherical Bessel function of the first
kind of order n; we have denoted the first-order derivative
of r jn(kr) with respect to the radial coordinate by [r jn]′. By
using the property∫ ∞

0
jn(k′r) jn(kr)r2dr = π

2

δ(k′ − k)

k2
(B8)

and the relations (B5) it follows immediately that the vector
spherical wave functions are orthonormal in the Hilbert space.

APPENDIX C: LONGITUDINAL AND TRANSVERSE
MODES OF A SPHERE

The longitudinal and transverse modes of a sphere are ex-
pressible in terms of spherical harmonics and spherical Bessel
functions (see Appendix B). We use a system of spherical
coordinates with the origin at the center of the sphere and
indicate with a the sphere radius.

1. Longitudinal modes

The longitudinal modes {U‖
p} of the sphere are charac-

terized by three indices p = (m, n, v), where n = 1, 2, . . .,
0 � m � n, and v = e (even modes) and o (odd modes). We
have

U‖
mne

o
(r) = 1√

c‖
mn

(
1
−i

)
[U‖

mn(r) ± U‖
−mn(r)], (C1)

where

U‖
m′n(r) = rn−1

[
nYm′

n (θ, φ) +
√

n(n + 1)Wm′
n (θ, φ)

]
(C2)

and

c‖
mn = 2na2n+1(1 + δm0). (C3)

The normalization constant c‖
mn has been chosen in such a way

that ‖U‖
mnv‖ = 1. The eigenvalue λn associated with the mode

U‖
mnv (r) is given by λn = (2n + 1)/n. It does not depend on

the indices v and m.

2. Transverse modes

There are two kinds of transverse modes {U⊥
p }: the vector

fields that are orthogonal to the radial direction r̂ (H-type
transverse modes) and the vector fields that have a radial com-
ponent different from zero (E -type transverse modes). The
transverse modes {U⊥

p } of the sphere are characterized by five
indices p = (m, n, s, �, v), where 0 � m � n, n = 1, 2, . . .,
s = 1 for the H-type modes and s = 2 for the E -type modes,
� = 1, 2, . . ., and v = e for even modes and v = o for odd
modes. We have

U⊥
mns�e

o
(r) = 1√

c⊥
mnsl

(
1
−i

)
[U⊥

mns�(r) ± U⊥
−mns�(r)], (C4)
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where for the H-type modes

U⊥
m′n1�(r) = jn(z(n−1),�r/a)Xm′

n (θ, φ) (C5)

and for the E -type modes

U⊥
m′n2�(r) = 1

κn,�r

(√
n(n + 1) jn(zn,�r/a)Ym′

n (θ, φ)

+ d

dr
[r jn(zn,�r/a)]Wm′

n (θ, φ)

)
; (C6)

here zm,� is the �th zero of the spherical Bessel function of
order m, jm. The normalization constant cmns� has been chosen
in such a way that ‖U⊥

mns�v‖ = 1,

c⊥
mns� = a3(1 + δm0)d⊥

ns�, (C7)

where for the H-type modes

d⊥
n1� = j2

n (z(n−1),�) (C8)

and for the E -type modes

d⊥
n2� = 1

2n + 1

[
(n + 1) j2

n−1(zn,�) + n j2
n+1(zn,�)

]
. (C9)

The eigenvalue κn,� associated with the H-type transverse
mode U⊥

mn1lv is given by κn,� = (z(n−1),�/a)2 and with the
E -type transverse mode U⊥

mn2lv is given by κn,� = (zn,�/a)2.
As for the longitudinal modes, the eigenvalues do not depend
on the indices v and m.

APPENDIX D: EXPRESSIONS OF THE COEFFICIENTS
Sab

pp′ (s) AT s = iω + ε WHERE ε ↓ 0 FOR A SPHERE

In this Appendix we first give the expressions of the scalar
products 〈fq, Ua

p〉 for the longitudinal and transverse modes of
a sphere with radius a, then we calculate the expressions of
the coefficients Sab

pp′ (s), and finally we give their expressions
evaluated for s = iω + ε where ε ↓ 0. It is convenient to use
as a basis for the transverse component of the vector potential
the transverse vector spherical wave functions. The function fq

is characterized by four indices: q = (m̃, ñ, , k), where −ñ �
m̃ � +ñ, ñ = 1, 2, . . ., and = 1 for the H-type modes, = 2 for
the E -type modes, and 0 � k < ∞.

1. Expression of the scalar product 〈fm̃ñk, U‖
mnv〉

The longitudinal modes are orthogonal to the vector spher-
ical harmonic Xm

n ; therefore, 〈fm̃ñk, U‖
mnv〉 = 0 for = 1. By

using the properties of the vector spherical harmonics and of
the spherical Bessel functions we obtain

〈fm̃ñk, U‖
mnv〉 = δ|m̃|mδñnδ2W

‖
mnv (ka), (D1)

where

W ‖
mnv (ka) = (1 + δm0)

√
2n(n + 1)

πc‖
mn

an+1w‖
mnv (ka), (D2)

w‖
mne(ka) = jn(ka), (D3)

and

w‖
mno(ka) = −i sgn(m)w‖

mne(ka). (D4)

2. Expression of the scalar product 〈fm̃ñk, U⊥
mns�v〉

The H-type transverse modes are orthogonal to the E -
type vector spherical waves; therefore, 〈fm̃ñk, U⊥

mns�v〉 = 0 for
s̃ �= s. By using the properties of the vector spherical harmon-
ics and of the spherical Bessel functions, we obtain

〈fm̃ñk, U⊥
mns�v〉 = δ|m|m′δnn′δss′W ⊥

mnslv (ka), (D5)

where

W ⊥
mnslv (ka) = (1 + δm0)

√
2

πc⊥
mnsl

a2w⊥
mnslv (ka), (D6)

w⊥
mns=1�v=e(ka) = jn(zn−1,�)

(ka)2

z2
n−1,� − (ka)2

jn−1(ka), (D7)

w⊥
mns=2�v=e(ka) = 1

2n + 1

ka

z2
n,� − (ka)2

unl (ka), (D8)

unl (ka) = (n + 1)[ jn−1(zn,�)ka jn−2(ka)

− zn,� jn−2(zn,�) jn−1(ka)]

+ n jn+1(zn,�)(ka) jn(ka), (D9)

and

w⊥
mns�v=o(ka) = −i sgn(m)w⊥

mns�v=e(ka). (D10)

3. Expressions of Sab
pp′ (s)

We now evaluate Sab
pp′ (s) starting from the definition (57)

and recalling that
∑

q(·) denotes
∑2

=1

∑ñ
m̃=−ñ

∑∞
ñ=1

∫ ∞
0 (·)dk.

The expression of S‖ ‖
pp′ (s), with p = (m, n, v) and p′ =

(m′, n′, v′), is given by

S‖ ‖
pp′ (s) = δmm′δnn′δvv′

2(n + 1)

π
�‖

mnv (s), (D11)

where

�‖
mnv (s) =

∫ ∞

0

s

s2 + ω2
c z2

|w‖
mnv (z)|2dz, (D12)

with ωc = c0/a. The expression of S⊥⊥
pp′ (s) with p =

(m, n, s, �, v) and p′ = (m′, n′, s′, �′, v′) is given by

S⊥⊥
pp′ (s) = δmm′δnn′δss′δvv′

4

π
√

dnsl dnsl ′
�⊥

mnsll ′v (s), (D13)

where

�⊥
mnsll ′v (s) =

∫ ∞

0

s

s2 + ω2
c z2

w⊥∗
mnslv (z)w⊥

mnsl ′v (z)dz. (D14)

We now consider S⊥‖
pp′ (s) with p = (m, n, s, �, v) and p′ =

(m′, n′, v′). We obtain

S⊥‖
pp′ (s) = δmm′δnn′δs2δvv′

2

π

√
2(n + 1)

d⊥
n2l

�
⊥‖
mnlv (s), (D15)

where

�
⊥‖
mnlv (s) =

∫ ∞

0

s

s2 + ω2
c z2

w⊥∗
mn2�v (z)w‖

mnv (z)dz. (D16)

Finally, we have �
‖⊥
p′ p(s) = �

⊥‖
pp′ (s).
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4. Expressions of 	‖
mnv (s), 	⊥

mnsll ′v (s), and 	
⊥‖
mnlv (s) at

s = iω + ε where ε ↓ 0

The expressions of �‖
mnv (s), �⊥

mnsll ′v (s), and �
⊥‖
mnlv (s) are

of the type

�(s) =
∫ ∞

0

s

s2 + ω2
c z2

f (z)dz, (D17)

where f (z) is a regular function given by bilinear forms of
spherical Bessel functions. We need to evaluate |�(s) for
s = iω + ε where ε ↓ 0. By applying the partial fraction de-
composition, we obtain

s

s2 + ω2
c z2

= 1

2

(
1

s + iωcz
+ 1

s − iωcz

)
; (D18)

therefore,

�(s = iω + ε)

= − i

2ωc

∫ ∞

0

1

ω/ωc + z − iε
f (z)dz

− i

2ωc

∫ ∞

0

1

ω/ωc − z − iε
f (z)dz. (D19)

By using the relation

1

x − iε
= iπδ(x) + P 1

x
, (D20)

where P denotes the Cauchy principal value, we obtain, for
�(ω) ≡ �(s = iω + ε), the expression

�(ω) = 1

ωc

π

2

[
f

( |ω|
ωc

)
+ i

ω

ωc
Pf

(
ω

ωc

)]
, (D21)

where

Pf

(
ω

ωc

)
= 2

π
P

∫ ∞

0

f (z)

z2 − (ω/ωc)2
dz. (D22)

5. Evaluation of w⊥
mns�v (z)

The expression of w⊥
mns=1�v (z) contains the function

jn−1(z)
z2

n−1,l −z2 , where zn−1,l is the lth zero of the spherical Bessel

function jn−1(z). It gives 0/0 for z = zn−1,l . This function is
well defined at z = zn−1,l ; its value can be evaluated by using
l’Hôpital’s rule. The first derivative of jn(z) is given by

d jn
dz

= n

z
jn − jn+1. (D23)

By applying l’Hôpital’s rule, we obtain

lim
z→zn−1,l

(
jn−1(z)

z2
n−1,l − z2

)
= jn(zn−1,l )

2zn−1,l
. (D24)

We proceed in the same way to evaluate limz→zn,l w
⊥
mns=2�v (z).

APPENDIX E: SMALL-SIZE LIMIT

In this Appendix we give some asymptotic expansions to
study the behavior of small-size particles.

1. Natural modes

We now analyze the natural modes in the limit β → 0
where β = kPa and kP = ωP/c0. In this limit, the system of
homogeneous equations (64) and (65) reduces to

(
ω2

P

χ (ζ )
+ �2

p

)
Z‖

p + β2ζ 2
∑

p′′
(R‖‖

pp′′Z
‖
p′′ + R‖⊥

pp′′Z⊥
p′′ ) = O(β3),

(E1)(
ω2

P

χ (ζ )
+ β2 ζ 2

a2κ⊥
p

)
Z⊥

p′

+ β2ζ 2
∑

p′′

[
R⊥‖

p′ p′′Z
‖
p′′ + β2

(
ζ

ωP

)2

R⊥⊥
p′ p′′Z⊥

p′′

]
= O(β5),

(E2)

where

R⊥⊥
pp′ = 1

2

1

4πa4

∫
V

d3r
∫

V
d3r′U⊥

p (r) · U⊥
p′ (r′)|r − r′|, (E3)

R‖⊥
pp′ = 1

4πa2

∫
V

d3r
∫

V
d3r′ U

‖
p(r) · U⊥

p′ (r′)

|r − r′| , (E4)

R‖ ‖
pp′ = 1

4πa2

∫
V

d3r
∫

V
d3r′ U

‖
p(r) · U‖

p′ (r′)

|r − r′|
+ 1

2

1

4πa2

∮
S

d2r
∮

S
d2r′U‖

p(r) · n̂|r − r′|U‖
p′ (r′) · n̂′.

(E5)

The quantities R⊥⊥
pp′ , R‖⊥

pp′ , R‖ ‖
pp′ , and 1/a2κ⊥

p do not depend
on the size of the particle a and on the complex variable ζ ;
they depend only on the particle shape. Equations (E1) and
(E2) have been obtained starting from the expression (59),
using the identities (E10) and (E11), and using the asymptotic
expression (E12) of the transverse Green’s function.

For β = 0 the equations of the system (E1) and (E2) decou-
ple and the natural modes of polarization are the longitudinal
and transverse modes of the particle. The natural frequencies
of the p longitudinal polarization modes are solutions of the
equation

ω2
P

χ (ζ )
+ �2

p + β2R‖ ‖
ppζ

2 = O(β3). (E6)

This equation is obtained by solving perturbatively the sys-
tem of equations (E1) and (E2) for small values of β in the
neighborhood of β = 0. The term R‖ ‖

pp describes the effects
of the self-coupling of the p longitudinal polarization mode.
Equation (E6) yields the same results obtained in the con-
text of volume integral equation formulations of Maxwell’s
equations [25]. Similar steps are followed to derive the natural
frequencies of the transverse polarization modes. The natural
frequencies of the transverse p polarization mode are solution
of the equation

ω2
P

χ (ζ )
+ β2 ζ 2

a2κ⊥
p

+ β4
D⊥

p ζ 4

ω2
P

= O(β5), (E7)
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where

D⊥
p = R⊥⊥

pp −
∑

p′
λp′ (R⊥‖

pp′ )2. (E8)

It has been obtained by solving perturbatively the system of
equations (E1) and (E2) for small values of β in the neighbor-
hood of β = 0. The term R⊥⊥

pp describes the self-coupling of

the p transverse polarization mode. The term R⊥‖
pp′ arises from

the coupling between the p transverse and the p′th longitu-
dinal polarization modes. The mutual interaction term R⊥‖

pp′ is
equal to zero if the normal component to ∂V of the vector field∫

V
d3r′ U⊥

p′ (r′)

|r − r′| (E9)

is equal to zero. Equation (E7) yields the same results obtained
in the context of volume integral equation formulations of
Maxwell’s equations [25].

The dissipation due to the radiation losses appears with the
first odd power of ζ that has been disregarded in the system
of equations (E6) and (E7), which has been considered in
Ref. [25]. In Appendix E 3 we give the asymptotic expressions
of the coefficient Sab

pp′ (ζ ) for the longitudinal and transverse
modes of a spherical particle that also take into account the
radiation losses.

2. Integral identities and asymptotic expression for the
transverse dyadic Green’s function

For obtaining the small-size limit β → 0 introduced before
we use the integral identities∫

V
d3r

∫
V

d3r′Ua
p(r)

(r − r′) ⊗ (r − r′)
|r − r′|3 Ub

p′ (r′)

=
∮

S
d2r

∮
S

d2r′[Ua
p(r) · n̂

]|r − r′|[Ub
p′ (r′) · n̂′]

+
∫

V
d3r

∫
V

d3r′ U
a
p(r) · Ub

p′ (r′)

|r − r′| , (E10)∫
V

d3r
∫

V
d3r′Ua

p(r)
(r − r′) ⊗ (r − r′)

|r − r′| Ub
p′ (r′)

= −
∮

S
d2r

∮
S

d2r′[Ua
p(r) · n̂

]|r − r′|2[Ub
p′ (r′) · n̂′]

− 1

2

∫
V

d3r
∫

V
d3r′|r − r′|Ua

p(r) · Ub
p′ (r′). (E11)

Furthermore, we also use the asymptotic expansion of the
transverse dyadic Green’s function for sr/c0 → 0,

←→
G ⊥(r; s) = ←→

G ⊥
0 (r)

− 2

12πr

(
sr

c0

)
+ (3

←→
I − r̂ ⊗ r̂)

32πr

(
sr

c0

)2

+ O

(
sr

c0

)3

. (E12)

The term
←→
G ⊥

0 (r) is the static transverse dyadic Green’s func-
tion in the free space

←→
G ⊥

0 (r) = (
←→

I + r̂ ⊗ r̂)
1

8πr
. (E13)

3. Asymptotic expansion of Sab
p′ p(ζ) for a spherical

particle when β 	 1

Here we give the asymptotic expansion of the coefficients
Sab

p′ p(ζ ) for a spherical particle in the limit β 
 1. The trans-
verse modes of E type couple with the longitudinal modes
with the same multipolar order, whereas the transverse mode
of H type couple only with themselves.

The self-coupling coefficient U‖
p for the p longitudinal

mode with p = (mnv) is given by

ω2
PζS‖ ‖

pp ≈ β2ζ 2

[
R‖ ‖

pp + (i)2nβ2n−1W ‖ ‖
pp

(
ζ

ωP

)2n−1]
, (E14)

where

R‖ ‖
pp = 2(n + 1)

(3 + 2n)(4n2 − 1)
(E15)

and

W ‖ ‖
pp = (n + 1)

[(2n + 1)!!]2
. (E16)

The self-coupling coefficient for the H-type transverse modes
U⊥

p with p = (mn1lv) (namely, s = 1) is given by

ω2
PζS⊥⊥

pp ≈ β2ζ 2

[
a2

κ⊥
p

− β2R⊥⊥
pp

(
ζ

ωP

)2

−(i)2nβ2n+1W ⊥⊥
pp

(
ζ

ωP

)2n+1]
, (E17)

where

R⊥⊥
pp = 2n + 1

2n − 1

(
1

a2κ⊥
p

)2

(E18)

and

W ⊥⊥
pp = 2

[(2n − 1)!!]2

(
1

a2κ⊥
p

)2

. (E19)

The self-coupling coefficient of the E -type transverse modes
U⊥

p with p = (mn2lv) (namely, s = 2) is

ω2
PζS⊥⊥

pp ≈ β2ζ 2

[
1

a2κ⊥
p

− β2R⊥⊥
pp

(
ζ

ωP

)2

+(i)2nβ2n+3W ⊥⊥
pp

(
ζ

ωP

)2n+3]
, (E20)

where

R⊥⊥
pp = 2n + 3

2n + 1

(
1

a2κ⊥
p

)2

(E21)

and

W ⊥⊥
pp = 2

[(2n + 1)!!]2

(
1

a2κ⊥
p

)2

. (E22)

Finally, the mutual coupling coefficient between the E -type
transverse mode U⊥

p with p = (mn2lv) (namely, s = 2) and
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the longitudinal mode U‖
p′ with p′ = mnv is given by

ω2
PζS⊥‖

pp′ ≈ β2ζ 2

[
R⊥‖

pp′ − (i)2nβ2n+1W ⊥‖
pp′

(
ζ

ωP

)2n+1]
, (E23)

where

R⊥‖
pp′ = 1

z2
n,l

√
2(n + 1)

(2n + 1)
(E24)

and

W ⊥‖
pp′ = 1

z2
n,l

2(n + 1)

[(2n + 1)!!]2
√

2(n + 1)
. (E25)

These asymptotic expansions allow us to evaluate the fre-
quency shift and the decay rate of the natural modes of the
polarization field in the small-size limit a 
 c0/ωP given in
Sec. VII A.
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