
PHYSICAL REVIEW A 104, 013508 (2021)

Computation of internal optical forces using the Helmholtz tensor
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The computation of the internal optical force density inside a metamaterial is a controversial subject. Various
stress tensors have been proposed; however, each yields a different result. Here, by adopting the Helmholtz
stress tensor and effective medium theories, we calculated the force densities acting on metamaterials composed
of a one-dimensional deep-subwavelength dielectric-air multilayer or a two-dimensional square lattice cylinder
array. Our results agree remarkably with the benchmarking noneffective medium treatment. The key is to treat
the effective parameters as operators; i.e., take different values for the wave with different k vector. This work
provides an approach to compute the internal optical force in metamaterials.
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I. INTRODUCTION

At the microscopic level, the bidirectional interaction of
light and matter is governed by the microscopic Maxwell
equations, which describe how matter influences the flow
of light, and the Lorentz force law (equivalent to Maxwell
stress tensor, MST), which describes how light influences the
path of matter. However, such approach is impractical for
nano- or bigger structures. The macroscopic number of nuclei
and electrons makes the computation impossible. Here, the
macroscopic Maxwell equations can be applied instead of the
microscopic Maxwell equations, which correctly describe the
flow of light in the presence of materials. The light-induced
forces acting on an object in vacuum or air can also be
computed by a surface integral of the Maxwell stress tensor,
with the required microscopic field being approximated by the
macroscopic field, because they are approximately equal in
vacuum or air.

The problem arises when one considers the internal optical
force densities distributed over the volume of a piece of meta-
material. For simplicity, we shall focus on two examples: first,
a one-dimensional metamaterial comprising a periodic collec-
tion of dielectric slabs in air, as shown in Fig. 1(a); second,
a two-dimensional metamaterial consisting of a square lattice
of dielectric cylinders embedded in air; see Fig. 8. Throughout
the paper, for the one-dimensional metamaterial, the number
of slabs, the thickness of the slabs, the lattice constant, and the
wavelength of light are 50, 5, 10, and 700 nm, respectively.
The lattice constant of the two-dimensional square array of
the cylinder is 10 nm, the radii of the cylinders are 3 nm, and
the incident wavelength is 600 nm. Such deep-subwavelength
spacings ensured the accuracy of the effective medium
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theories, so any error in the calculation should be attributed
to the stress tensor rather than the effective medium theories.

In principle, to evaluate the total optical force, one could
use the time-averaged “macroscopic” MST [1]:

Tik,M = 1

2
Re

[
ε0EM,iE

∗
M,k + BM,iB∗

M,k

μ0

− 1

2

(
ε0|EM |2 + |BM |2

μ0

)
δik

]
, (1)

which has the same form as the true MST, except that EM

and BM are the macroscopic fields rather than the micro-
scopic fields. We stress that in vacuum or air, the difference
between the microscopic field and the macroscopic field is
small, so Eq. (1) is valid. However, such approach can be
computationally very heavy for large structures. Worse, if the
objects are physically connected such that it is impossible
for the integration surface to enclose a single object without
overlapping with the materials, then the macroscopic MST
approach in Eq. (1) will be inapplicable, because inside a
material, the macroscopic and microscopic electromagnetic
fields can be very different. To cope with such issues, a stress
tensor that works inside the metamaterials is required. In
order to reduce the amount of computation required, we shall
treat the metamaterial as a homogeneous effective medium
without directly considering the microstructures. Then we
solve for the effective medium fields (which can be regarded
as the spatially averaged macroscopic fields) through apply-
ing the standard electromagnetic boundary conditions. Then,
we apply the Helmholtz stress tensor (HST) evaluated by
the effective medium fields to compute the internal optical
force densities. Such an approach is much more efficient
as one just needs to handle a single homogeneous scatterer,
rather than solving the scattering problem of the structured
metamaterials.
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FIG. 1. (a) Schematic illustration for a linearly polarized plane
wave with a modest intensity of 1.33 × 10−2 mW/m2 incident on
the dielectric-air multilayer. (b) In the long-wavelength limit, the
multilayer structure shown in (a) can be regarded as a scalar ho-
mogeneous effective medium. (c) The multilayer structure can also
be considered as an anisotropic effective medium characterized by
tensor permittivity and permeability. (d) Front view of (a) with TE
and TM incident plane waves.

We are aware that several stress tensors [2–8] were
proposed to calculate the optical force densities, which in-
clude, but are not limited to, Minkowski, Einstein-Laub, and
Helmholtz stress tensors. While most of them give the same
total optical force, when calculating the internal optical force
densities inside the scatterer, or the total force acting on a
scatterer located inside a complex fluid, different tensors yield
different results [9–18]. Here, we show that the HST, when
its electrostriction and magnetostriction terms are treated as
operators, gives results that agree remarkably with the bench-
marking macroscopic MST, thereby verifying its correctness.
We stress that our effective medium theory calculation of
internal optical force densities is much more computationally
efficient compared to that using the macroscopic MST, since
the latter requires one to solve for the macroscopic fields of
the structured materials, while the former only requires one
to calculate the effective medium fields from a homogeneous
object. The accurate computation of the internal optical force
densities enables us to consider the optomechanical effect in
metamaterials [19–21].

II. HOMOGENIZATION OF THE MULTILAYER
STRUCTURE

The multilayer structure can be effectively represented by
a scalar effective medium approach (see Sec. II A below) or an
anisotropic effective medium approach (see Sec. II B below).
We shall see that the HST gives correct results under both
types of effective medium descriptions.

A. Scalar effective medium approach

Effective medium theory is widely employed in describing
the optical properties of materials composed of a collection of

FIG. 2. (a) Transmittance ( ) for the lattice structure shown in
Fig. 1(a) when illuminated by a TE plane wave. (b) Transmittance
for the scalar effective medium shown in Fig. 1(b) illuminated by a
TE plane wave. (c) The difference between the transmittances shown
in (a) and (b). (d) Transmittance for the lattice structure shown in
Fig. 1(a) illuminated by a TM plane wave. (e) Transmittance for the
scalar effective medium shown in Fig. 1(b) illuminated by a TM
plane wave. (f) The difference between the transmittance shown in
(d) and (e). (g) Transmittance for the real lattice structure shown in
Fig. 1(a) when illuminated by a TM plane wave. (h) Transmittance
for the anisotropic effective medium shown in Fig. 1(c) illuminated
by a TM plane wave. (i) The difference between the transmittance
shown in (g) and (h). The result indicates that these effective medium
theories are accurate in computing the transmittance.

subwavelength elements. As an example, a structure consist-
ing of alternating dielectric-air slabs is depicted in Fig. 1(a).
The relative permeabilities of the dielectric and air are taken
to be μd = μa = 1, where the subscripts d and a stand for
dielectric and air, respectively. The structure can be treated
as a homogeneous material in the long-wavelength limit, as
shown in Fig. 1(b). Treating the effective relative permittivity
and permeability as scalars [22], for TE polarization they are

εeff = ρεd+(1 − ρ)εa, μeff = 1, (2)

while for TM polarization they are

εeff = ρεd+(1 − ρ)εa,

μeff = 1 − ρ(ρ − 1)(εa − εd )2

εaεd [εa(ρ − 1) − ρεd ]
sin2θ, (3)

where θ is the incident angle measured with respect to the
slab’s normal, εd (εa) is the relative permittivity of the di-
electric (air), ρ = dd/(dd + da) is the filling fraction of the
dielectrics with dd (da) being the thickness of dielectric (air).

Figure 2 demonstrates the validity of the scalar ef-
fective medium approach in calculating the transmittance.
The transmittance of the multilayer structures [as shown
in Fig. 1(a)] for TE and TM polarized incident waves is
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plotted in Figs. 2(a) and 2(d), respectively. For comparison,
the transmittance for the corresponding effective media [as
shown in Fig. 1(b)] for TE and TM polarized waves is plotted
in Figs. 2(b) and 2(e), respectively. The incident angle ranges
from 0◦ to 89◦, and the relative permittivity of the dielectric
ranges from 1 to 10. The differences between the two ap-
proaches are given in Figs. 2(c) and 2(f), which are vanishing
small (∼10−8–10−4), illustrating the accuracy of the scalar
effective medium model.

B. Anisotropic effective medium approach

The multilayer dielectric-air metamaterial shown in
Fig. 1(a) can also be considered as an anisotropic medium
using the Maxwell-Garnett effective medium theory. The
relative permittivity and permeability possess tensor forms
[23–27]:

ε =
⎛
⎝ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖

⎞
⎠,

μ =
⎛
⎝μ⊥ 0 0

0 μ⊥ 0
0 0 μ‖

⎞
⎠=

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, (4)

where

ε⊥ = εeffx = εeffy = (ddεd + daεa)

dd + da
,

ε‖ = εeffz = εaεd (da + dd )

(εadd + εd da)
, (5)

are the permittivity components perpendicular and paral-
lel to the array axis, respectively [23]. Again, we confirm
the validity of Eq. (5) by considering the transmittance.
Figure 2(g) plots the transmittance for the real structures.
Those for the effective medium with constitutive parameters
given by Eq. (5) are plotted in Fig. 2(h). A broad range of
incident angles (ranging from 0◦ to 89◦) is considered, and
the relative permittivity of the dielectric ranges from 1 to 10.
The differences between the two approaches are plotted in
Fig. 2(i), which are vanishing small (∼10−8–10−4), illustrat-
ing the accuracy of the anisotropic effective medium model.

III. DERIVATION OF ELECTROSTRICTION
AND MAGNETOSTRICTION

A. Helmholtz stress tensors

HST [7] can be derived based on the principle of virtual
work. Its expression specifically for amorphous and crys-
talline media can be found in Refs. [28–39]. By treating the
effective parameters as operators, here we extended the form
of the HST as (see Appendixes A and B for details)

Tik,H = 1

2
Re

{
EiD

∗
k − 1

2
(E · D∗)δik − 1

2
E ·

∑
n

∂εeff,n

∂uik
En

+ HiB
∗
k − 1

2
(H · B∗)δik − 1

2
H ·

∑
n

∂μeff,n

∂uik
Hn

}
,

(6)

where εeff,n, μeff,n are the relative permittivity and permeabil-
ity (can be scalar or tensor) of the effective medium for the
nth plane wave component and uik represents the strain ten-
sor defined as uik = 1

2 (∂ui/∂xk + ∂uk/∂xi ), with �u(�x) being a
displacement vector [35]; ∂εeff/∂uik and ∂μeff/∂uik [30–38]
are the electrostriction and magnetostriction, which describe
the change in the permittivity and permeability due to the
deformation of the effective dielectric solid. Here, E and H
denote the effective electromagnetic fields, which are equal
to the spatial average of the macroscopic fields. We remark
that the electromagnetic fields in MST are macroscopic fields
throughout this paper.

B. Derivation of electrostriction and magnetostriction

For the layered metamaterial, the deformation by stretching
can be described by

u = z(� − �0)

�0
, (7)

where �0 and � are the lattice constants before and after
deformation, respectively. The strain tensor is given by

uzz = ∂u

∂z
= (� − �0)

�0
. (8)

For the scalar effective medium approach, according to
Eqs. (2) and (3), the electrostriction for both TE and TM
polarizations is given by

∂εeff

∂uzz
= ∂εeff

∂�

∂�

∂uzz
≈ dd (εa − εd )

�0
= ρ(εa − εd ). (9)

The magnetostriction term for TE polarization vanishes
because μeff ≡ 1. However, the magnetostriction term for TM
polarization is nonzero and is given by

∂μeff

∂uzz
= ∂μeff

∂�

∂�

∂uzz
= dd (εa − εd )2

(
da

2εa − d2
d εd

)
sin2θ

εaεd (daεa + ddεd )2(da + dd )
,

= (εa − εd )2ρ[εa(ρ − 1)2 − εdρ
2]

εaεd [εa(1 − ρ) + εdρ]2 sin2θ. (10)

Therefore, the magnetostriction term depends on the in-
cident angle θ for TM polarization, in contrast to both
electrostriction and magnetostriction terms being independent
of the incident angle for TE polarization.

For the anisotropic effective medium approach, combining
Eqs. (4), (5), (7), and (8), the electrostriction is obtained as

∂εeffx

∂uzz
= ∂εeffy

∂uzz
= dd (εa − εd )

dd + da
,

∂εeffz

∂uzz
= da(da + dd )εaεd (εa − εd )

(ddεa + daεd )2 , (11)

and the magnetostriction vanishes since the effective perme-
ability is always 1.
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FIG. 3. The optical force densities acting on each slab versus
permittivity of the slabs. The incident light is TM polarized. The first,
second, and third columns denote fM, fScalar , and fAniso, respectively.
The fourth and fifth columns denote the difference between fM and
fScalar , and fM and fAniso, respectively. The first, second, and third
rows denote the results when the incident angles are 0◦, 30◦, and 80◦,
respectively. The result indicates that our HST approach is accurate
irrespective of the type of effective medium employed. �0 denotes
the lattice constant.

IV. INTERNAL OPTICAL FORCE CALCULATION
OF MULTILAYERED STRUCTURE

A. Single incident beam

The time-averaged optical force can be calculated using
MST over a surface integral:

F =
∮

S

↔
T · dS. (12)

For the parallel, infinitely large slabs in air, it can be sim-
plified to

F =
6∑

i=1

∫
surface i

↔
T · da =

∫
surface 1

↔
T · da +

∫
surface 2

↔
T · da,

(13)
where the surfaces 1–4 are depicted in Fig. 1(d) by the yellow
dotted lines and the surfaces 5 and 6 are the front and back
covers of the rectangle formed by surfaces 1–4. According to
the Bloch theorem, the contributions from surfaces 3 and 4,
and 5 and 6 (which are not shown) will cancel each other.

For a single TM polarized incident wave, the force den-
sities calculated by HST using the scalar effective medium
approach are compared with the benchmarks calculated by
MST, as shown in Fig. 3. The relative permittivity of the slabs
εd ranges from 2 to 5, and the filling ratio is 0.5. The force
densities calculated by HST with the scalar and anisotropic
effective medium approaches are denoted by fScalar and fAniso,
respectively. The benchmarks calculated by MST are de-
noted by fM. The incident angles in Fig. 3 are 0◦ (first
row), 30◦ (second row), and 80◦ (third row). fM− fScalar and
fM− fAniso are plotted in the fourth and fifth columns. We can
see all results calculated by HST agree excellently with the
benchmarking fM.

FIG. 4. The force densities when illuminated by two TM inci-
dent beams at different incident angles. The first, second, and third
columns denote fM, fScalar , and fAniso, respectively. The fourth and
fifth columns denote the difference between fM and fScalar , and fM

and fAniso, respectively. The incident angles of the two beams for the
first, second, and third rows are 0◦ and 30◦, 45◦ and 60◦, and 30◦ and
80◦, respectively. Other parameters are the same as Fig. 3.

B. Two incident beams

To compute the internal optical force densities accurately, it
is necessary to treat the electrostriction and magnetostriction
as operators: The total field is decomposed into a series of
plane waves, and each plane wave component is associated to
a different value of electrostriction and magnetostriction, as in
Eq. (6).

For the anisotropic effective medium approach, since the
magnetostriction term vanishes, Eq. (6) can be further simpli-
fied to

Tzz,H = 1

2
Re

[
ε0

∑
n

Ez,n

∑
n

εeffz,nE∗
z,n

− 1

2
ε0

∑
n

Ex,n

∑
n

(
εeffx,n + ∂εeffx,n

∂uzz

)
E∗

x,n

− 1

2
ε0

∑
n

Ez,n

∑
n

(
εeffz,n + ∂εeffz,n

∂uzz

)
E∗

z,n

− 1

2
μ0

∣∣∣∣∣
∑

n

Hy,n

∣∣∣∣∣
2]

. (14)

For illustrative purposes, we consider two incident plane
waves. Force densities exerted by two incident waves at dif-
ferent incident angles are computed and plotted in Fig. 4. The
parameters are the same as those in Fig. 3. The first, second,
and third columns denote fM, fScalar, and fAniso, respectively.
The fourth and fifth columns are the difference between fM

and fScalar, and fM and fAniso. The incident angles of the two
plane waves for the first, second, and third rows are, respec-
tively, 0◦ and 30◦, 45◦ and 60◦, and 30◦ and 80◦. Clearly, fScalar

and fAniso are matching very well with the benchmarks fM,
indicating that even when the multilayer structure is illumi-
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FIG. 5. Optical force densities calculated by the approach in
Ref. [30] (red circles) and our approach (blue plus signs) with two
incident beams at 30◦ and 60◦, εd = 4.

nated by multiple incident beams, the internal optical force
densities can still be computed accurately, if the electrostric-
tion and magnetostriction are treated as operators, which takes
all the wave vectors with appropriate weighing into consider-
ation. We also compute the optical force densities using the
approach of Ref. [30] where an effective k is introduced to de-
termine the electrostriction and magnetostriction. The results
are compared with our results, as shown in Fig. 5. Clearly, the
results by the approach of Ref. [30] deviate remarkably from
the benchmarking fM.

For TE polarization, both the electrostriction and magne-
tostriction are k independent. Figures 6 and 7 show the force
densities when illuminated by single or double incident TE
plane waves, with all the parameters the same as Figs. 3
and 4. Clearly, the force densities calculated by HST agree
remarkably with the benchmarking results computed by MST.

FIG. 6. For the one-dimensional (1D) multilayer structure, the
optical force densities acting on each slab versus the permittivity of
the slabs. The incident light is TE polarized. The left and middle
columns are fM and fH, respectively. The third column denotes the
difference between fM and fH. The first, second, and third rows
denote the results when the incident angles are 0◦, 30◦, and 80◦. The
result indicates that our HST approach is accurate.

FIG. 7. For the 1D multilayer structure, the force densities with
two TE polarized incident beams at different incident angles. The
left and middle columns denote fM and fH, respectively. The third
column denotes the difference between fM and fH. The incident
angles of the two beams for the first, second, and third rows are
0◦ and 30◦, 45◦ and 60◦, and 30◦ and 80◦, respectively. All the
parameters are the same as Fig. 4.

V. INTERNAL OPTICAL FORCE DENSITIES
CALCULATION FOR PERIODIC CYLINDER ARRAY

We also considered an effective slab made from a two-
dimensional (2D) photonic crystal with dielectric cylinders
arranged into a square lattice embedded in air; see Fig. 8.
The 2D photonic crystal is periodic along the x direc-
tion, possesses 30 periods along the z direction, and the
cylinders are infinitely long. The lattice constant is �0 =
10 nm and the incident wavelength is 600 nm. The rela-
tive permittivity, permeability, and radius of the cylinders
are εc = 8, μc = 1, and rc = 0.3�0, respectively. According
to the Clausius-Mossotti relation, the effective permittiv-
ity for TM polarization takes the form εeffx = εeffz = εeff =

FIG. 8. Schematic of a 2D photonic crystal embedded in air. The
cylinder is infinitely long along the y direction. The photonic crystal
is periodic along the x direction and has 30 periods along the z
direction. The red area denotes the cylinder with permittivity εc = 8.
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FIG. 9. Force densities acting on a slab consisting of 2D cylinder
array (see Fig. 8) and its effective medium. For two TM incident
waves with incident angles (a) 0◦ and 30◦, (b) 0◦ and 60◦, (c) 30◦ and
60◦, and (d) 60◦ and 80◦, respectively. Remarkable agreements are
achieved.

(1 + pM )/(1−pM ), where M= (εc − 1)/(εc + 1) and p =
πr2

c /�
2
0 is the filling ratio.

For the square array of cylinders, the electrostriction is
given by [30]

∂εeff

∂uzz
= −ε2

eff − 1

2

[
1 − 1.297pM cos (2φKeff )

pM

]
, (15)

where φKeff denotes the angle between the wave vector and the
z axis; εeff =

√
ε2

eff,x + ε2
eff,z is the “length” of the effective

permittivity. The effective permittivity along the x direction
εeff,x and along the z direction εeff,z are no longer equal due to
the deformation (stretch or shear), which breaks the symme-
try. Therefore, the electrostrictions are given by

∂εeffx

∂uzz
= ∂εeff

∂uzz

∣∣∣∣φKeff = π
2
= − (εeff − 1)2

2

1 + 1.297pM

pM
,

∂εeffz

∂uzz
= ∂εeff

∂uzz

∣∣∣∣φKeff =0= − (εeff − 1)2

2

1 − 1.297pM

pM
. (16)

Figure 9 shows the force densities calculated by the MST
and HST for two TM polarized incident beams with different
incident angles (0◦ and 30◦, 0◦ and 60◦, 30◦ and 60◦, and 60◦
and 80◦). Clearly, the force densities calculated by HST ( fH

red circles) agree excellently with the benchmarks ( fM blue
stars) computed by MST.

VI. COMPARISON OF FORCE DENSITIES CALCULATED
BY HELMHOLTZ, MINKOWSKI, AND EINSTEIN-LAUB

STRESS TENSORS

For comparison, we also consider the Minkowski and
Einstein-Laub stress tensors [2–8]. The Minkowski tensor is

Tik,Min = 1
2 Re

[
EiD

∗
k + μ0HiH

∗
k − 1

2 (ε0εr |E|2 + μ0|H|2)δik
]
,

(17)

FIG. 10. Contour plot of the optical force densities versus the
slab index and permittivity. The incident light is TM polarized. The
left, middle, and right columns are fH, fMin, and fEins, respectively.
The first, second, and third rows denote the results when the incident
angles are 30◦, 60◦, and 80◦.

while the Einstein-Laub stress tensor is

Tik,Eins = 1
2 Re

[
EiD

∗
k + μ0HiH

∗
k − 1

2 (ε0|E|2 + μ0|H|2)δik
]
.

(18)

In Fig. 10, fH, fMin, and fEins denote the internal force
densities calculated by Helmholtz, Minkowski, and Einstein-
Laub stress tensors, using the scalar effective medium theory
for the one-dimensional multilayer structure. The incident
light is TM polarized. The left, middle, and right columns
denote fH, fMin, and fEins, respectively. The first, second,
and third rows correspond to the incident angles of 30◦, 60◦,
and 80◦, respectively. It is clear that fMin and fEins are not
accurate, as they differ from the fH. It is in fact not very sur-
prising, as there are no electrostriction and magnetostriction
terms in Minkowski and Einstein-Laub stress tensors, lead-
ing to the lack of information about the microscopic lattice
structure.

VII. CONCLUSION

For the one-dimensional multilayer structure and 2D
square lattice cylinder array, by comparing with the bench-
marking MST approach, we showed that the internal optical
force densities can be computed accurately by HST, even
for multiple incident beams, if the electrostriction and mag-
netostriction are regarded as operators. Such an approach is
expected to work for an arbitrary propagating incident wave,
as the wave can be expanded by a series of plane waves.
We also demonstrated that Minkowski and Einstein-Laub
stress tensors failed in computing the internal optical force
densities due to the missing of the information about the
lattice structure. This work provides a concise and accurate
approach to compute the internal optical force in metamate-
rials, and helps us to understand the optomechanical effect in
metamaterials.
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APPENDIX A: DERIVATION OF EQ. (6)

We shall derive Eq. (6) with the electrostriction and mag-
netostriction as operators, namely, Eq. (6) in the main text,
based on the principles of virtual work.

For a nondispersive medium, such as our effective medium
where all the effective constitutive parameters are independent
of the frequency, the time-averaged total electromagnetic free
energy inside a small square is given by W = We + Wh =
− 1

4 Re(E · D∗ + H · B∗)ds [31], where ds = ab is the volume
of the area; E, D, H, and B are the electromagnetic fields
inside the area and can be taken as constants since the area is
small. Subjecting one of the boundaries (along a) of the area to
a virtual translation over an infinitesimal distance ξ , according
to the principles of virtual work, the change in the total free
energy inside the volume should be equal to the work done by
the boundary force

∑
Tikξinkb, where Tik is the surface stress

tensor component and nk is the unit normal vector component
of the boundary. For the magnetic part, one has∑

T h
ikξinkb = δWh = δWh,s + δWh, f + δWh,p, (A1)

where T h
ik is the surface stress tensor of the magnetic part;

δWh,s, δWh, f , δWh,p are variations of the total free energy in-

side ds due to the changes of the volume, magnetic field, and
the effective constitutive parameters, respectively, and they are
given by

δWh,s = −1

4
Re(H · B∗)bn · ξ = −1

4
Re(H · B∗)b

∑
δikξink,

δWh, f = ∂

∂H

[
−1

4
Re(H · B∗)ab

]
δH = −1

2
Re(B∗ · δH)ab,

δWh,p =
∑

m

∂

∂μeff,m

[
−1

4
Re(H · B∗)ab

]
δμeff,m, (A2)

where δik is the Kronecker delta function and μeff,m is the
effective permeability for the mth incident plane wave. If the
incident beam can be decomposed into infinite plane wave
components, we just replace the summation in the third equa-
tion of Eq. (A2) by an integration.

Note that the potential of each point on the boundary
remains invariant during the deformation [31], namely, H′ ·
na + H′ · ξ = H · na and H′ × nb = H × nb; then

δH = H′ − H = (n × δH) × n + (δH · n)n

= −(H′ · ξ )n/a = −(H · ξ )n/a. (A3)

Here we used (n × δH) × n = (n · n)δH − (δH · n)n. Sub-
stituting Eq. (A3) into the second equation of Eq. (A2), we
obtain

δWh, f = 1

2
Re(n · B∗)(H · ξ )b = 1

2

∑
Re(HiB

∗
k )ξink . (A4)

For the third equation of Eq. (A2), one applies

H =
∑

n

Hn, B =
∑

n

μeff,nHn, (A5)

where Hn is the magnetic field due to the nth incident plane
wave. A simple proof of Eq. (A5) is given in Appendix B. One
arrives at

δWh,p = −1

4
Re

[(∑
n

Hn

)
·
∑

m

∂

∂μeff,m

(∑
n

μeff,nHnab

)
δμeff,m

]
,

= −1

4
Re

[(∑
n

Hn

)
·
(∑

m

Hmδμeff,m

)
ab

]
. (A6)

Note that

δμeff,m = ∂μeff,m

∂uik
uik, (A7)

where

uik = 1

2

(
∂ui

∂xk
+ ∂uk

∂xi

)
= 1

2a
(ξink + ξkni ) = 1

a
ξink (A8)

is the strain tensor which is symmetric. Then Eq. (A6) can be
rewritten as

δWh,p = −1

4
Re

(∑
n

Hn

)
·
(∑

m

∂μeff,m

∂uik
Hm

)
ξinkb. (A9)

Combining Eqs. (A2), (A4), and (A9), we arrive at

Tik,H = 1

2
Re

{
HiB

∗
k − 1

2
(H · B∗)δik − 1

2
H ·

∑
n

∂μeff,n

∂uik
Hn

}
.

(A10)

The electric counterpart of the stress tensor can be obtained
similarly and then we can obtain the full expression of the
stress tensor as Eq. (6) in the main text.

APPENDIX B: PROOF OF EQ. (A5)

For a nonlocal medium where the constitutive param-
eters are k dependent, the magnetic induction field is
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expressed as

B =
∫

μ̃eff (x − x′)H(x′)d3x′ = F−1[μeff (k′)H̃(k′)], (B1)

where the convolution theorem has been applied, F−1 de-
notes the inverse Fourier transform, μ̃eff is the inverse Fourier
transform of μeff , and H̃ is the Fourier transform of H. Sup-
pose the magnetic field is decomposed into multiple plane
waves:

H(x) =
∑

n

Hn(x) =
∑

n

aneikn·x. (B2)

Its Fourier transform H̃ is

H̃ = 1

(2π )3/2

∫ ∑
n

aneikn·xe−ik·xdx3

= (2π )3/2
∑

n

anδ(k − kn). (B3)

Substituting Eq. (B3) into Eq. (B1), we obtain

B =
∑

n

∫
μeff (k)anδ(k − kn)eik·xdk3 =

∑
n

μeff (kn)aneikn·x

=
∑

n

μeff (kn)Hn(x) =
∑

n

μeff,nHn(x), (B4)

where μeff,n = μeff (kn).
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