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Multimode parity-time symmetry and loss compensation in coupled waveguides with loss and gain
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Loss compensation via inserting gain is of fundamental importance in different branches of photonics,
nanoplasmonics, and metamaterial science. This effect has found an impressive implementation in the parity-
time symmetric (PT -symmetric) structures possessing balanced distribution of loss and gain. In this paper,
we generalize this phenomenon to the asymmetric systems demonstrating loss compensation in the coupled
multimode loss-gain dielectric waveguides of different radii. We show that similar to the PT -symmetric coupled
single-mode waveguides of identical radii, the asymmetric systems support the exceptional points called here the
loss-compensation (LC) thresholds where the frequency spectrum undergoes a transition from complex to real
values. Moreover, the LC thresholds can be obtained for dissimilar modes excited in the waveguides providing an
additional degree of freedom to control the system response. In particular, changing loss and gain of asymmetric
coupled waveguides, we observe loss compensation for TM and TE modes as well as for the hybrid HE and EH
modes.
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I. INTRODUCTION

The intriguing properties of loss-gain distributions are the
subject of the fast-growing field of non-Hermitian photonics.
The most notable and studied class of non-Hermitian systems
is the PT -symmetric systems which possess the perfectly
balanced spatial distribution of gain and loss [1–3]. PT sym-
metry guarantees the reality of non-Hermitian Hamiltonian
spectra [4] that have been readily implemented and observed
in the optical domain [5,6]. Subsequently, PT symmetry was
transferred to electronic circuits [7], acoustics [8], and time-
varying (Floquet) systems [9].

The balance between loss and gain helps to solve the
problem of loss compensation which is of paramount impor-
tance for the efficiency of plasmonic and metamaterial-based
devices [10–12]. The loss-compensation effect proved to be
connected to another remarkable feature of non-Hermitian
systems—the possibility of specific degeneracies called ex-
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ceptional points (EPs) which were observed in photonics
[13,14] as well as in acoustics [15]. In contrast to the degen-
eracies of Hermitian systems (the so-called diabolic points)
with coalescing eigenvalues, the EPs imply coalescence of
both eigenvalues and eigenfunctions. In the PT -symmetric
systems, the EPs mark the points of phase transitions between
the PT -symmetric phase and the phase with spontaneously
broken PT symmetry. It is important to emphasize, however,
that the EPs are the general phenomenon observed also in
purely passive systems (such as whispering-gallery-mode mi-
croresonators [16], ring cavities [17], anisotropic waveguides
[18]), and even in the systems with radiative loss only [19].

The EPs have become a workhorse of many recent achieve-
ments, such as enhanced perturbation sensing [20,21], novel
lasing schemes [22,23], the enhanced Sagnac effect for laser
gyroscopes [24,25], simultaneous coherent perfect absorption
and amplification [26,27], asymmetric transmission [5,28],
etc. An interesting feature of EPs is their topological nature
which can be revealed with their dynamical encircling in
parameter space and can be used for mode switching [29],
mode transfer [30], and polarization conversion [31]. Another
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FIG. 1. Geometry of unequally sized dielectric waveguides im-
mersed in an infinite medium.

exciting direction is the observation and utilization of the
higher-order EPs where more than two eigenmodes coalesce.
Such EPs can be realized either in the systems containing
three or more resonant elements [21,32,33] or by hybridizing
several usual (second-order) EPs [34–36]. It should be noted
that the most considerations of non-Hermitian effects are lim-
ited to the single-mode case with the use of the coupled-mode
theory [37]. The multimode platforms provide much richer
opportunities in controlling optical response and dynamics
as evidenced by the examples of dispersion engineering and
mode conversion in the waveguide and microresonator sys-
tems [38–40].

For the symmetric system of coupled dielectric waveg-
uides, the full loss compensation is possible only for the
perfect balance between gain and loss corresponding to the
nonviolated PT symmetry [6]. This poses rather tough and
difficult-to-achieve conditions for experimental realization of
the related effects [13]. On the contrary, for the asymmetric
system, the full loss compensation can be reached even for the
unbalanced gain and loss. By analogy with the PT symmetry,
this generalized situation can be called the loss-compensation
(LC) symmetry [41,42]. In this paper, we propose further
generalization demonstrating LC phenomenon for the coupled
dissimilar waveguides under excitation of the modes with
the same or different azimuthal indices. In dielectric waveg-
uides, all modes except TE and TM are hybrid, i.e., they
have axial components of both electric and magnetic fields.
Therefore, to analyze the system, we apply the multimode
approach [42,43] which allows us to obtain exact solutions
of the eigenvalue problem for all possible classes of modes
supported by the asymmetric guiding structure. We show that
such an asymmetric structure supports specific EPs called
the LC thresholds and reached for different loss-gain ratios
depending on the modes used. Thus, the mode composition
of the non-Hermitian system is an additional degree of free-
dom useful for tuning the parameters necessary to obtain the
constant-intensity modes [44,45] and other applications.

II. MULTIMODE ANALYTICAL APPROACH

For our analysis, we use the multimode analytical approach
[43], which was previously successfully applied to coupled
systems with loss and gain [42]. Following Ref. [42], we
consider a pair of coupled dielectric cylinders of the radii R1

and R2 placed in an ambient medium. Figure 1 shows the

cross sections of the dielectric circular waveguides with the
permittivities ε1 and ε2, respectively (Regions I and II). The
polar coordinate systems associated with the waveguides are
denoted as (r1, φ1) and (r2, φ2). The waveguides are placed in
the infinite uniform medium (Region III) with the real-valued
permittivity ε3. The permeability μ = μ0 is assumed to be the
same in all regions. Without loss of generality, we suppose
that the first waveguide contains lossy medium and the sec-
ond one contains gain material [Im(ε1) < 0 and Im(ε2) > 0],
whereas Re(ε1) > ε3 and Re(ε2) > ε3.

In order to solve the eigenvalue problem for this system,
we write the electromagnetic fields in every region using the
corresponding polar coordinates as shown in Fig. 1. For ex-
ample, the Ez and Hz components of electromagnetic fields in
Region I are written in terms of the local coordinates (r1, φ1)
as

E1
z =

N∑
n=−N

A1
nJn(kp,1r1)einφ1 ,

H1
z =

N∑
n=−N

B1
nJn(kp,1r1)einφ1 , (1)

whereas in Region II the local coordinates (r2, φ2) are used as

E2
z =

N∑
n=−N

A2
nJn(kp,2r2)einφ2 ,

H2
z =

N∑
n=−N

B2
nJn(kp,2r2)einφ2 , (2)

and, finally, in Region III we have the contributions from both
local coordinate systems,

E3
z =

N∑
n=−N

C1
n H (1,2)

n (kp,3r1)einφ1

+
N∑

n=−N

C2
n H (1,2)

n (kp,3r2)einφ2 ,

H3
z =

N∑
n=−N

D1
nH (1,2)

n (kp,3r1)einφ1

+
N∑

n=−N

D2
nH (1,2)

n (kp,3r2)einφ2 . (3)

Here {A1
n, A2

n, B1
n, B2

n,C1
n ,C2

n , D1
n, D2

n} are the unknown
amplitudes of azimuthal harmonics, k2

p, j = k2
j − k2

z , k j =
k0εr j ( j = 1–3), εr j = ε j/ε0 is the relative permittivity,
k2

0 = ω2ε0μ0, Jn is the Bessel function, H (1)
n and H (2)

n are the
Hankel functions of the first and second kinds, respectively,
and the field factor of the form exp [−i(ωt − kzz)] is assumed
and omitted. The choice of the Hankel function is governed
by the boundary conditions for the fields in Region III as
follows: E3

z → 0 and H3
z → 0 for r1, r2 → ∞.

Since the derivation of other field components is cum-
bersome, it is relegated to the Appendix. We only note
that the Maxwell equations and Eqs. (1)–(3) allow us
to obtain the expressions for the electromagnetic-field
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FIG. 2. Lowest-order modes of the circular dielectric waveguide
with εr = 12 and R = 10 μm.

components Eφ and Hφ in every region. The unknown coeffi-
cients {A1

n, A2
n, B1

n, B2
n,C1

n ,C2
n , D1

n, D2
n} and kz can be obtained

from the dispersion relation derived using the continuity
conditions for the tangential fields at the boundary surfaces
r1 = R1 and r2 = R2 (see the Appendix).

Thus, in the general case, the solution of the boundary-
value problem for a pair of dielectric cylinders has a form
of coupled azimuthal harmonics, which include propagating
and evanescent modes. These modes supported by the first
(second) cylinder can be classified as TM0m and TE0m modes
with nonzero amplitudes A1

0 (A2
0) and B1

0 (B2
0) of the core

field, respectively, and hybrid HEnm and EHnm modes with
amplitudes A1

n and B1
n (A2

n and B2
n) [46]. As the distance d

between cylinders approaches infinity, the coupling between
harmonics vanishes, and the modes of uncoupled dielectric
cylinders transform to pure TE, TM, or hybrid modes (Fig. 2).
In the following, the modes of a pair of dielectric cylinders
are designated as TM0m, TE0m, HEnm, and EHnm modes, de-
pending on their behavior in the extreme case d → ∞. In
the operating mode pair, the first and the second modes are
related to the first (lossy) and the second (gainy) cylindrical
waveguides, respectively.

III. TM AND TE MODES

A. Single waveguide modes

Our aim is to demonstrate the possibility of full loss com-
pensation for the coupled dielectric waveguides with gain and
loss supporting different modes with an arbitrary value of the
azimuthal index. The dispersion relations of coupled waveg-
uides will tend to the dispersion relations of independent
waveguides with increasing distance between them. There-
fore, we are interested in the crossing points of the dispersion
curves of two independent cylinders. The dispersion curves
for the lowest-order modes of a single waveguide are shown in
Fig. 2. Changing the radius or permittivity of another cylinder,
one can observe the shift of its dispersion curves with respect
to the curves of the first one. Thus, for any pair of modes, we
can find their crossing points at a required frequency f and
longitudinal wave number kz/k0. We will show further that
these crossing points are convenient for the realization of full
loss compensation at the certain values of gain-loss parameter
and distance between the cylinders.

FIG. 3. The real and imaginary parts of the eigenvalues kz/k0 for
the TM modes as a function of the distance d between the coupled
waveguides. LC and PT -symmetry thresholds of TM-type modes
are shown with arrows.

Let us consider, for the moment, the family of transverse
electric TE0m and transverse magnetic TM0m modes of the
circular cylindrical waveguide. As representatives of these
modes, we choose the set {TM01, TM02, TE01, TE02}. For
example, for the TM01 (TE01) mode, we can choose an ar-
bitrary solution of the dispersion relation ( f ; kz/k0). Then,
we increase the cylinder radius to obtain same solution for
the TM02 (TE02) mode. The initial and increased radii of the
waveguide can serve as a first approximation to find the condi-
tions of loss compensation for the coupled cylinders with gain
and loss. For instance, according to Fig. 2, the values of f =
5.6 THz and kz/k0 = 1.6286 correspond to the TM01 (TE01)
mode of the waveguide with εr1 = 12 and R1 = 10 μm and
to the TM02 (TE01) mode of the waveguide with εr2 = 12 and
R2 = 18.93 μm (R2 = 16.305 μm).

B. Symmetric coupled waveguides: PT symmetry

We start with the case of symmetric system consisting of
the coupled waveguides with the same radii and permittivities,
i.e., R1 = R2 and εr1 = εr2. In the case of balanced loss
and gain, when the loss tangents have the same absolute
value of tan δ1 = − tan δ2, this system is a PT -symmetric
one. PT -symmetric systems can exist in two states: a
PT -symmetric state with the loss exactly compensated by
gain and the broken-PT -symmetry state with the violated
compensation. In our case, the transition between these
states can be realized by changing the distance between the
cylinders. The point of transition where the PT symmetry
gets broken is the EP where the modes of the system are
degenerate. For example, in Fig. 3, the dashed and dashed-dot
lines correspond to the TM01 and TM02 modes of the coupled
waveguides with balanced gain and loss (the parameters
are R1 = R2 = 10 μm, εr1 = εr2 = 12, tan δ1 = − tan δ2 =
5×10−4 for TM01 and R1 = R2 = 18.93 μm, εr1 = εr2 =
12, tan δ1 = − tan δ2 = 4.05×10−4 for TM02), whereas in
Fig. 4, the dashed and dashed-dot lines correspond to the TE01

and TE02 modes of the system with another set of parameters
(R1 = R2 = 7.48 μm, εr1 = εr2 = 12, tan δ1 = − tan δ2 =
5×10−4 for TE01 and R1 = R2 = 16.305 μm, εr1 = εr2 =
12, tan δ1 = − tan δ2 = 4.09×10−4 for TE02, respectively).
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FIG. 4. The real and imaginary parts of the eigenvalues kz/k0 for
the TE modes as a function of the distance d between the coupled
waveguides. LC and PT -symmetry thresholds of TE-type modes are
shown with arrows.

The EPs are denoted as the PT -symmetry thresholds since
below these points (for distances shorter than the threshold
one) the eigenvalues kz/k0 become purely real, and the system
falls into the PT -symmetric state. This state is preserved to
the very connection of the cylinders at d = 0. It is important
to note that due to the symmetry of the system, the full
loss compensation via the PT -symmetric state formation is
observed only for the identical modes of both waveguides.

C. Asymmetric coupled waveguides: loss compensation

Although PT -symmetric systems allow perfect loss com-
pensation, it is often problematic to reach the ideal symmetry
and the ideal loss-gain balance in realistic situations. Here, we
show that loss compensation can be obtained in asymmetric
systems with unequal coupled waveguides. Such a situation
can be described as LC symmetry [41], which has much in
common with PT symmetry (e.g., the existence of EPs), but
at the same time, the requirements for system symmetry are
strongly relaxed. Moreover, the LC phenomenon is reached
for a pair of different modes as will be illustrated further.

Let us take the loss tangent of the first cylinder equal to
tan δ1 = 5×10−4 corresponding to the value for silicon [47].
Changing the gain tangent tan δ2 and the distance between
the cylinders d , we can obtain the full loss compensation at
the target frequency f = 5.6 THz and wave-number kz/k0 =
1.6286. For the TE01 and TE02 modes, the EP which we
call the LC threshold is reached at the system parameters
as follows: R1 = 7.48, R2 = 16.305, εr1 = εr2 = 12, d =
26.67 μm, tan δ2 = −4.05×10−4 (see Fig. 5, dashed lines).
For the modes TM01 and TM02, the EP is reached at d =
24.37 μm and tan δ2 = −4.05×10−4 (see Fig. 5, solid lines).
Similar to the PT -symmetry threshold, the LC threshold cor-
responds to the purely real eigenvalues kz/k0. This approach
can be utilized to obtain the EPs of full loss compensations
for other pairs of modes as well. In Figs. 3 and 4, the LC
thresholds are shown for the TM-type and TE-type modes,
respectively, and compared to the PT -symmetry thresholds.
One can see that the LC thresholds for the different modes
(for example, TM01 and TM02) lie between the PT -symmetry

FIG. 5. EPs corresponding to the crossing of the pair of modes
TM01-TM02 and TE01-TE02.

thresholds for the corresponding individual modes. The main
difference with the PT -symmetric case is that the eigenvalues
for the asymmetric waveguides do not remain real below
the LC threshold. In fact, full loss compensation is realized
only for a certain distance between dielectric cylinders. A
further decrease in d gives rise to uncompensated losses in
the system. In this process, the amplitudes of higher azimuthal
harmonics increase [Fig. 6(a)]. This results in broken axial
symmetry of the fields localized in the first (lossy) and the
second (gainy) dielectric cylinders [Figs. 6(b)–6(d)] and is
typical of both symmetric and asymmetric pairs of coupled
waveguides.

The position of the LC threshold depends on the loss tan-
gent and the frequency at which the dispersion curves cross.
An example of electric- and magnetic-field distributions at
the LC threshold and dots of broken symmetry for dissimilar
waveguides are shown in Figs. 6(c) and 7(e) and 6(b) and
7(d) as compared to the distributions at the PT -symmetry
thresholds and the case of broken PT symmetry for the iden-
tical waveguides in Figs. 7(b) and 7(a). The smaller the loss
tangent and the nearer the crossing to the cutoff frequency, the
longer the distance between the waveguides corresponding to
the threshold [42].

Thus, the LC threshold in the asymmetric system allows
one to fully compensate the loss for the unbalanced gain and
loss of the individual cylinders. This effect can be considered
as a generalization of PT -symmetric loss compensation since
both the dispersion curves and the behavior of electromagnetic

FIG. 6. (a) Normalized amplitudes α1
n = |A1

n|/
∑

n |A1
n| of az-

imuthal harmonics for lossy TM01 mode [see the solid blue (light
gray) line in Fig. 3]. (b)–(d) Electric-field component |Ez| of the lossy
TM01 mode for the distances d = 35, d = 24.37 μm (LC threshold)
and d = 5 μm between the asymmetric waveguides with the radii
R1 = 10 and R2 = 18.93 μm.
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FIG. 7. (a)–(c) Axial electric-field |Ez| of the lossy TM01 mode
for the distances d = 35, d = 26.31 μm (PT -symmetry thresh-
old) and d = 5 μm between PT -symmetric waveguides with the
radii R1 = R2 = 10 μm. (d)–(f) Magnetic-field component |Hz| of
the lossy TE01 mode for the distances d = 35, d = 26.67 μm (LC
threshold) and d = 5 μm between two asymmetric dielectric waveg-
uides with the radii R1 = 7.48, R2 = 16.305 μm.

fields show that the nature of loss-compensation phenomenon
in asymmetric systems is similar to the PT symmetry in
symmetric ones.

IV. HYBRID MODES: LOSS COMPENSATION

A. Modes with the same azimuthal index

We have shown above how the LC phenomenon and PT
symmetries can be observed by coupling either TM or TE
modes of the pair of cylindrical waveguides. However, when
one mode is the TM one and another is the TE one, we cannot
obtain an EP due to the weak coupling between the modes
of different types (see Fig. 4, dotted line). In order to get
around this problem, in this section, we consider the possi-
bility of the LC phenomenon for the hybrid modes, which can
be treated as a linear superposition of the corresponding TE
and TM modes. These modes having both the electric- and
magnetic-field components in the longitudinal direction can
be either of HE type (magnetic component dominates) or EH
type (electric component dominates).

We tune the dispersion curves for two cylinders to obtain
the LC thresholds of hybrid modes for the same parameters
( f = 5.6 THz and kz/k0 = 1.6286) as for the TM and TE
modes. As previously, we start from the modes of the indi-
vidual waveguide and shift the dispersion curves by changing
the radius to get the required mode at the target frequency
and wave number. For example, we obtain the hybrid mode
HE11 at f = 5.6 THz and kz/k0 = 1.6286 for the cylinder
with R = 5.732 μm.

Let us consider the class of hybrid modes with azimuthal
index 1 focusing, in particular, on the modes HE11, EH11, and
HE12 (see Fig. 2). We are interested in the loss compensation
for the mode pairs HE11-EH11, HE11-HE12, and EH11-HE12

with the first mode corresponding to the cylinder with loss
(Region I) and the second mode corresponding to the cylinder
with gain (Region II). As shown in Fig. 8, the LC thresholds
exist for all the mode pairs mentioned above and for the
system parameters as follows:

(1) HE11-EH11—{R1 = 5.732, R2 = 11.44 μm, εr1 =
εr2 = 12, tan δ1 = 5×10−4, tan δ2 = −4.91×10−4};

FIG. 8. Loss compensation for the hybrid modes with the az-
imuthal index 1.

(2) HE11-HE12—{R1 = 5.732, R2 = 14.487 μm, εr1 =
εr2 = 12, tan δ1 = 5×10−4, tan δ2 = −4.33×10−4};

(3) EH11-HE12—{R1 = 11.44, R2 = 14.487 μm, εr1 =
εr2 = 12, tan δ1 = 4.91×10−4, tan δ2 = −4.33×10−4}.

We see that the LC thresholds are reached for different
distances between waveguides for every pair of modes: d =
20.89 μm for HE11-EH11; d = 27.28 μm for HE11-HE12; and
d = 16.18 μm for EH11-HE12. The field profiles shown in
Fig. 9 prove that there are nonzero Ez and Hz in both cylinders
as expected for the hybrid modes (although contribution of the
electric or magnetic field can strongly differ).

As to the hybrid modes with the azimuthal index 2, we
choose the mode pairs as follows: HE22-EH21, HE22-HE21,
and EH21-HE21. Now, unlike previous cases, the radius of the
waveguide with loss should be taken larger than the radius of
the cylinder with gain. For the parameters of the correspond-
ing LC thresholds, shown in Figs. 10 and 11, we have:

(1) HE22-EH21—{R1 = 18.7, R2 = 15 μm, εr1 = εr2 =
12, tan δ1 = 5×10−4, tan δ2 = −5.95×10−4};

(2) HE22-HE21—{R1 =18.7, R2 =9.91 μm, εr1 = εr2 =
12, tan (δ1) = 5×10−4, tan (δ2) = −4.65×10−4};

(3) EH21-HE21—{R1 = 15, R2 = 9.91 μm, εr1 = εr2 =
12, tan δ1 = 5×10−4, tan δ2 = −4×10−4}.

The distances between the waveguides correspond-
ing to these thresholds are as follows: d = 16.64 μm
for HE22-EH21; d = 16.95 μm for HE22-HE21; and d =
20.56 μm for EH21-HE21. The results in Figs. 8–11 evidence
that the full loss compensation can be realized for the arbitrary
hybrid modes with the same azimuthal index. The structures
of the modes influence only which of the cylinders should
have the larger radii—the lossy or the gainy one.

FIG. 9. (a)–(c) Electric-field |Ez| corresponding to the LC thresh-
olds of HE11-HE12, HE11-EH11, and EH11-HE12 mode pairs; (d)–(f)
The corresponding magnetic-field |Hz|.
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FIG. 10. Loss compensation for the hybrid modes with the az-
imuthal index 2.

B. Modes with different azimuthal indices

In this subsection, we study the possibility of the LC phe-
nomenon in the coupled waveguides with loss and gain tuned
to the modes with different azimuthal indices. The fundamen-
tal difference to the cases considered above is the necessity to
take into account the larger number of azimuthal harmonics.
For the identical azimuthal indices from the previous subsec-
tion, one can obtain the LC threshold with just one harmonic,
i.e., leaving a single term in the sums of Eqs. (1)–(3). On
the contrary, for the modes with different azimuthal indices,
several harmonics are needed due to weak coupling between
the fields (similar to the TM-TE pair).

As an example, let us consider the hybrid modes HE21

and EH11. For their dispersion curves to cross at f = 5.6 THz
and kz/k0 = 1.6286, the radii of the cylinders should be R1 =
11.44 and R2 = 9.91 μm. Figure 12 shows how the number
of azimuthal harmonics in Eqs. (1)–(3) influences the possi-
bility of the LC phenomenon for these modes. In this figure,
M = 2N + 1 is the number of terms took into account in
the field sums. We see that the LC threshold is observed for
the values of tan δ1 = 6.23×10−4 and tan δ2 = −4.65×10−4

at the distance d = 26.01 μm between the waveguides only
for M � 5, i.e., the minimal set of harmonics includes the
terms with n = {0,±1,±2}. This result is confirmed by the
comparison with the independent full-wave calculation us-
ing COMSOL MULTIPHYSICS® software (see the symbols in
Fig. 12). The required number of harmonics becomes larger
for very close cylinders (near d = 0) in order to save the
consistency between the analytical and the numerical methods
as demonstrated with the calculations for M = 11 in Fig. 12.
Furthermore, we omit the comparison with the full-wave sim-

FIG. 11. (a)–(c) Electric-field |Ez| corresponding to the LC
thresholds of HE22-HE21, HE21-EH21, and HE22-EH21 mode pairs;
(d)–(f) The corresponding magnetic-field |Hz|.

FIG. 12. Loss compensation for the hybrid modes EH11-HE21

having different azimuthal indices.

ulations since we are interested mainly in the region close to
the LC thresholds where the consistency is perfect even for
relatively small M.

Since the hybrid modes can be coupled to the symmetric
TM and TE modes, we analyze the LC phenomenon for such
situations as well. For the pair TM01-HE21, for example, the
LC threshold can be reached at d = 25.58 μm, whereas it is
d = 28.31 μm for TE01-HE21 (see Fig. 13). The parameters
of the system should be taken as follows:

(1) TM01-HE21—{R1 = 10, R2 = 9.91 μm, εr1 = εr2 =
12, tan δ1 = 5×10−4, tan δ2 = −3.44×10−4};

(2) TE01-HE21—{R1 = 7.48, R2 =9.91 μm, εr1 =εr2 =
12, tan δ1 = 5×10−4, tan δ2 = −3.32×10−4};

Note that for the TM01-HE21 pair at the LC threshold,
the longitudinal electric field Ez is excited in both cylinders
[Fig. 14(b)], whereas the longitudinal magnetic-field Hz exists
only in the second one due to the HE21 mode [Fig. 14(e)]. The
opposite is true for the TE01-HE21 pair: Ez is absent in the
first cylinder [Fig. 14(c)], but Hz is present in both waveguides
[Fig. 14(f)].

V. CONCLUSION

We employ the multimode analytical approach to study
the PT symmetry and loss-compensation phenomenon in
the dielectric cylindrical waveguides with gain and loss. It is
shown that for any predetermined frequency, one can realize
the loss compensation by tuning the waveguides to the proper
modes and to the proper radii. For the modes of either TM
or TE nature, we can reach loss compensation either in the
PT -symmetric phase (when the waveguides have identical
radii) or at the LC threshold (when the waveguides are
dissimilar). The loss compensation is also possible in the

FIG. 13. Loss compensation for the circularly symmetric TM01,

TE01, and hybrid HE21 modes.
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FIG. 14. (a)–(c) Electric-field |Ez| corresponding to the LC
thresholds of EH11-HE21, TM01-HE21, and TE01-HE21 mode pairs;
(d)–(f) the corresponding magnetic-field |Hz|.

situations involving the hybrid modes with identical or dif-
ferent azimuthal indices. By tuning the waveguides radii, we
obtained the LC thresholds for a wide number of mode pairs,
namely, {HE-HE, HE-EH, HE-TM, HE-TE}. The results are
illustrated with the profiles of Ez and Hz components of
electromagnetic field at the corresponding EPs (LC and PT -
symmetry thresholds) and corroborated by comparing with
the full-wave simulations.

Our results show that the loss compensation in loss-gain
systems is the general effect taking place even in asymmetric

systems, such as coupled dielectric waveguides of different
radii. Tuning the waveguides to the desired modes simply by
changing the distance between them and their radii allows
to build the lossless system starting from the arbitrary val-
ues of gain and loss. These results significantly expand the
understanding of the concepts of loss compensation and PT
symmetry and can be applied for the experimental implemen-
tation of different types of optical devices.
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APPENDIX: DERIVATION OF TRANSVERSE
FIELD COMPONENTS

The transverse field components (Er, Hr, Eφ, Hφ ) in all
regions can be readily expressed in terms of axial components
Eqs. (1)–(3) from the Maxwell equations. The φ components
of the fields in the first cylinder (Region I) can be derived as

E1
φ = 1

k2
p,1

∑
n

[
−kzn

r1
A1

nJn(kp,1r1) − iωμ0B1
nkp,1J ′

n(kp,1r1)

]
einφ1 ,

H1
φ = 1

k2
p,1

∑
n

[
iωε1kp,qA1

nJ ′
n(kp,1r1) − kzn

r1
B1

nJn(kp,1r1)

]
einφ1 , (A1)

The φ components of the fields inside the second cylinder (Region II),

E2
φ = 1

k2
p,2

∑
n

[
−kzn

r2
A2

nJn(kp,2r2) − iωμ0B2
nkp,qJ ′

n(kp,2r2)

]
einφ2 ,

H2
φ = 1

k2
p,2

∑
n

[
iωε2kp,2A2

nJ ′
n(kp,2r2) − kzn

r2
B2

nJn(kp,2r2)

]
einφ2 , (A2)

For derivation of the fields in Region III, we connect the coordinates (r1, φ1) and (r2, φ2) using the Graf addition theorem,

Bn(r1)e±inφ1 =
N∑

k=−N

Bn+k (h)Jk (r2)e∓ikφ2 e±ikπ ,

Bn(r2)e±inφ2 =
N∑

k=−N

Bn+k (h)Jk (r1)e∓ikφ1 e±inπ , (A3)

where Bn is the nth order cylindrical function and h is the distance between the centers of two cylinders (h = d + R1 + R2)
(see Fig. 1). The φ components of the fields outside the cylinders in coordinates (r1, φ1) are as follows:

E3
φ (r1, φ1) = 1

k2
p,3

∑
n

{
− kzn

r1

[
C1

n H (1,2)
n (kp,3r1)einφ1 +

∑
k

C2
n H (1,2)

n+k (kp,3h)Jk (kp,3r1)e−ikφ1 einπ

]

− iωμ0B2
nkp,3

[
D1

nH ′(1,2)
n (kp,3r1)einφ1 +

∑
k

D2
nH (1,2)

n+k (kp,3h)J ′
k (kp,3r1)e−ikφ1 einπ

]}
,
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H3
φ (r1, φ1) = 1

k2
p,3

∑
n

{
iωε3kp,3

[
C1

n H ′(1,2)
n (kp,3r1)einφ1 +

∑
k

C2
n H (1,2)

n+k (kp,3h)J ′
k (kp,3r1)e−ikφ1 einπ

]

− kzn

r1

[
D1

nH (1,2)
n (kp,3r1)einφ1 +

∑
k

D2
nH (1,2)

n+k (kp,3h)Jk (kp,3r1)e−ikφ1 einπ

]}
. (A4)

The φ components of the fields in Region III in the coordinates (r2, φ2) are as follows:

E3
φ (r2, φ2) = 1

k2
p,3

∑
n

{
− kzn

r2

[∑
k

C1
n H (1,2)

n+k (kp,3h)Jk (kp,3r2)eik(π−φ2 ) + C2
n H (1,2)

n (kp,3r2)einφ2

]

− iωμ0kp,3

[∑
k

D1
nH (1,2)

n+k (kp,3h)J ′
k (kp,3r2)eik(π−φ2 ) + D2

nH ′(1,2)
n (kp,3r2)einφ2

]}
,

H3
φ (r2, φ2) = 1

k2
p,3

∑
n

{
iωε3kp,3

[∑
k

C1
n H (1,2)

n+k (kp,3h)J ′
k (kp,3r2)eik(π−φ2 ) + C2

n H ′(1,2)
n (kp,3r2)einφ2

]

− kzn

r2

[∑
k

D1
nH (1,2)

n+k (kp,3h)Jk (kp,3r2)eik(π−φ2 ) + D2
nH (1,2)

n (kp,3r2)einφ2

]}
, (A5)

The explicit form of the dispersion relation is the condition of the zero determinant of the following system of equations:

Ã1
mJm(kp,1r1) = C̃1

mH (1,2)
m (kp,3r1) +

∑
n

C̃2
n H (1,2)

m−n (kp,3h)Jm(kp,3r1),

B1
mJm(kp,1r1) = D1

mH (1,2)
m (kp,3r1) +

∑
n

D2
nH (1,2)

m−n (kp,3h)Jm(kp,3r1),

Ã2
mJm(kp,2r2) =

∑
n

C̃1
n H (1,2)

m−n (kp,3h)Jm(kp,3r2) + C̃2
mH (1,2)

m (kp,3r2),

B2
mJm(kp,2r2) =

∑
n

D1
nH (1,2)

m−n (kp,3h)Jm(kp,3r2) + D2
mH (1,2)

m (kp,3r2),

1

k2
p,1

[
−kzm

r1
Ã1

mJm(kp,1r1) − ik0B1
mkp,1J ′

m(kp,1r1)

]

= 1

k2
p,3

{
−kzm

r1

[
C̃1

mH (1,2)
m (kp,3r1) +

∑
n

C̃2
n H (1,2)

m−n (kp,3h)Jm(kp,3r1)

]

− ik0kp,3

[
D1

mH ′(1,2)
m (kp,3r1) +

∑
n

D2
nH (1,2)

m−n (kp,3h)J ′
m(kp,3r1)

]}
,

1

k2
p,1

[
ik0ε1kp,1Ã1

mJ ′
m(kp,1r1) − kzm

r1
B1

mJm(kp,1r1)

]

= 1

k2
p,3

{
ik0ε3kp,3

[
C̃1

mH ′(1,2)
m (kp,3r1) +

∑
n

C̃2
n H (1,2)

m−n (kp,3h)J ′
m(kp,3r1)

]

− kzm

r1

[
D1

mH (1,2)
m (kp,3r1) +

∑
n

D2
nH (1,2)

m−n (kp,3h)Jm(kp,3r1)

]}
,

1

k2
p,2

[
−kzm

r2
Ã2

mJm(kp,2r2) − ik0B2
mkp,2J ′

m(kp,2r2)

]

= 1

k2
p,3

{
−kzm

r2

[∑
n

C̃1
n H (1,2)

m−n (kp,3h)Jm(kp,3r2) + C̃2
mH (1,2)

m (kp,3r2)

]

× ik0kp,3

[∑
n

D1
nH (1,2)

m−n (kp,3h)J ′
m(kp,3r2) + D2

mH ′(1,2)
m (kp,3r2)

]}
,
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1

k2
p,2

[
ik0ε2kp,2Ã2

mJ ′
m(kp,2r2) − kzm

r2
B2

mJm(kp,2r2)

]

= 1

k2
p,3

{
ik0ε3kp,3

[∑
n

C̃1
n H (1,2)

m−n (kp,3h)J ′
m(kp,3r2) + C̃2

mH ′(1,2)
m (kp,3r2)

]

− kzm

r2

[∑
n

D1
nH (1,2)

m−n (kp,3h)Jm(kp,3r2) + D2
mH (1,2)

m (kp,3r2)

]}
. (A6)

Here Ã1,2
n = √

ε0/μ0A1,2
n , C̃1,2

n = √
ε0/μ0C1,2

n .
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