
PHYSICAL REVIEW A 104, 013506 (2021)

Generalized self-similar propagation and amplification of optical pulses
in nonlinear media with high-order normal dispersion

Antoine F. J. Runge ,1,* Tristram J. Alexander,1 Harsh P. Talathi ,1 Darren D. Hudson,2

Andrea Blanco-Redondo,3 and C. Martijn de Sterke1,4

1Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, NSW 2006, Australia
2CACI-Photonics Solutions, 15 Vreeland Road, Florham Park, New Jersey 07932, USA

3Nokia Bell Labs, 600 Mountain Avenue, New Providence, New Jersey 07974, USA
4University of Sydney Nano Institute (Sydney Nano), University of Sydney, NSW 2006, Australia

(Received 30 April 2021; accepted 10 June 2021; published 6 July 2021)

We investigate theoretically and numerically the self-similar propagation of optical pulses in the presence of
gain, positive Kerr nonlinearity, and positive (i.e., normal) dispersion of even order m. Starting from a modified
nonlinear Schrödinger equation, separating the evolution of amplitude and phase, we find that the resulting
equations simplify considerably in the asymptotic limit. Exact solutions to the resulting equations indicate
that the temporal intensity profile follows a 1 − T m/(m−1) function with an m-dependent scaling relation, with a
T 1/(m−1) chirp, where T is the pulse’s local time. These correspond to a triangle and a step function, respectively,
as m → ∞. These results are borne out by numerical simulations, although we do observe indications of
nonasymptotic behavior.
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I. INTRODUCTION

Self-similarity is a property of physical systems in a wide
range of contexts, from hydrodynamics to solid-state and
plasma physics [1]. Self-similar properties can be used to
find exact solutions to differential equations describing com-
plex physical systems by reducing the number of degrees of
freedom through symmetry reduction. In optics, self-similar
techniques have also had an important impact and have been
used to study the dynamics of chaotic optoelectronic sys-
tems [2,3], stimulated Raman scattering [4], wave collapsing
processes [5], soliton-based fractal pattern formation [6],
formation of phase gratings in optical fibers [7], and the
evolution of self-written waveguides [8,9]. This approach has
also allowed for the discovery of new classes of nonlinear
waves [10]. Self-similarity can also be used to design novel
devices. For example, broadband detectors based on structures
consisting of self-similar nanoantenna arrays have recently
been demonstrated [11].

One of the optical applications that has benefited the most
from the study of self-similar dynamics is the propagation
of nonlinear pulses in fiber amplifiers [12]. Amplification is
a key process that allows for the regeneration of signals in
telecommunication systems [13], or compensation of losses
in laser cavities [14]. With anomalous dispersion (β2 < 0),
pulse propagation leads to the formation of solitons, in which
nonlinear effects are limited and balance the dispersion [15].
However, these pulses collapse under strong amplification or
in the presence of noise [16]. In contrast, in the presence
of normal dispersion (β2 > 0) and gain, large nonlinearities
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can be exploited to access a new regime, where the optical
pulse evolves self-similarly as it is amplified [12,17,18]. The
amplified pulse evolves toward a parabolic intensity profile,
with amplitude and temporal width scaling exponentially [19].
Moreover, theses pulses have a strictly linear chirp which
means that they can be easily recompressed to generate ul-
trashort pulses with high peak powers [20]. Transferring this
self-similar amplification approach in a laser geometry has
allowed for the development of sources emitting ultrashort
pulses with high energy [21–23].

Previous studies of self-similar propagation of optical
pulses focused on optical waveguides with dominant second-
order dispersion as it is the largest contribution in standard
fibers used in amplifiers and lasers [15]. However, recent work
shows that stable optical pulses can also be formed in the
presence of even negative higher-order dispersion (βm < 0,
for m > 2) and Kerr nonlinearity [24–26]. A conclusion from
these studies is that, instead of acting as disrupting effects,
higher-order dispersion can be used to generate novel optical
pulses with applications in frequency comb generation and
lasers [27–29].

We recently considered the nonlinear propagation of op-
tical pulses in media with positive fourth-order dispersion
(β4 > 0), Kerr nonlinearity and gain, and found, theoretically
and numerically, that pulses also evolve self-similarly [30].
In the asymptotic regime, the pulses have a triangle-like, 1 −
T 4/3 intensity profile, where T is the pulse’s local time, with
a T 1/3 chirp. This chirp profile gives rise to a double-peaked
spectrum which might be used in two-color spectroscopy or
terahertz generation via frequency difference mixing [31,32].
Despite significantly different characteristics, quadratic and
quartic self-similar pulses both rely on the combined in-
teraction of gain, Kerr nonlinearity, and the group velocity
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monotonically decreasing with frequency, which suggests that
self-similar pulses could exist in the presence of any positive
even-order dispersion.

Here, we generalize our previous work and present a the-
oretical and numerical study of the propagation of optical
pulses in the presence of Kerr nonlinearity, gain, and any
positive dispersion of even order m (i.e., βm > 0). We find
a generalized asymptotic solution for each dispersion order
m corresponding to a 1 − T m/(m−1) intensity profile and an
associated T 1/(m−1) chirp. We find different amplitude and
width scaling for each dispersion order. Our theoretical pre-
dictions are confirmed by numerical simulations. We expect
these results to stimulate research in photonics and applied
mathematics in nonlinear wave propagation in media with
complicated dispersion.

The outline of this paper is as follows: In Sec. II we give
analytic expressions for the asymptotic solutions for arbitrary
(even) dispersion order, their associated spectra, and the gen-
eral properties of both. These results are based on the ability
to identify the asymptiotic terms in the relevant evolution
equation. Then in Sec. III we compare these to full numerical
results. In Sec. IV we confirm and discuss the asymptotic
terms in the evolution equation. In Sec. V we discuss some
of the nonasymptotic behavior we observed, while in Sec. VI
we discuss our results and conclude. The Appendix provide
details of the derivation of the results in Sec. II.

II. SELF-SIMILAR SOLUTIONS

We begin our analysis by considering the evolution of an
optical pulse in a medium with mth-order dispersion, where
m is an even integer, Kerr nonlinearity, and gain. We also
assume a pulse spectral bandwidth narrower than the am-
plifier bandwidth, and the absence of gain saturation. These
assumptions are appropriate for high-gain, broadband fiber
amplifiers [12,17,18]. This evolution can be described by the
modified nonlinear Schrödinger equation (NLSE)

i
∂ψ

∂z
= −(−1)

m
2
βm

m!

∂mψ

∂T m
− γψ |ψ |2 + i

g

2
ψ, (1)

where ψ = ψ (z, T ) is the slowly varying amplitude of the
pulse envelope, z is the propagation coordinate, γ character-
izes the strength of the nonlinearity, and g is the distributed
gain coefficient. In the amplifier, the pulse energy evolution
Ep(z) = ∫ ∞

−∞ |ψ (z, T )|2dT must satisfy the conservation in-
tegral

Ep(z) = Ep(0)egz, (2)

where Ep(0) is the input pulse energy.
To find a self-similar solution we write ψ (z, T ) =

A(z, T )eiϕ(z,T ) where A is the amplitude and ϕ is the phase.
Substituting this into Eq. (1) we find a complex equation, the
real and imaginary parts of which can be written separately.
Each of these equations includes numerous terms arising from
the mth partial time derivative of the product Aeiϕ . As z → ∞,
terms that contain high time derivatives tend to be small and
can be neglected. Therefore, the terms that dominate, are those
that only contain the lowest derivatives of A and ϕ [30], as
discussed in more detail in Sec. IV. The real and imaginary

parts of the equation then reduce to

Az

A
− g

2
= βm

(m − 1)!

AT

A
(ϕT )m−1 + βm

2(m − 2)!
(ϕT )m−2ϕT T ,

(3)

and

ϕz = βm

m!
(ϕT )m + γ A2, (4)

where the subscripts indicate partial derivatives.
Equations (3) and (4) can be solved in closed form pro-

vided that γ βm > 0 and give (see Appendix for details)

A(z, T ) = A0 eμmgz/2

[
1 −

(
T

T0(z)

) m
m−1

]1/2

, (5)

with

A0 =
(

(m− 1)(m− 1)!

2m
gEin

)μm/2

β−μ/2
m (m!γ )μ(1−m)/2, (6)

and

T0(z) = (m!)
m−1

m
2m − 1

(m − 1)(m − 1)!

×
(
βm

(
γ A2

0

)m−1)1/m

g
eμ(m−1)gz, (7)

where Ein is the input pulse energy, and where μ ≡ (2m −
1)−1. We note that, for m = 2 and m = 4, the asymptotic solu-
tion A2(z, T ) ∝ T 2 and A2(z, T ) ∝ T 4/3, are consistent with,
respectively, Fermann et al. [12] and Runge et al. [30]. More
generally, we find that, in this approximation, A2 ∝ T m/(m−1)

and that the pulses have finite width 2T0, with both the in-
tensity and the width growing exponentially. The associated
temporal phase is given by

ϕ(z, T ) = ϕ0 − m − 1

m
[μ(m − 1)(m − 1)!]1/(m−1)

×
(

g

βm

)1/(m−1)

T m/(m−1) + (γ A2
0)

μmg
eμ(m−1)gz, (8)

where ϕ0 is an integration constant. This corresponds to an
instantaneous frequency

δω(T ) = − ∂

∂T
ϕT (z, T )

=
(

(m − 1)(m − 1)!

2m − 1

) 1
m−1

(
gT

βm

) 1
m−1

. (9)

Thus the self-similar asymptotic solutions to Eq. (1) are given
by Eqs. (5) and (8) for the amplitude and phase, respectively.

Next, we consider the associated spectrum of this asymp-
totic solution defined by

ψ̃ (z, ω) = 1√
2π

∫ ∞

−∞
ψ (z, T )eiωT dT . (10)

The results of Eqs. (5)–(8) do not allow the Fourier transform
to be evaluated analytically. Instead, we use the method of
stationary phase [18,33,34] to evaluate the Fourier integral
approximately, and we find that

|ψ̃ (z, ω)|2 ∝ A2
0(ωm−2eμmgz − Kω2m−2), (11)
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FIG. 1. Normalized asymptotic (a) temporal intensity, (b) chirp,
and (c) spectral intensity for m = 2 (solid red), m = 4 (dashed blue),
m = 8 (dash-dot green), and m = 10 (dotted black). The temporal
solutions have been shifted vertically for clarity.

where K = βm/(m! γ A2
0). We determine the spectral width by

determining the value of ω = ωmax for which the right-hand
side of (11) vanishes and find

ωmax = 1

K1/m
eμgz, (12)

which equals δω(±T0) [see Eq. (9)]. The spectrum takes
its maximum value at the frequencies ±[(m − 2)/(2m −
2)]1/mωmax. It is then straightforward to see that the maximum
value of the spectrum increases as e2μ(m−1)gz.

We now discuss some of the general properties of these
asymptotic solutions. First, we consider the temporal inten-
sity, which according to Eq. (6) takes the (normalized) shape
1 − [T/T0(z)]

m
m−1 . It varies between the well-known parabolic

shape for m = 2 [12,17,18] to a triangular shape as m → ∞,
with the peak intensity Imax increasing exponentially at a rate
μmgz. The normalized temporal asymptotic shapes for m = 2,
4, 8, 10 are shown in Fig. 1(a). The associated instantaneous
frequency, calculated from Eq. (9), is shown in Fig. 1(b).
This shows that the pulses have a T 1/(m−1) chirp, which does
not depend on z. Thus, while the chirp is linear and easily
compressible for m = 2, for higher orders the chirp becomes
increasingly nonlinear, and eventually evolves to a step-like
function.

TABLE I. Exponential growth rates of the width and the peak
power of the self-similar pulses in time and frequency. Parameter
μ = (2m − 1)−1.

Width Intensity

Temporal μ(m − 1)g μmg
Spectral μg 2μ(m − 1)g

The corresponding normalized spectra are shown in
Fig. 1(c). Whereas the spectrum is parabolic for m = 2, it
exhibits two peaks for m = 4 [30]. These two lobes become
narrower as m increases. As m → ∞ the spectrum consists
of two parts, each of which is arbitrarily narrow. This can be
seen from the frequency [(m − 2)/(2m − 2)]1/mωmax, where
the spectrum reaches its peak value; as m grows, the peak
frequency can be approximated as [1 − ln(2)/m]ωmax, and
it thus approaches ωmax. This feature can be understood by
recalling Fig. 1(b). The large, steep chirp gives rise to a
double-peaked spectrum, which is consistent with the spectra
shown in Fig. 1(c) [30,35]. As discussed in Ref. [30], due to
the positive dispersion, the front half of the pulse corresponds
to the low-frequency lobe, whereas the back half of the pulse
corresponds to the high-frequency lobe.

Equation (6) shows that the pulse intensity increases at
an exponential rate μmg, whereas according to Eq. (7), the
width increases at an exponential rate μ(m − 1)g, so the pulse
energy increases as egz, consistent with Eq. (2). Similarly, the
spectral pulse width and intensity increase exponentially at
rates μg and 2μ(m − 1)g, respectively, indicating again that
the pulse energy grows as egz. The exponential growth rates
are summarized in Table I.

The analytic expressions in Eqs. (5) and (11) imply fi-
nite support in both time and frequency, contradicting the
Amrein–Berthier theorem [36]. However, these expression are
approximate; when accurate numerical solutions are consid-
ered there is no contradiction and the theorem is not violated.

III. NUMERICAL SIMULATIONS

To verify our assumptions and the theoretical results pre-
sented in the previous section, we numerically solve Eq. (1)
using a standard split-step Fourier method [15] to simulate
the evolution of a pulse in Kerr nonlinear material with gain
and positive high-order dispersion. In our set of simulations,
we used Gaussian input pulses with a full width at half
maximum (FWHM) duration 
τ = T0 × 1.665 = 250 fs and
input energy Ein = 15 pJ, in a 7-m-long amplifier. We con-
sider waveguides with the following parameters: dispersion
coefficient βm = T m

0 /LD where LD = 1 m; g = 1.9 m−1, and
γ = 5.8 W−1 km−1. All the other dispersion coefficients are
set to zero.

The results of these simulations are summarized in Fig. 2.
In the top row, we show the simulated temporal intensity (red
circles) and instantaneous frequency (blue circles) for m = 4,
8, and 10, in Figs. 2(a)–2(c), respectively. These results are
in very good agreement with the asymptotic solutions (solid
color lines) calculated from Eqs. (5) and (9) for the same
parameter values. Such agreement is worth noticing, given
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FIG. 2. (top row) Simulated (circles) and asymptotic (solid curves) temporal intensity profile (red) and chirp (blue) for different order of
dispersion m. (bottom row) Corresponding simulated (circles) and calculated spectrum (solid curves). For (a), (d) m = 4; (b), (e) m = 8; and
(c), (f) m = 10.

the high-order derivatives of Eq. (1). The corresponding simu-
lated (circles) and asymptotic (solid curve) spectra are shown
in the bottom row. We note again a good agreement between
the numerical and asymptotic results. The most striking result,
is that, while all pulse characteristics increase exponentially,
the growth of the spectral width slows with increasing m,
consistent with Table I. This is because, for high orders m,
the dispersion increases very rapidly with frequency and thus
increasingly high intensities are needed to prevent the pulse’s
disintegration. From Eq. (2), this implies that the spectral
width increases at a low rate.

We now consider the pulse evolution throughout the fiber.
The simulated temporal amplitude and width evolution for
m = 8, and for the parameters corresponding to Fig. 2(b), are
shown in Fig. 3 (solid blue curve). Before the pulse reaches
the asymptotic regime it undergoes several phases. In the first
3 m, the pulse amplitude grows at a rate egz/2, faster than
the predicted asymptotic growth (dashed red line), while the
corresponding pulse width is approximately constant. This
is because the pulse power is initially too weak to induce
significant nonlinear effects, and the dispersion induced-chirp
is too small to lead to pulse broadening. The pulse then
enters a more complicated phase where the pulse is shaped
by both the dispersion and nonlinearity, before converging
to the asymptotic regime from z ≈ 5.5 m. Examples of the
pulse temporal intensity profile in the three different regimes
compared with the predicted asymptotic profile for z = 2, 4,
and 6.5 m are shown in the insets of Fig. 3(a).

IV. IDENTIFICATION OF ASYMPTOTIC TERMS

Equations (3) and (4) are derived from the modified NLSE
[Eq. (1)] using the ansatz ψ (z, T ) = A(z, T )eiϕ(z,T ). As dis-
cussed in Sec. II and in Ref. [30] this leads to many terms
when a high time derivative is taken. To determine the

asymptotic solution, it is therefore crucial that only the
relevant terms are retained. The argument below, although
phrased differently, is similar to that of Runge et al. [30]. First,
we note from Eq. (8) that the phase depends on the position
only through a uniform, time-dependent contribution, so that
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FIG. 3. Evolution of the temporal (a) amplitude and (b) width
versus propagation distance for m = 8 and with input pulse and fiber
parameters corresponding to Fig. 2(b). The predicted asymptotic evo-
lution is indicated by the dashed red line. Insets show the simulated
(blue) and asymptotic (dashed red) temporal intensity profiles at
z = 2, 4, and 6.5 m.
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FIG. 4. Amplitude evolution for m = 4 of the asymptotic S1

(solid blue), S2 (dashed red), S3 (dash-dot green) and largest
nonasymptotic terms (dotted black) at (a) the pulse’s FWHM and
(b) near the center.

the instantaneous frequency does not depend on position, as
explicitly seen in Eq. (9). The effect of the chirp changes with
propagation as the temporal width grows as eμ(m−1)gz. The
pulse thus increasingly overlaps with a fixed phase function.

A heuristic way to find the asymptotic terms is that the
instantaneous frequency δω approaches a step function as
m increases. This implies a different behavior around the
center of the pulse, where the phase and its derivatives vary
rapidly, while, elsewhere, time derivatives become increas-
ingly smaller. Since the instantaneous frequency does not
change with propagation distance, the fixed central part of the
pulse, where it changes rapidly, becomes less important as the
pulse width increases with propagation. Outside the central
region of the pulse, the instantaneous frequency is almost
constant. This means that the phase φ and its low derivatives
dominate and time derivatives higher than second can be ne-
glected. Thus, the asymptotic terms are those with the highest
power of φ and its temporal derivatives. As an illustrative ex-
ample, for m = 4, the asymptotic terms are S1 = A(φT )4, S2 =
4AT (φT )3, and S3 = 6A(φT )2φT T . The evolution of the values
of these terms at the FWHM and at the center of the pulse
are shown in Figs. 4(a) and 4(b), respectively in blue (S1), red
(S2), and green (S3). The higher-order terms, neglected in the
calculation of the asymptotic solution, are H1 = 3AT T (φT )2,
H2 = 6AT φT φT T , H3 = 3A(φT T )2, and H4 = 3AφT φT T T . As
a comparison we also show the evolution of the magnitude
of the largest nonasymptotic term (black). We note that the
largest term may vary with propagation distance. As expected,
at the FWHM the asymptotic terms are all much larger than
the nonasymptotic terms [see Fig. 4(a)] once the propagation
has sufficiently progressed. In contrast, near the center of
the pulse, which becomes less important with propagation,
the largest nonasymptotic term is larger than the asymptotic
terms, as seen in Fig. 4(b).
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FIG. 5. Example of nonasymptotic dynamics. (a) Transient
nonasymptotic excitation for m = 8. The red arrow indicates the
direction of the excitation through the intensity profile as the pulse
propagates. (b) Long-lived nonasymptotic excitation for m = 10.
The inset at the bottom left is a zoom of the high-frequency excita-
tion. The insets on the top right show the temporal intensity profiles
over the entire range, with the red rectangles indicating the range in
the main figures.

V. NONASYMPTOTIC DYNAMICS

While the asymptotic behavior is expected at long prop-
agation distances, nonasymptotic excitations can play an
important role in the dynamics. We show in Fig. 5 two dif-
ferent types of nonasymptotic excitation. First, we observed
transient oscillations originating around the center of the tem-
poral intensity profile of the pulse and moving toward the
edges as the pulse propagates. This regime is similar to what
was reported for the m = 2 case [18] and is illustrated in
Fig. 5(a) which shows a zoom of the trailing edge of the
temporal intensity profile. We find that, as the dispersion or
order increases, the transient period becomes longer, for the
same effective length scales. Eventually we see that the inter-
play between the effects of dispersion, gain, and nonlinearity
can lead to long-lived nonasymptotic behavior. An example
of this type of excitation is shown in Fig. 5(b). Here we see
that the asymptotic solution still dominates the appearance of
the pulse, however, high-frequency excitations persist on the
pulse background.

An interesting open question is whether the asymptotic
behavior can break down in particular regions of parameter
space. This question is complicated by the challenges of nu-
merically computing higher-order derivatives in the presence
of gain. We find that the simulated dynamics are sensitive
to the transverse temporal discretization, with the emergence
of numerical instabilities if the discretization is too coarse.
The longitudinal discretization also has more stringent re-
quirements for numerical stability than the standard split-step
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Fourier method [15] when used in the presence of higher-
order dispersion. For instance, for m = 4 it appears that the
simulation of nonasymptotic behavior requires a step size to
be 
z ∼ (
τ )4. These conditions on both the transverse and
longitudinal discretization introduce severe numerical costs
for simulation, making an exhaustive analysis of the param-
eter space beyond the scope of this work.

VI. DISCUSSION AND CONCLUSION

We have presented a theoretical and numerical study of
self-similar propagation of optical pulses in the presence of
positive even high-order dispersion, Kerr nonlinearity, and
gain. We find asymptotic solutions for each even order of
dispersion m, corresponding to a pulse with a 1 − T m/(m−1)

temporal intensity profile and a T 1/(m−1) associated instan-
taneous frequency. As m → ∞ the pulse becomes triangular
and the instantaneous frequency jumps discontinuously, so the
front and back of the pulse have different frequencies. How-
ever, even for finite m, the large chirp leads to a double-peaked
spectrum. These asymptotic solutions are broadly consistent
with our numerical simulations, although both transient and
long-lived excitations were found on the asymptotic back-
ground.

Whereas the temporal pulse shape becomes progressively
more triangular with increasing order of dispersion, the
associated spectrum approaches two narrow features, sym-
metrically spaced with respect to the center frequency. This is
consistent with the behavior of the instantaneous frequency. It
indicates that the spectrum is increasingly concentrated at the
frequencies for which the dispersive and nonlinear properties
can balance each other. This feature may find applications in
two-color spectroscopy or for the generation of high-power
terahertz or far-infrared radiation via difference-frequency
mixing [31,32,37].

Carrying out the numerical simulations for these systems
with sufficient precision can be challenging, which partly
stems from the exponentially growing intensity. As a conse-
quence, the nonlinear length [15], which is the length scale
over which nonlinear effects become significant, becomes
increasingly smaller, necessitating a very small step size.
Moreover, the higher order of dispersion requires the com-
putation of high-order derivatives, which can be challenging
in its own right and requires high transverse resolution. A
more fundamental challenge is that, as the order of disper-
sion increases, the asymptotic solution approaches a triangle
function increasingly closely. Since this function has a discon-
tinuous derivative at the center, numerical methods that rely
on a degree of smoothness of the solution may struggle for
high dispersion orders.

We observe discrepancies between the analytic solutions
and the numerical results, which point to interesting dynamics
beyond the asymptotic orders, as discussed in Sec. V. While a
full investigation of the numerical stability conditions in the
presence of higher-order dispersion is beyond the scope of
this work, it appears that the generalization to higher-order
systems with gain introduces additional nonasymptotic dy-
namics, worthy of further study. Another open question is
the propagation length required for reaching the asymptotic
regime (given an initial conditions and system parameters).

While Kruglov et al. [18] reported such a distance for
quadratic dispersion, the generalization to higher orders re-
mains open.

While waveguides with dominant high-order normal dis-
persion are not currently available, promising approaches
have been recently developed in photonic crystal fibers [38],
microresonators [39–41], and dispersion-managed cavi-
ties [29]. These techniques offer an unprecedented level of
dispersion control and could be used to design waveguides
with the required dispersion to support these novel self-similar
pulses.

Inevitable residual amounts of low-order dispersion do not
affect the asymptotic solution strongly. The reason is that, as
the spectrum grows exponentially, the highest order of disper-
sion must ultimately dominate and thus ensure the evolution
described in Sec. IV. We have confirmed this by numerical
simulations.

Our investigation is in line with the growing interest in
the study of nonlinear systems with complicated dispersion
properties [24,28,29,41] and we expect them to stimulate fu-
ture investigations and discoveries in other areas of physics,
engineering and applied mathematics.
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APPENDIX: SELF-SIMILAR SOLUTION DERIVATION

We look for a solution with a positive definitive amplitude
and phase of the form ψ (z, T ) = A(z, T )eiϕ(z,T ). We substitute
this ansatz into Eq. (1), drop the nonasymptotic terms, and find
Eqs. (3) and (4). We then try solutions of the form

A = A0eσgz

(
1 −

( T

T0

)m/(m−1))1/2

, T0 = Keρgz,

ϕ = ϕ0 + αT m/(m−1) + η
(
γ A2

0

)
e2σgz, (A1)

where α, η, ρ, σ , and K are unknown coefficients.
We find from Eqs. (A1) that

1

A
Az = σg + ρg

2

m

m − 1

(
T
T0

)m/(m−1)

1 − (
T
T0

)m/(m−1) ,

1

A
At = − 1

2T0

m

m − 1

(
T
T0

)1/(m−1)

1 − (
T
T0

)m/(m−1) ,

ϕT T = α
m

(m − 1)2 T −(m−2)/(m−1). (A2)

Substituting these into Eq. (3). it is then found that(
σ − 1

2

)
g = βm

2(m − 2)!

mm−1

(m − 1)m αm−1,

ρg

2

m

m − 1
= − βm

2(m − 1)!

mm

(m − 1)m αm−1. (A3)
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Taking the ratio of these equation gives

2σ + ρ = 1. (A4)

This is as required, since ρg is the growth rate of the pulse
width and 2σ gives the growth rate of the intensity. Thus the
total rate is (2σ + ρ)g = g, consistent with Eq. (2).

Now turning to Eq. (4) we find that

2σgη
(
γ A2

0

)
e2σgz = βm

m!
αm

( m

m − 1

)m
T m/(m−1)

+ (
γ A2

0

)
e2σgz(1 − (T/T0)m/(m−1)).

(A5)

Equating the time-independent terms yields

η = 1

2σg
, (A6)

whereas equating the time-dependent terms gives

βm

m!
αm

( m

m − 1

)m
= (

γ A2
0

) e2σgz

(Keρgz )m/(m−1)
. (A7)

This immediately gives

2σ = m

m − 1
ρ, (A8)

which, combined with Eq. (A4), gives the first main result:

ρ = μ(m − 1), σ = μm/2. (A9)

The other results now follow straightforwardly. Combining
the second of Eqs. (A3) and (A9), we find that

α = −m − 1

m

(
μ(m − 1)(m − 1)!

g

βm

) 1
m−1

(A10)

and, also using this last result,

Km = βm
(
γ A2

0

)m−1

gm
(m!)m−1[μ(m − 1)(m − 1)!]−m. (A11)

Combining these results then immediately gives Eqs. (6)–(8)
in Sec. II.
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