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Free-space group-velocity dispersion induced in space-time wave packets by V-shaped spectra
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Introducing precise spatiotemporal structure into a pulsed optical field can lead to remarkable changes with
its free propagation. “Space-time” (ST) wave packets, for example, propagate rigidly at a tunable group velocity
in free space by inculcating a one-to-one relationship between the axial wave numbers and the temporal
frequencies. Here we introduce a class of ST wave packets that we call V-waves (so named because of their
characteristically V-shaped spatiotemporal spectrum) in which a linear one-to-one relationship is introduced
between the temporal frequencies and the transverse wave numbers (or spatial frequencies). We confirm exper-
imentally that V-waves experience anomalous group velocity dispersion in free space, all the while maintaining
the group velocity fixed at the speed of light in vacuum. Extremely large values of group velocity dispersion can
be easily realized, which are not accessible with traditional optical materials or photonic structures. Moreover,
V-waves are the unique optical wave packets whose diffraction and dispersion lengths are intrinsically equal by
virtue of the spatiotemporal structure of the field itself. These results are of interest for optical signal processing
and nonlinear optics.
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I. INTRODUCTION

In free space, plane-wave optical pulses do not experi-
ence dispersive spreading [1]. However, spatially structuring
the field can lead to temporal changes in the pulse profile.
For example, spatially confined waveguide modes experience
group-velocity dispersion (GVD), which can be tailored by
varying the waveguide cross section size and shape [2–4].
Even freely propagating pulsed fields can experience changes
in their temporal profile after introducing a spatial structure
due to coupling between the spatial and temporal degrees of
freedom (DoFs) [5–8]. This gives rise to the following ques-
tion: can spatiotemporal couplings introduced into a pulsed
beam or wave packet enable engineering its GVD in free
space?

Multiple approaches towards spatiotemporally structuring
optical wave packets have been recently explored with the
aim of controlling their group velocity in free space. One
embodiment is the so-called “flying focus” whose group ve-
locity is varied by introducing longitudinal chromatism, but
the pulse spectrum concomitantly evolves along the propa-
gation axis [9–11]. We focus here on another embodiment
termed “space-time” (ST) wave packets [12–15], which are
a family of pulsed optical beams endowed with a precise
association between the spatial and temporal DoFs [16–21],
early examples of which include focus-wave modes (FWMs)
[22–24] and X-waves [25,26], among other examples [27–30].
These freely propagating wave packets can be endowed with
a variety of useful characteristics, such as propagation invari-
ance [31–34], tunable group velocities [35–44], self-healing
[45], and anomalous refraction [46], and can even be realized
using incoherent fields [47,48]. Furthermore, new modes of
interaction are enabled by these wave packets with photonic

devices, such as planar cavities [49–51], waveguides [52–56],
and surface-plasmon polaritons [57].

The hallmark of ST wave packets is a one-to-one rela-
tionship between the temporal frequency and the axial wave
number [16]. For example, propagation invariance necessi-
tates a linear relationship between the temporal frequency
and the axial wave number [14,16,28], which entails a group
velocity in free space that differs from c (the speed of light
in vacuum) [20], with the sole exception of Brittingham’s
FWM [22]. Furthermore, deviating from this linear dispersion
relationship can inculcate GVD into the field [58–60] and can
enable the realization of arbitrary dispersion profiles [61].

Here we introduce theoretically and verify experimentally
an alternative ST wave packet that we call a V-wave be-
cause of its V-shaped spatiotemporal spectrum. A V-wave is
endowed with a unique set of attributes stemming from its
spatiotemporal spectrum, whereupon the temporal frequency
is linearly related to the transverse wave number. This con-
dition entails a nonlinear relationship between the temporal
frequency and axial wave number, thus leading to anomalous
GVD experienced by V-waves in free space. The magnitude
of this GVD is easily tuned to extremely large values that
are not available in nonresonant optical materials or photonic
structures. Therefore, V-waves provide resonant-like GVD
values at any wavelength [62] without losses or limitations on
bandwidth [63]. Unlike propagation-invariant ST wave pack-
ets, V-waves travel in free space at a group velocity of c. The
unique spatiotemporal spectral structure introduces a “Janus-
like” spectral phase (Janus is the two-faced Roman god) that
governs the propagation dynamics: when expanded in terms
of spatial frequencies, the spectral phase represents diffraction
in space; and when expanded in terms of temporal frequen-
cies, the spectral phase corresponds to dispersive propagation
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FIG. 1. The concept of V-waves. (a) The spectral support domain of a propagation-invariant ST wave packet in (kx, kz,
ω

c ) space lies at the
intersection of the light-cone with a plane that is parallel to the kx axis and makes an angle θ with respect to the kz axis. The spectral projection
onto the (kz,

ω

c ) plane is a straight line and onto the (kx,
ω

c ) plane is a conic section. (b) The propagation-invariant spatiotemporal profile
IST(x, z; t ) at z = 0, 2.5, and 10 mm for θ = 49◦, λo = 800 nm, and bandwidth �λ = 2 nm. (c) The spectral support domain of a V-wave with
positive-valued α on the surface of the light-cone. The spectral projection onto the (kx,

ω

c ) plane is V-shaped and onto the (kz,
ω

c ) plane is a
conic section that is tangential to the light-line. (d) The spatiotemporal profile of a V-wave with α = 0.1, λo = 800 nm, and �λ = 2 nm at the
same axial positions as in panel (b). In panels (b) and (d) we plot in white I (x = 0, z; τ ) at the bottom and I (x, z; τ = 0) on the left of each
panel. The V-wave is not propagation-invariant, and the rates of diffractive spatial spreading and dispersive temporal spreading are equal.

in time. Consequently, the diffraction and dispersion lengths
of V-waves are intrinsically equal. Through simulations and
measurements, we confirm these unique attributes of V-waves.

II. THEORY OF V-WAVES

We first briefly review the formulation of ST wave pack-
ets [20,21]. The angular spectrum for the slowly varying
envelope ψ (x, z; t ) of a scalar wave packet E (x, z; t ) =
ei(koz−ωot )ψ (x, z; t ) can be expressed as

ψ (x, z; t ) =
∫∫

dkxd	ψ̃ (kx,	)ei{kxx+(kz−ko )z−	t}, (1)

where the spatiotemporal spectrum ψ̃ (kx,	) is the two-
dimensional (2D) Fourier transform of ψ (x, 0; t ), 	 = ω −
ωo is the temporal frequency with respect to a fixed frequency
ωo, and ko = ωo

c is its associated wave number. For simplicity,
we hold the field uniform along the transverse coordinate
y. The transverse and longitudinal components of the wave
vector kx and kz correspond to the transverse coordinate x
and the axial propagation coordinate z, respectively, with
k2

x + k2
z = ( ω

c )2, which is represented geometrically by a light
cone [Fig. 1(a)].

In general, the spectral support domain of a ST wave
packet is restricted to 1D curves on the light-cone surface
[20]. For propagation-invariant ST wave packets, the spectra
are conic sections at the intersection of the light-cone with
planes that are parallel to the kx axis. So-called “baseband”
ST wave packets, whereupon spatial frequencies in the vicin-
ity of kx = 0 are permissible [20], are associated with the
plane 	 = (kz − ko)c tan θ ; where the spectral tilt angle θ is

measured with respect to the kz axis [Fig. 1(a)]. Consequently,

ψST(x, z; t ) =
∫

d	ψ̃ (	)ei{kxx−	(t− z
ṽ

)}

= ψST

(
x, 0; t − z

ṽ

)
, (2)

where kx and kz are both determined by 	. The wave packet
propagates rigidly in free space at a group velocity ṽ =
dω
dkz

= c tan θ , which can take on arbitrary values [35–44],
and becomes luminal ṽ = c only when it degenerates into
a plane-wave pulse at θ = 45◦ [20]. Propagation-invariance
is highlighted in Fig. 1(b) where we plot the spatiotempo-
ral profiles IST(x, z; t ) = |ψST(x, z; t )|2 for a ST wave packet
with θ ≈ 49◦ (superluminal with ṽ ≈ 1.15c) at different axial
planes z.

The spectral projection of a ST wave packet onto the
(kz,

ω
c ) plane is a straight line making an angle θ with respect

to the kz axis [Fig. 1(a)], and that onto the (kx,
ω
c ) plane is a

conic section that can be approximated by a parabola in the
small-bandwidth paraxial regime (�kxo and �	 � ωo),

	

ωo
= 1

2(1 − cot θ )

k2
x

k2
o

. (3)

The spectral signature of a V-wave is its linear relationship
between 	 and kx [Fig. 1(c)], leading to a V-shaped spatiotem-
poral spectrum [Figs. 2(a) and 2(c)],

	

ωo
= α

|kx|
ko

, (4)

where α is the dimensionless slope in the (kx,
ω
c ) plane.

An upright V-shaped spectrum is associated with positive α,
which is inverted for negative α. The corresponding spectral
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FIG. 2. Spectral projections of a V-wave. (a) Spectral projections
onto the (kx,

ω

c ) plane for V-waves of different values of α. The
branches of the V-shaped spectrum are continuous through the origin
for ±α. (b) Spectral projections onto the (kz,

ω

c ) plane of the V-waves
from panel (a). Each curve comprises two segments for 	 > 0 and
	 < 0, corresponding to α and −α, respectively, that are tangential
to the light-line. (c) Same as panel (a) but with a restricted range of
values for kx and 	. (d) To highlight the curvature of the spectral
projections onto the (kz,

ω

c ) plane in panel (c), the projections are
rotated by 45◦ so that the light-line coincides with the horizontal axis.

projection onto the (kz,
ω
c ) plane is curved [Figs. 1(c) and

2(b)]. Two observations are clear from Figs. 2(c) and 2(d):
the branches of the V-shaped spectra are continuous through
the origin for ±α; and the curved spectra for ±α in the (kz,

ω
c )

plane are continuous through 	 = 0, and are tangential to the
light-line. Therefore, V-wave spectra corresponding to ±α are
two branches (	 > 0 and 	 < 0) of the same spectral support
domain.

In contrast with propagation-invariant ST wave packets, the
spectral support domain for a V-wave does not result from the
intersection of the light-cone with a plane. It can be shown
that the spectral projection onto the (kz,

ω
c ) plane is a conic

section,

(α2 − 1)2

α2

(
ω/c

ko
+ 1

α2 − 1

)2

− (α2 − 1)
k2

z

k2
o

= 1, (5)

which is an ellipse when |α| < 1, a hyperbola when |α| > 1,
and a parabola 2ko

ω
c = k2

z + k2
o when |α| = 1. Therefore, the

spectral support domain for V-waves results from the intersec-
tion of the light-cone with an extruded conic section, whose
extrusion axis is parallel to the kx axis [Fig. 3]. The surface
is an extruded ellipse when |α| < 1 [Fig. 3(a)], an extruded
parabola when |α| = 1 [Fig. 3(b)], and an extruded branch of
a hyperbola when |α| > 1 [Fig. 3(c)]. In all cases, the extruded
conic section is tangential to the light-cone surface at the point
(kx, kz,

ω
c ) = (0, ko, ko).

III. CHARACTERISTICS OF V-WAVES

Unique characteristics of V-waves arise from the particular
form taken by their spatiotemporal spectrum. First, V-waves in
free space are luminal ṽ = d	

dkz
|	=0 = c because the spectral

FIG. 3. The surface intersecting with the light-cone to yield the
spectral support domain of a V-wave is an extruded conic section,
whose extrusion axis is parallel to the kx axis. (a) When |α| < 1,
the surface is an extruded ellipse; (b) when |α| = 1, an extruded
parabola; and (c) when |α| > 1, an extruded hyperbola. In all cases,
the extruded conic section is tangential to the light-cone at the point
(kx, kz,

ω

c ) = (0, ko, ko).

projection onto the (kz,
ω
c ) plane is always tangential to the

light-line. Note that the group velocity need not be equal to the
energy-transport velocity [64,65]. The relationship between ṽ

and energy transport has been recently studied in detail [66].
Second, V-waves experience GVD in free space as shown

in the axial evolution depicted in Fig. 1(d). Initially at z = 0,
the profiles for the ST wave packet [Fig. 1(b)] and the V-wave
[Fig. 1(d)] are similar. As the V-wave propagates, the on-axis
temporal profile ψ (0, z; t ) undergoes dispersive broadening
and the spatial profile ψ (x, 0; t ) undergoes diffractive broad-
ening. The GVD parameter for a V-wave is

k2 = d2kz

d	2

∣∣∣∣
	=0

= − 1

α2cωo
; (6)

i.e., the GVD in free space is anomalous, and its magnitude
can be—in principle—tuned to arbitrarily large values. This
GVD parameter is obtained from the dispersion relationship
between kz and ω in Eq. (5) in the paraxial regime and is
responsible for the temporal broadening of the on-axis (x = 0)
pulse width with free propagation; see Eq. (9) below. Cru-
cially, unlike the GVD resulting from chromatic dispersion
in a resonant optical material or photonic structure, there are
no optical losses involved, wavelength restrictions [62], nor
bandwidth limitations [63].
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FIG. 4. Uniqueness of the attributes of V-waves. (a) Spectral support domain for FWMs: ṽ = c, GVD is absent, and the projection onto
the (kx,

ω

c ) plane is a parabola. (b) Spectral support domain for X-waves: ṽ > c, the projection onto the (kx,
ω

c ) plane is V-shaped, but GVD
is absent. (c) Spectral support domain for a wave packet with constant |kx| = kx,o: ṽ < c, GVD is present, but the projection onto the (kx,

ω

c )
plane is not V-shaped. Dotted lines are the light-lines kz = ω

c .

Third, the diffraction and dispersion lengths of a V-wave
are intrinsically equal. To elucidate this fact, we consider the
axial wave number kz for two different field configurations.
First, for a pulsed beam in the paraxial regime propagating

in free space kz ≈ ko + 	
c − k2

x
2ko

, where diffraction is induced
by the k2

x term. Second, for a plane-wave pulse propagating
in a dispersive medium kz ≈ nko + 	

ṽ
+ 1

2 k2	
2, where GVD

is induced by the 	2 term. If we equate the quadratic terms

k2	
2 = − k2

x
ko

, we find that imposing a linear relationship be-
tween the values of kx and 	 (that is, a V-wave) achieves
our goal 	 = 	(kx ) = αc|kx|, with the added constraint αc =
1/

√−k2ko, where only negative-valued k2 is allowed. Conse-
quently, the spectral phase has a Janus structure whereby the
axial wave number can be written in terms of either the spatial
or temporal frequency:

kz = ko + 	

c
− k2

x

2ko
= ko + 	

c
+ 1

2
k2	

2, (7)

where we assume propagation in free space so that ṽ = c. As a

result, the spectral phase responsible for diffraction (− k2
x

2ko
) and

that for dispersion ( 1
2 k2	

2) are linked, so that they progress at
intrinsically equal rates; see Fig. 1(d).

The V-wave envelope travels at a group velocity ṽ = c and
takes the form

ψV(x, z; t ) =
∫

dkx ψ̃ (kx )e−i k2
x

2ko
ze−iαc|kx |(t−z/c)eikxx. (8)

Indeed, this equation predicts dispersive on-axis pulse broad-
ening associated with a medium having a GVD parameter
k2 = − 1

α2cωo
. The on-axis x = 0 pulse profile has the form

ψV(0, z; t ) =
∫

d	ψ̃ (	)ei
1
2 k2	

2ze−i	(t−z/c), (9)

corresponding to dispersive temporal broadening, and the spa-
tial profile at the pulse center is

ψV(x, z; z/c) =
∫

dkxψ̃ (kx )e
i

k2
x

2ko
z
eikxx. (10)

Finally, we note that the time-averaged intensity IV(x, z) =∫
dt |ψV(x, z; t )|2 shows no axial evolution,

IV(x, z) =
∫

dkx|ψ̃ (kx )|2 +
∫

dkxψ̃ (kx )ψ̃∗(−kx )ei2kxx,

(11)

despite the evolving underlying spatiotemporal profile
IV(x, z; t ). This absence of axial dynamics is a general feature
of optical fields in which the spatial and temporal frequen-
cies are precisely associated with each other, as shown in
Refs. [47,67–69].

We discuss here the status of V-waves as the unique luminal
wave packets that allow for tunable GVD, while maintaining a
linear relationship between temporal and spatial frequencies.

We have compared V-waves above to baseband
propagation-invariant ST wave packets. Two families,
sideband ST wave packets and X-waves, complete the
enumeration of propagation-invariant wave packets [20].
The spectral support domain for sideband ST wave packets
lies at the intersection of the light cone with the plane
	 = (kz + ko)c tan θ [20]. The group velocity is still
ṽ = c tan θ with 45◦ � θ < 90◦ (and only FWMs are luminal
ṽ = c at θ = 45◦) and the wave packets are GVD-free; see
Fig. 4(a). The spectral support domain for X-waves is at the
intersection of the light cone with the plane ω = kzc tan θ

[Fig. 4(b)]. The spatiotemporal spectrum is V-shaped, but
its apex corresponding to kx = 0 is at ω = 0, and the group
velocity is ṽ = c tan θ with 45◦ < θ < 90◦, so that ṽ > c. In
contrast to V-waves, the spectral projection onto the (kz,

ω
c )

plane is a straight line, indicating absence of GVD. Therefore,
the defining characteristics of V-waves are unique among all
other ST wave packets.

A previously proposed strategy for achieving GVD in free
space is to restrict a ST wave packet to a fixed transverse
wave number [58–60]. For two transverse dimensions, this
corresponds to a pulsed Bessel beam, and for one transverse
dimension a pulsed cosine wave. The spectral support do-
main for such a wave packet lies at the intersection of the
light-cone with vertical planes at kx = ±kx,o [Fig. 4(c)]. The
group velocity is subluminal ṽ = c cos ϕ < c, where cos ϕ =
[1 − (kx,o/ko)2]1/2, and the anomalous GVD parameter is
k2 = − 1

koc2 tan2 ϕ sec ϕ. Tuning the GVD necessitates varying
kx,o, and therefore changing the transverse spatial scale of the
wave packet. To the best of our knowledge, this strategy has
not been realized experimentally to date.

A V-wave has a GVD parameter of k2 ≈ − 2000
α2 fs2/mm

at λo ≈ 1 μm. Tuning the value of α can thus lead to dra-
matic changes in GVD. For example, choosing α = 1 leads
to k2 ≈ −2000 fs2/mm, which approaches that of ZnSe (k2 ≈
1000 fs2/mm at λ ≈ 800 nm) and is much larger than that of
silica (k2 ≈ −26 fs2/mm at λ ≈ 1.5 μm). Values of α < 1 are
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FIG. 5. Schematics of the experimental arrangements (a) for
synthesizing ST wave packets and V-waves, (b) measuring the
spatiotemporal spectrum |ψ̃ (kx, λ)|2, and (c) reconstructing the
spatiotemporal profile I (x, z; τ ) at a fixed plane z. (d) Measured time-
averaged intensity IST(x, z) for a ST wave packet with θ = 49◦ and
�λ ≈ 2 nm. On the right we plot a section of the phase distribution
� imparted by the SLM. (e) Same as panel (d) for a V-wave having
α = 0.1 and �λ ≈ 2 nm. Note the different spatial scales used along
x and z in panels (d) and (e).

more convenient to implement experimentally, and V-waves
thus readily enable extremely high GVD values. On the other
hand, the GVD produced by the constant-kx wave packet is
k2 ≈ −2000 tan2 ϕ sec ϕ fs2/mm at a wavelength λo ≈ 1 μm.
Achieving large GVD requires large ϕ approaching the non-
paraxial regime. For example, whereas ϕ ≈ 6.5◦ yields k2 ≈
−28.3 fs2/mm rivaling fused silica, reaching k2 for ZnSe
requires ϕ ≈ 35◦. In comparison, V-waves can provide larger
GVD at smaller numerical apertures.

IV. EXPERIMENT

To study the behavior of V-waves experimentally, we make
use of the optical system developed in Refs. [14,19,20], which
allows for the synthesis of ST wave packets of arbitrary
spatiotemporal spectral structure; see Fig. 5(a). Femtosecond
pulses from a mode-locked Ti:sapphire laser (Tsunami; Spec-
tra Physics) at a wavelength of λo ≈ 800 nm are incident on a
diffraction grating (Newport 10HG1200-800-1) having 1200
lines/mm and an area of 25 × 25 mm2. The first diffraction
order is collimated with a cylindrical lens in a 2 f configura-
tion before impinging on a 2D reflective, phase-only spatial
light modulator (SLM; Hamamatsu X10468-02), whereupon
each wavelength is imparted a phase distribution � along
the direction orthogonal to the spread spectrum. This phase
distribution is designed to assign a spatial frequency kx to
each wavelength λ in accordance with Eq. (3) for propagation-
invariant ST wave packets, and Eq. (4) for V-waves. The

phase-modulated wavefront is retroreflected to the grating,
whereupon the wave packet is reconstituted.

To characterize the synthesized field, three methodolo-
gies are implemented. First, the time-averaged intensity
I (x, z) = ∫

dt |ψ (x, z; t )|2 is recorded with an axially scanned
CCD camera; Fig. 5(a). Second, the spatiotemporal spectrum
|ψ̃ (kx, λ)|2 is acquired by resolving the wavelengths with a
diffraction grating and performing a spatial Fourier transform
using a lens, from which we extract the spectral projection
onto the (kz,

ω
c ) plane and thus confirm ṽ and k2; Fig. 5(b).

Third, a two-path interferometric arrangement reconstructs
the spatiotemporal profile of the ST wave packet I (x, z; τ ) =
|ψ (x, z; τ )|2 at fixed axial planes. The synthesis system from
Fig. 5(a) is placed in one arm, and the original femtosecond
laser pulses are directed to a reference arm containing an
optical delay τ ; Fig. 5(c). When the wave packet and the ref-
erence pulse overlap in space and time, we observe spatially
resolved fringes from whose visibility we can reconstruct
I (x, z; τ ) [43,44]. This arrangement facilitates monitoring the
axial propagation of the wave packet, and thus directly assess-
ing ṽ and k2.

We plot in Figs. 5(d) and 5(e) the time-averaged intensity
IST(x, z) for a ST wave packet (θ ≈ 49◦) and IV(x, z) for a V-
wave (α ≈ 0.1), respectively. As expected, both display clear
diffraction-free propagation. We select θ = 49◦ to ensure the
same spatial bandwidth �kx = 0.2 rad/μm2 and temporal
bandwidth �λ = 2 nm as the V-waves with α = ±0.1, as
determined by α2 = �λ

2λo|1−cot θ | .
We present our spectral and time-resolved measurements

for V-waves in Fig. 6. For each wave packet we plot three
quantities. First, we plot in the first column of Fig. 6 the spec-
tral intensity |ψ̃ (kx, λ)|2 projected onto the (kx, λ) plane to
verify the V-shaped spatiotemporal spectrum. Second, we ex-
tract from |ψ̃V(kx, λ)|2 the spectral projection onto the (kz, λ)
plane, |ψ̃V(kz, λ)|2, and plot it in the second column of Fig. 6
in terms of kz − ko − 	

c to isolate any nonlinear contributions
to the spectral projection. Third, we plot the spatiotemporal
profiles IV(x, z; τ ) at three axial plane (z = 5, 15, and 30 mm)
in a moving frame traveling at c (τ = t − z/c) to delineate
the propagation dynamics. The wave packets have the same
temporal bandwidth �λ ≈ 2 nm, so that the initial on-axis
profile IV(0, 0; τ ) are similar.

We plot the results for V-waves with α = ±0.1 in Figs. 6(a)
and 6(b) to highlight the impact of the sign of α. Note
that the spectral projection |ψ̃V(kx, λ)|2 is V-shaped and
|ψ̃V(kz − ko − 	

c , λ)|2 is purely quadratic (one half of a
parabola), and both are flipped along the λ axis after switching
the sign of α. The spatiotemporal profiles undergo rapid axial
evolution, and the on-axis temporal spreading is consistent
with a GVD parameter of ωock2 = − 1

α2 = −100, which is
approximately four orders of magnitude larger than that of
silica (at λo = 1.5 μm). Changing the sign of α does not affect
k2, but it does switch the direction of the asymmetric pulse
spreading.

Next we plot measurements for a V-wave with α = 0.25
to isolate the effect of the magnitude of α. The V-shaped
spectral projection |ψ̃V(kx, λ)|2 has a larger opening an-
gle, and the curvature of the parabolic spectral projection
|ψ̃V(kz − ko − 	

c , λ)|2 is larger, thus indicating a signifi-
cantly larger GVD parameter—as confirmed by the on-axis
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FIG. 6. Experimental demonstration of V-waves. The first and second columns are the spectral projection onto the (kx, λ) and (kz, λ)
planes. The last three columns are spatiotemporal intensity profiles I (x, z; τ ) measured at z = 5, 15, and 30 mm, and the white curve in each
panel is the temporal profile I (x = 0, τ ; z). (a) A V-wave with λo = 800 nm, α = −0.1; (b) α = 0.1; and (c) α = 0.025. (d) A V-wave with
λo = 799 nm, α = ±0.033. In panels (a)–(d), measurements are carried out in a frame traveling at c, τ = t − z/c. (e) A propagation-invariant
ST wave packet with �kx , �λ, and λo equal to those in panel (a); the spectral tilt angle is θ = 49◦, and measurements are carried out in a frame
traveling at ṽ = c tan θ , τ = t − z/̃v.

dispersive broadening of the temporal profile. In Fig. 6(d)
we show a wave-packet synthesized with an X-shaped spec-
tral spectral projection |ψ̃V(kx, λ)|2 that combines V-waves
with α = 0.033 and α = −0.033. The spectral projection
|ψ̃V(kz − ko − 	

c , λ)|2 shows both sides of a parabola, and
the axial evolution of the spatiotemporal profile is now sym-
metrized around τ = 0.

For comparison, we plot in Fig. 6(e) measurements for
a propagation-invariant ST wave packet with θ ≈ 49◦. In
contrast to V-waves, the spectral projection |ψ̃ST(kx, λ)|2 is
parabolic, whereas |ψ̃ST(kz − ko − 	

c , λ)|2 is a straight line,
indicating the absence of GVD. The spatiotemporal inten-
sity profiles IST(x, z; τ ) confirm the propagation-invariance of
this ST wave packet, which travels at a group velocity of
ṽ = c tan θ ≈ 1.15c.

Finally, to confirm the predicted GVD parameter for V-
waves, we measure the full width at 1/e the maximum �τ

of the on-axis temporal intensity profile IV(0, z; τ ) [Fig. 7(a)]

at z = 10, 25, and 50 mm to estimate the GVD parameter
k2 = �τ/z�ω. Measurements of k2 while varying α are plot-
ted in Fig. 7(b) and are in good agreement with the theoretical
expectation over three orders of magnitude of k2.

V. DISCUSSION AND CONCLUSIONS

The ST wave packet we have introduced here under the
moniker “V-wave” is characterized by several unique charac-
teristics, which we summarize as follows:

(1) The temporal frequency 	 in a V-wave is linearly
related to the transverse wave number kx, in contrast to
propagation-invariant ST wave packets where 	 is linearly
related to the axial wave number kz (with the exception of
X-waves where 	 is related linearly to both kx and kz).

(2) V-waves in free space are luminal ṽ = c, in contrast
with all propagation-invariant ST wave packets that are not
(with the exception of FWMs).
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FIG. 7. (a) The spatiotemporal profiles for V-waves with α =
±0.025 at z = 10 mm; other parameters are similar to those in
Figs. 6(a)–6(c). The white curves are IV(0, z; τ ), which is used to
determine �τ . (b) The GVD parameter k2 while varying α. The
circles are data and the curve is the theoretical expectation [Eq. (6)].

(3) V-waves experience anomalous GVD in free space,
and are thus not propagation-invariant. The magnitude of the
GVD can be readily tuned to extremely large values that are
not available in common optical materials or photonic devices.

(4) The most striking feature of V-waves is that their
diffraction and dispersion lengths are intrinsically equal by
virtue of the spatiotemporal structure of the field itself.

We recently confirmed a consequence of the latter property
in the context of demonstrating the Talbot effect in space and
time simultaneously. A periodic profile along x as required for
the spatial Talbot effect is achieved by periodically sampling
the spatial spectrum along kx [69]. Only a linear relationship
between kx and ω in the spectrum of the ST field guarantees

that ω is simultaneously sampled periodically, leading to a
pulse-train structure in the time domain. The intrinsically
equal diffraction and dispersion lengths that is a consequence
of the underlying V-shaped spatiotemporal spectrum guar-
antees equal spatial and temporal Talbot axial self-imaging
lengths, which has led to the first observation of the space-
time Talbot effect [69].

In general, previous work in the area of ST wave packets
has focused on their propagation invariance. However, it is
now known that controllable axial evolution of an isolated
parameter can be realized while holding the other features
invariant. For example, the group velocity can evolve ax-
ially to produce accelerating or decelerating wave packets
[70], or the on-axis spectrum can evolve axially in a pre-
scribed manner [71]. Recently, it was demonstrated that a
propagation-invariant ST wave packet can be accompanied by
another wave component that focused abruptly at a prescribed
axial location [72]. Here we have shown that the on-axis pulse
profile can undergo dispersive broadening in time as a result
of arbitrary-valued GVD introduced into the field structure.

In conclusion, we have examined theoretically and con-
firmed experimentally a family of ST wave packets that we
have called V-waves, which are characterized by a V-shaped
spatiotemporal spectrum. The linear relationship between
temporal frequencies ω and spatial frequencies kx give rise to a
nonlinear relationship between ω and the axial wave numbers
kz. Consequently, V-waves can be endowed with anomalous
GVD of tunable magnitude in free space. Using picosecond
laser pulses, we have realized GVD parameters in the range
from ≈103 to ≈106 fs2/mm, all the while maintaining the
group velocity fixed at ṽ = c. This work paves the way for
GVD management of ST wave packets in dispersive media
and suggests potential applications in nonlinear optics (in-
cluding pulse compression and group-velocity matching of
different-wavelength pulses).
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