
PHYSICAL REVIEW A 104, 013504 (2021)

Polarization evolution on the higher-order Poincaré sphere via photonic Dirac points
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In this work, we report a general reflection model to describe the reflected behaviors of a Gaussian beam
near photonic Dirac point at the optical interface. With spin polarized electromagnetic waves strikes near the
single Dirac point on Dirac material interface, vortical phase distribution and spin inversion are demonstrated for
reflected state, and we further develop a higher-order Poincaré sphere to describe the evolution of polarization
states. It is possible to generate any desired Poincaré vortex beam on the sphere by modulating the incident
polarization state of light. Moreover, we discuss the case of normal incidence around two adjacent Dirac points,
reflection spectrum involves a couple of spin flip vortices corresponding to two points with the corresponding
topological invariants, which are consistent with the Berry curvature and topological charge. These results can
be extended to similar hyperbolic metamaterials with degenerate point, and inspire a different perspective for
manipulating polarized vortex beam with photonic Dirac point.
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I. INTRODUCTION

In photonics, the fourfold degeneracy of Dirac point is
functioning as monopoles of Berry flux with topological
charges defined by the Chern numbers, and Dirac point can be
viewed as two overlapping Weyl points with opposite topolog-
ical charges. Recently, Dirac points [1,2], Weyl points [3–7],
and nodal lines [8] have been realized in optical systems with
broken inversion symmetry such as optical lattices [9,10],
classical acoustic [11–13], photonic crystals [14–16] as well
as plasmonic structures [17,18]. These application of photonic
degenerate point at topological metamaterials interface has
led to some new paradigms in developing photonic devices
with robust properties, such as manipulation of optical angular
momenta with photonic Weyl systems [19], robust counter-
propagating edge states [20], topological photonic routing in
a bearded-stack interface [21], and topological vortex lasing
by spin-momentum locking [22].

Recently the concept of the higher-order Poincaré sphere
was introduced as a theoretical framework for describing the
total angular momentum of light, both spin and angular com-
ponents [23,24]. Similar to the geometric representation of
homogeneous polarizations on Poincaré sphere, a prominent
geometric representation of the vector beams is provided by
the so-called higher-order Poincaré sphere, which describes
higher-order states of polarization of generalized vector vortex
beams [25,26], in contrast to the Poincaré sphere, which is a
geometric representation of all possible states of polarization
[27]. In geometrical representation rule, phase evolution is
demonstrated on the higher-order Poincaré sphere [28,29].The
phase is geometric in nature and differs significantly from a
dynamic phase, which is proportional to light’s total angular
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momentum. This state evolution will provide an advantage
solution to create optical qubits and improve the simplify
optical analog computation. The emergence of topological
materials provide an important opportunity to reexamine the
polarization evolution via photonic Dirac points. Neverthe-
less, the evolution of polarization state reflected at topological
interface have not been given a distinct representation.

In this paper, we establish a general model to describe
the reflected behaviors of a Gaussian beam at the interface
of uniaxial metamaterials with homogeneous effective elec-
tromagnetic properties. Based on calculations with a rigorous
wave theory, we show that when a circular polarization light
beam with a particular spin incident on individual Dirac point,
the unique polarization-dependent interactions between light
and the medium can convert the spin character of input,
endow the reflected beam with an additional vortex phase.
The reflected polarization states are sketched by the point-
to-point conversion from the fundamental Poincaré sphere to
the higher-order Poincaré sphere. Moreover, we extend the
reflected module to the normal incidence on paired Dirac
points, there are two vortex structures predictably appear at
the position of paired Dirac points. By means of interference
pattern, the central of phase distribution possess a topological
charge as ±2, while other single Dirac point corresponding to
±1. Intriguingly, the reflectance spectrum at the interface. As
a result, the representation of the higher-order Poincaré sphere
has become an important technique to deal with the polariza-
tion evolution in other optical systems with degeneracy point,
and provides a deeper insight into physical mechanisms.

II. GENERAL MODEL FOR REFLECTION FIELD NEAR
PHOTONIC DIRAC POINT

Here, we first use hyperbolic electromagnetic struc-
ture to construct Dirac points, the general permittivity and
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FIG. 1. (a) The effective bulk band structure of Dirac metamaterials on a wave vector plane. Two bands are nearly overlapping with each
other, and there are fourfold band degeneracies at two points (marked by the red spheres), which are symmetrically placed. (b) Schematic
illustrating the wave reflected vortex beams near the Dirac point at the interface of Dirac hyperbolic metamaterials. We set xy plane as an
interface between air (z > 0) and Dirac metamaterials (z < 0) characterized by ε, μ.

permeability tensors of medium have the anisotropic form
as ε = ε0diag{εx, εy εz} and μ = μ0diag{μx, μy μz}, respec-
tively. The presence of resonance along the x direction for
both permittivity and permeability indicates that there exist
two bulk plasmon modes [1,30,31], a longitudinal elec-
tric mode, and a longitudinal magnetic mode, εx = 1 +
f1ω

2
0/(ω2

0 − ω2), μx = 1 + f2ω
2/(ω2

0 − ω2), where ω0 indi-
cates the resonance frequency and coefficients f1 and f2 are
constants determined by the structure parameters, which are
adjustable, f2 = 1 − 1/(1 + f1). Then we assume εz = εy,
μz = μy are constants. The dispersion relations of Dirac meta-
materials can be deduced from corresponding characteristic
equation (see in Appendix A). Figure 1(a) shows the band
structure of bulk states in the kx − kz plane, where two bands
are nearly overlapping with each other. In the x direction in
momentum space, there are two fourfold degeneracy points
named photonic Dirac points symmetrically displaced, as
marked with the red spheres.

Let us consider that a Gaussian beam of frequency ω

impinges at an angle θ on the interface between vacuum
and the medium. Benefiting from the translational invariance
nature of the Dirac metamaterials, the incident beam is not
required to be aligned to a certain position on the media.
ki = ω/

√
ε0μ0 = ω/c is the incident vector, c is the speed of

light, and we assume the incident wave vector lies on the xz
plane, as shown in Fig. 1(b). We set xy plane as an interface
between vacuum (z > 0) and medium (z < 0) characterized
by ε,μ. Consider a plane wave of frequency incident from
vacuum, making an angle θi with respect to the interface
normal.

However, for a Gaussian beam with finite beam width
incident to the interface, the arbitrary wave vector of the
beam should be taken into account. We assume that the wave
function in momentum space can be specified by the following
expression:

|�〉 = w0√
2π

exp

[
−w2

0

(
k2

ix + k2
iy

)
4

]
, (1)

where w0 is the width of wave function. The total wave
function is made up of the packet spatial extent and the
polarization state. We noted that kix and kiy respects the x
and y components of arbitrary vector relative to beam cen-
ter (kix = kiy = 0), respectively. Naturally, the behavior of
arbitrary wave vector can obtain by Cartesian coordinate
transformation of center vector.

We first introduced a optical axis vector I = cos α x̂ +
sin α ŷ, and α is an angle of optical axis relative xz plane,
where x̂ and ŷ are unit vectors along the x and y positive axes.
With �ε = εx − εy and �μ = μx − μy, the coordinate trans-
formation can be embedded into the anisotropic permittivity
tensor as:

εr =
∣∣∣∣∣∣
εy + cos2 α�ε sin α cos α�ε 0
sin α cos α�ε εy + sin2 α�ε 0

0 0 εy

∣∣∣∣∣∣, (2)

μr =
∣∣∣∣∣∣
μy + cos2 α�μ sin α cos α�μ 0
sin α cos α�μ μy + sin2 α�μ 0

0 0 μy

∣∣∣∣∣∣. (3)

In the following we can apply the Maxwell equations and
boundary conditions to educe the general reflection coeffi-
cients in Dirac metamaterials without taking arbitrary vector
into account [32], as schematically shown in Appendix B.
Second, we should note that the arbitrary incident vector of
Gaussian beam form an angle with incident xz plane, thus the
arbitrary wave vector can be indicated by α. For the case of
Gaussian beam incident near the single Dirac point, the mod-
ified Fresnel¡¯s coefficients are given by using the paraxial
approximation in momentum space [33,34].

The polarization states on the fundamental Poincaré sphere
with the azimuthal and polar angles (	,�) can be written as:

|ψin〉=cos

(
	

2

)
exp

(
i
�

2

)
|L〉+sin

(
	

2

)
exp

(
−i

�

2

)
|R〉.

(4)
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FIG. 2. Schematic illustrating the homogeneous polarization
state distribution on the fundamental Poincaré sphere. The north and
south poles represent left- and right-handed circular polarization,
respectively. Any polarization state on the sphere can be regarded as
their linear combination. The signs of a ∼ f are the reference points
with coordinates (0, 0, 1), (1, 0, 0), (0, 0, −1), (

√
2/2,

√
2/2, 0),

(0, 1, 0), and (−1, 0, 0). We set an incident beam with waist radius
w0 = 100λ, and λ = 2πc/ω.

Here, |L〉 = (x̂ + iŷ)/
√

2 and |R〉 = (x̂ − iŷ)/
√

2 are left-
handed polarization (LCP) and right-handed circular polar-
ization (RCP), respectively. The intensity distribution and
uniform polarization of the beam on the fundamental Poincaré
sphere are plotted in Fig. 2.

In our scheme, the reflected polarization states related to
the incident polarization states can be described by the fol-
lowing matrix M(r):

M(r) =
[

rll rlr

rrl rrr

]
, (5)

where rll , rlr, rrl , rrr represent the Fresnel coefficients under
CP basis near the Dirac points, and the expression of reflection
coefficients are as follows:

rll = 1

2

[
(rpp − rss) − krx

k
(r′

pp − r′
ss) − i

kry

k
(r′

ps − r′
sp)

]
,

(6)

rrr = 1

2

[
(rpp − rss) − krx

k
(r′

pp − r′
ss) + i

kry

k
(r′

ps − r′
sp)

]
,

(7)

rlr = 1

2

[
(rpp + rss) − krx

k
(r′

pp + r′
ss) − i

kry

k
(r′

ps − r′
sp)

]
,

(8)

rrl = 1

2

[
(rpp + rss) − krx

k
(r′

pp + r′
ss) + i

kry

k
(r′

ps − r′
sp)

]
.

(9)

Obviously, the existence of crossing reflected coefficients
generate the reflected field with opposite spin property. The
spin-maintained and spin-reversal beams are referred to as

FIG. 3. The reflection amplitude (a) and imaginary part of reflec-
tion coefficients (b) near the Dirac point (θ → 30◦). The parameters
r′

pp and r′
ss also as the function of incident angle. (c) and (d) show

phase distribution of left-handed and right-handed circular polariza-
tions light incidence in momentum space, respectively. We set an
incident beam with frequency ω = ωD(1 + 0.002), parameters for
the Dirac metamaterials are chosen as εy = μy = 0.5, the resonance
frequency ω0 = 1014 Hz and structural coefficients f1 = 1.

normal and abnormal modes, respectively. This means that
even though the incident beam exhibits a pure spin, the
reflected beam can still contain a spin-reversal abnormal com-
ponent which comes from the effective anisotropy interface
[35]. As shown in Figs. 3(a) and 3(b), when incident angle
meet the photonic Dirac point, those related reflection coef-
ficients reached the critical value, rpp = rss, r′

pp = r′
ss, r′

ps =
−r′

sp, so rll = rrr = 0, rlr and rrl �= 0, which means all nor-
mal reflected component (spin-maintained) disappeared and
the only abnormal reflected component (spin-reversal) were
retained. Significantly, two crossing coefficients rlr and rrl

carries the equal amplitude and opposite phase with photonic
Dirac point (see Appendix C for details). When a circularly
polarized incident beam, say LCP case, shines on the meta-
surface, the output reflected beam is completely converted to
abnormal mode beam with opposite handedness, i.e., right-
handed, which carry an additional phase, and the parallel
situation exists on RCP incidence.

III. HIGHER-ORDER POINCARÉ SPHERE VIA
PHOTONIC DIRAC POINT

To further analyze the underlying physics, we reexamine
the matrices M(r) under the paraxial-wave approximation,
we have rlr ≈ r′

pp(1 + iφv ), φv = r′
pskry/r′

ppkrx. Therefore, the
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matrix M(r) now reads:

M(r) ≈
[

0 r′e−iφv

r′e+iφv 0

]
, (10)

Here φv is a kx-ky-dependent geometric phase originated
from the polarization vector of the central plane wave and
the noncentral ones inside the beam. In essence, this Berry
phase comes from the topological structure of the beam itself,
which is an unobservable quantity. Only the phase difference
between the final state and the initial state of the beam is an
observable quantity. For the abnormal mode, the phase differ-
ence is because of the spin flip; for the normal mode, the phase
difference is zero. With incident angle point approaching the
single Dirac point, the coefficients r′

ps/r′
pp → 1. Thus the final

phase of the abnormal mode and the normal mode is


B = 
r
B − 
 i

B = 2σπ (11)

σ ∈ {+,−} denote the left- and right-handed circular polar-
izations. As shown in Figs. 3(c) and 3(d), the phase difference
show that generation of reflected vortex beam near the Dirac
point at the interface and the phase distribution are precisely
correspond the topological charge of ±1.

The similar result of reflected vortex beam around the
Dirac point first reported in Ref. [1], and they obtained the
physical picture by solving for the eigenstates of the effective
Hamiltonian [1,4,5], pointed out that laid the foundation for
unveiling the connection between intrinsic physics and global
topology in electromagnetism. While it should be noted that
vortex structure in our scheme derived from reflection theory
of electromagnetic waves based on paraxial approximation
and coordinate transformation. The reflection model not only
provide guidance on generation of vortex beam, but also re-
veals polarization evolution with distinct physical picture.

After substituting Eq. (4) into Eq. (10), the reflected states
near the photonic Dirac point can be described by higher-order
Poincaré sphere:

|ψout〉 = cos

(
	1

2

)
exp

(
i
�1

2

)
|L1〉

+ sin

(
	1

2

)
exp

(
−i

�1

2

)
|R1〉, (12)

where

|L1〉 =
√

2

2
(x̂ + iŷ) exp(−iφv ), (13)

|R1〉 =
√

2

2
(x̂ − iŷ) exp(+iφv ). (14)

The azimuthal phase factor exp(±i�φv ) is the vortex phase,
which is associated with orbital angular momentum of ±h̄
per photon. The relations 	1 = π − 	,�1 = −� indicate
we can realize the vortex polarization states by the point-to-
point conversion from the fundamental Poincaré sphere to the
higher-order Poincaré sphere, see in Fig. 4.

IV. REFLECTION FIELD AND CHERN NUMBER NEAR
PAIRED DIRAC POINTS

In previous research about single Dirac point, we can
definitely see photonic Dirac points are linked to the vortex

FIG. 4. The higher-order Poincaré sphere representation of the
reflected field near the Dirac point illustrating the local polarization
vectors states at various positions on the sphere. The location of
six points a′ ∼ f ′ on the sphere with coordinates (0, 0, −1), (1, 0,
0), (0, 0, 1), (

√
2/2,-

√
2/2, 0), (0, −1, 0), and (−1, 0, 0), which

correspond to points a ∼ f on the fundamental sphere. The incident
frequency is chosen as ω = ωD(1 + 10−12) and incident angle is cho-
sen as θ = 30◦. Parameters for the Dirac metacrystal are chosen as
εy = μy = 0.5, the resonance frequency ω0 = 1014 Hz and structural
coefficients f1 = 1.

photonics with topological charge as ±1. However, photonic
Dirac points are known to occur in pairs in photonic graphene
and other similar metamaterials [36,37], which are due to pre-
serve time-reversal symmetry. So it was short comprehensive
to discuss a single Dirac point affects reflected beam. Now for
simultaneously thinking about the influence of paired Dirac
points, we consider normal incidence of a Gaussian beam at
the surface with two adjacent Dirac points, see in Fig. 5.

FIG. 5. Illustration of the Gaussian beam vertically incident at
the interface of Dirac metamaterials with a paired Dirac points,
which are placed center in momentum space. ϑ is the propagation
angle of the plane wave components in the spherical coordinate

system, k⊥ =
√

k2
ix + k2

iy is the transverse wave vector. Combining

the unit incident plane vector I, thus the angle α can be indicated by
arbitrary wave vector: cos α = kix/k⊥, sin α = kiy/k⊥.
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FIG. 6. Normalized reflectance amplitude and two-dimensional
(2D) contour of left-handed circular polarization beam vertically
incident at the interface with paired Dirac points.

Substituting the relationship of wave vectors into gen-
eral expressions of Fresnel coefficients Eqs. (B6)–(B9) in
Appendix B, we can get the corresponding reflection field
concisely. For normal incident Gaussian beam, the behaviors
of the reflection coefficients are nearly the same as the ab-
normal case. Only two crossing components rlr and rrl carry
the phase information, while the other two components rll and
rrr do not supply any phase and contribute to normal reflec-
tions. The output spectrums with paired photonic Dirac point
under left-handed polarized initial states are plotted in Fig. 6,
intensity and topological phases of reflected field generate the
correspondence with paired Dirac points in momentum space,
which can be regarded as two vortices moving towards the
center.

To further elucidate the topological behavior of designed
Dirac metamaterials, we introduce Berry phase and topo-
logical charge (Chern number) to reveal the reflection near
Dirac points. In the transmission process from an isotropic
system (air) to a double hyperbolic system (Dirac metama-
terials), there is a novel topological phase transition, which
corresponding to topological charges change from ±2 to two
±1 (see Appendix D). The evolution of the equal frequency
contours are shown in Figs. 7(a)–7(d). In this process, the
momentum sphere is split along the equator into two hyper-
boloids, and the Berry curvatures of the two hyperboloids
are flipped, transforming into a degenerate two hyperboloid.
Consequently, topological charges are equally split into half
for each sheet as ±1 and the symbol depends on different
circular polarized light. For LCP, the reflected field across the
interface show distinct topological features, two vortices with
Chern number of −1 on both sides, and an unpredicted phase
with topological charge being +2 emerges in the center, see in
Fig. 7(e). Due to the mirror relationship of LCP and RCP, thus
another case can be seen as a mirror operation and just flipped
the corresponding Chern numbers, as shown in the Fig. 7(f).
Namely, for the whole LCP or RCP, there ought to be a topo-

FIG. 7. Equifrequency contours of (a) isotropic system (air) and
(b) Dirac metamaterials. In the transformation from air to degen-
erate Dirac metamaterials, the spin Chern numbers are split into
±1. (c) and (d) represent the transition Chern numbers for spin up
(σ = 1) and spin down (σ = −1) state in kx − ky plane. (e) and (f)
shows the interference patterns in left- and right-handed incident
polarization respectively. For different spin input state, the reflected
field occur the corresponding topological charge (Chern number) at
Dirac points.

logical phase transition across the interface although the sum
of Chern numbers vanishes. Under LCP or RCP excitation,
the symmetry distributions of vortex structure and topological
charge also clearly demonstrates the spin-momentum locking
property in Dirac system. The excitation and propagation of
robust spin-momentum wave demonstrated here may prove a
different way of information transport and imaging applica-
tions.

V. CONCLUSIONS

In conclusion, by considering electromagnetic duality sym-
metry of metamaterials with photonic Dirac point, we have
developed a general model to describe the reflected state with
Gaussian beam incidence and revealed the topological char-
acteristics based on wave theory. When the beam impinges on
the unique interface, we found that the original spin properties
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have completely changed, and capture a vortex phase with
nontrivial topological charge ±1. Moreover, we investigated
the normal incidence of paired Dirac points, the reflecting
field precisely not only show two vortices related to paired
Dirac points, but also proved the topological charge for two
points. These findings based on wave theory provide a dif-
ferent pathway to investigate and manipulate the polarization
evolution with topological media and thereby open the pos-
sibility of developing various photonic devices. Our model
can also be extended from the Dirac points to Weyl points
and nodal lines in other 3D topological photonic systems with
similar topological structure.
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APPENDIX A: BAND STRUCTURE OF PHOTONIC DIRAC
METAMATERIALS

The general permittivity and permeability tensors of Dirac
metamaterials have the anisotropic form and we assume εz =
εy, μz = μy are constants. Note that the magnetoelectric ten-
sors for the proposed metamaterials are not considered here,
thus the detail of permittivity and permeability as follows:

ε =
∣∣∣∣∣∣
εx 0 0
0 εy 0
0 0 εy

∣∣∣∣∣∣, μ =
∣∣∣∣∣∣
μx 0 0
0 μy 0
0 0 μy

∣∣∣∣∣∣, (A1)

where εx and μx indicates the resonance along the x direc-
tion that there exist two bulk plasmon modes, a longitudinal
electric mode and a longitudinal magnetic mode, εx = 1 +
f1 ω2

0/(ω2
0 − ω2), μx = 1 + f2 ω2/(ω2

0 − ω2), where ω0 indi-
cates the resonance frequency and coefficients f1 and f2 are
constants determined by the structure parameters, which are
adjustable [1].

To gain the band structure of photonic Dirac metamaterials,
we treat the combined electric field E = (Ex, Ey, Ez ) and mag-
netic field H = (Hx, Hy, Hz ) as two three-component vectors,
and using the relations in Maxwell’s equation:

∇ × E = iωB, (A2)

∇ × H = −iωD. (A3)

Considering the constitutive relations: D = ε0εE, B = μ0μH,
and multiply ∇ × μ−1 on both sides of (A2), we get:

∇ × μ−1∇ × E − ω2εE = 0. (A4)

Likewise, For (A3), we get the similar equation:

∇ × ε−1∇ × H − ω2μH = 0, (A5)

which are regarded as the wave equations for anisotropic
media. Assuming that E and H are of the form eik·r, thus k×
are used in place of ∇×.

k× ≡
∣∣∣∣∣∣

0 −kz ky

kz 0 −kx

−ky kx 0

∣∣∣∣∣∣. (A6)

The wave equations are rewritten as M · E = 0 and N · H = 0,
where

M = k × I μ−1 k × I + ω2ε, (A7)

N = k × I ε−1 k × I + ω2μ, (A8)

with I being the identity tensor. The zero determinant of M(N)
can gives rise to the characteristic equation, and dispersion
relations are directly solved by the characteristic equation
with the electromagnetic parameters (A1), the band structure
of Dirac metamaterials can be deduced, as shown in Fig. 1(a).

APPENDIX B: CALCULATION OF THE FRESNEL
COEFFICIENTS IN DIRAC METAMATERIALS

In this part, we show the detailed deducing process of
reflection coefficients near the photonic Dirac point. Based on
Maxwell equations and boundary conditions, we can derive
the general Fresnel reflection coefficients with the permittivity
tensor Eqs. (2) and (3) The reflection of arbitrary wave vector
can be indicated by α from the result, when α = 0 the permit-
tivity tensors are degenerate to the original diagonal form.

For a given incident wave vector ki = (kx, 0, kz ), there are
two normal (to the interface) wave vectors components by
solve the characteristic equation from the constitutive rela-
tions and Maxwell’s equations:

k−
z =

√
−k2

x (α2δε + εy) + k2εxεyμy

εy
, (B1)

k+
z =

√
−k2

x (α2δμ + μy) + k2εxμyμx

μy
, (B2)

where superscripts + and − denote the two different modes,
respectively.

Those two normal (to the interface) wave vectors com-
ponents are associated with eigenwaves determined by
the null space of Hamiltonian formalism, given as E± =
E0(e±

x , e±
y , e±

z ), where E0 are the electric field magnitudes for
the plus and minus modes, respectively.∣∣∣∣∣∣

e−
x

e−
y

e−
z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
cos α(k2

x − k2εoμo)
− sin αk2εoμo

cos αkxk−
z

∣∣∣∣∣∣, (B3)

∣∣∣∣∣∣
e+

x
e+

y
e+

z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
− sin αk+

z
cos αk+

z
sin αkx

∣∣∣∣∣∣. (B4)

Likewise the corresponding magnetic fields are also
obtained by constitutive relation, H± = ω−1μ−1k ×
E±=E0

η0
(h±

x , h±
y , h±

z ), where η0 = √
μ0/ε0.∣∣∣∣∣∣

h−
x

h−
y

h−
z

∣∣∣∣∣∣ = kεo

∣∣∣∣∣∣
sin αk−

z
− cos αk−

z
− sin αkx

∣∣∣∣∣∣,∣∣∣∣∣∣
h+

x
h+

y
h+

z

∣∣∣∣∣∣ = 1

kμo

∣∣∣∣∣∣
cos α(k2

x − k2εoμo)
− sin αk2εoμo

cos αkxk+
z

∣∣∣∣∣∣. (B5)

The reflection and refraction on the interface of Dirac
metamaterials can be described with Fresnel’s equations and
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boundary conditions. Fresnel’s reflection coefficients are de-
termined by the incident and reflected amplitudes: rpp =
E p

r /E p
i , rss = Es

r /Es
i , rps = E p

r /Es
i , and rsp = Es

r /E p
i , and the

general reflection coefficients can be obtained as

rpp = sxx − syycos2 θ + (−exy + hxy) cos θ

sxx + syycos2 θ − (exy + hxy) cos θ
, (B6)

rss = −sxx + syycos2 θ + (−exy + hxy) cos θ

sxx + syycos2 θ − (exy + hxy) cos θ
, (B7)

rps = 2sxycos2 θ

sxx + syycos2 θ − (exy + hxy) cos θ
, (B8)

rsp = 2syxcos2 θ

sxx + syycos2 θ − (exy + hxy) cos θ
, (B9)

with si j = e+
i h−

j − e−
i h+

j , ei j = e+
i e−

j − e−
i e+

j , hi j = h+
i h−

j −
h−

i h+
j and {i, j} = {x, y}, respectively.

APPENDIX C: REFLECTION FIELD NEAR THE SINGLE
PHOTONIC DIRAC POINTS

Near the Dirac point, the center vector of incident beam can
be regarded as ki = (k sin θi, 0, k cos θi ), while the arbitrary
wave vector can be indicated by α. By using the paraxial
approximation, cos α → 1, sin α ∼ kiy

k sin θ
, the transverse com-

ponent of arbitrary wave vector were considered, the modified
Fresnel coefficients of oblique incident are given as follows
[33]:

rpp = −Q + √
εxεy cos θ

Q + √
εxεy cos θ

, (C1)

rss = −Q + √
μxμy cos θ

Q + √
μxμy cos θ

, (C2)

rps = 2 kiy

k sin θ

√
εyμy(

√
εxμx − √

εyμy) cos θ

(Q + √
εxεy cos θ )(Q + √

μxμy cos θ )
, (C3)

rsp = 2 kiy

k sin θ

√
εyμy(

√
εyμy − √

εxμx ) cos θ

(Q + √
εxεy cos θ )(Q + √

μxμy cos θ )
, (C4)

where Q =
√

εyμy − sin2 θ , rpp, rss, rps and rsp denote
the Fresnel reflection coefficients for parallel, perpendicu-
lar and crossing polarizations, respectively. When εx = εy =
const,μ = 1, the reflection coefficients can reproduce to the
Fresnel equation in the classic case of isotropic [38].

To obtain a precise model of Gaussian beam, the arbitrary
wave vector along x also needs to be taken into account. By
making use of Taylor series expansion, the reflection coeffi-
cients are expanded as a polynomial of kix, and higher-order
terms have a negligible influence in paraxial transmission
[39]. Hence, these moduli of reflection matrix can be written
as follows:[

rxx rxy

ryx ryy

]
=

[
rpp − krx

k r′
pp

kry

k r′
ps

kry

k r′
sp rss − krx

k r′
ss

]
, (C5)

where r′
pp = ∂rpp/∂θ , r′

ss = ∂rss/∂θ , rsp = r′
spkry/k, and

rps = r′
pskry/k. In the above equation, the boundary conditions

krx = −kix and kry = kiy have been introduced and ∂krx can
be replaced with k∂θ . The polarizations associated with the
angular spectrum components experience different rotations

in order to satisfy the transversality of photon polarization
after reflection. So far, we give the specific form of the above
Fresnel reflection matrix, which retains robustness and accu-
racy and can be used in other similar bulk materials based on
a real Gaussian beam transmission.

In Figs. 3(a) and 3(b), the diagonal elements for Fresnel
reflection matrix are plotted as a function of incident angle
θ . By tuning the geometric parameters of the Dirac metama-
terials, we set the θ = 30◦ as the incident condition of Dirac
point. It can be seen that maximum amplitude of the four coef-
ficients exists near Dirac point and rpp = rss, r′

pp = r′
ss, which

means rxx = ryy at critical angle. For more general cases, we
transform the matrix into circular polarization basis. Thus, the
reflected polarization states related to the incident left-handed
and right-handed polarization states can be described by the
following matrix:[

Ẽ+
r

Ẽ−
r

]
=

[
rll rlr

rrl rrr

]
·
[

Ẽ+
i

Ẽ−
i

]
, (C6)

where |+〉 and |−〉 represent the left- and right-handed cir-
cular polarization components, respectively. From Eqs. (C1)–
(C5), we can immediately derive the detail of Fresnel
coefficient matrix under the CP basis [40].

rll = 1
2 [(rxx − ryy) − i(rxy + ryx )], (C7)

rrr = 1
2 [(rxx − ryy) + i(rxy + ryx )], (C8)

rlr = 1
2 [(rxx + ryy) − i(rxy − ryx )], (C9)

rrl = 1
2 [(rxx + ryy) + i(rxy − ryx )]. (C10)

Obviously, Eqs. (C7)–(C10) show that for reflection near
the Dirac point, two components rll = rrr = 0 do not supply
any phase and contribute to reflections, while the other two
components rlr and rrl carry the vortex phase information,
as shown in Figs. 3(c) and 3(d) in main text. The higher-
order Poincaré can be derived naturally from the fundamental
Poincaré sphere.

APPENDIX D: CALCULATION OF BERRY PHASE AND
TOPOLOGICAL CHARGE

We first give the topological charge of origin media, and
we can derive the eigenstates under spherical coordinate as:

|ψ (R)〉 =
√

2

2

⎡
⎣− cos α cos ϑ + σ i sin α

− sin α cos ϑ − σ i cos α

sin ϑ

⎤
⎦, (D1)

where ϑ and α are the polar angle and azimuthal angle, re-
spectively, σ = ±1 represents the spin of LCP or RCP. Then
we can easily derive the corresponding Berry connection from
definition [41].

A = i〈ψ (R)|∇R|ψ (R)〉 = σ cos ϑ, (D2)

and the Berry phase can be written as:

γσ =
∫ 2π

0
Adα = σ2π cos ϑ, (D3)

when the polar angle ϑ = 0, the integral area of Berry curva-
ture is zero and the Berry phase is just zero. So, Eq. (D3) can
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be rewritten as:

γσ = −2πσ (1 − cos ϑ ). (D4)

Owing to the transverse nature of electromagnetic waves, the
propagation of light in free space possesses Berry curvature in
the momentum space given by

� = σk/|k|3. (D5)

By calculating the integral of above Berry curvature on k
sphere, corresponding Chern number can be obtained as fol-
lows:

Cσ = 1

2π

∫ 2π

0

∫ π

0
σ

k
2|k|3 dS = 2σ. (D6)

Next, we show the topological charge around the paired
Dirac points from effective Hamiltonian [1,4].

Hσ =
[

kx
1
2 (kz − iσky)

1
2 (kz + iσky) 0

]
. (D7)

Similar to the previously proposed case, for eigenstate
|ψ (k)〉

|ψ (k)〉 =
[

kx ± k
kz − iσky

]
, (D8)

we may define a “gauge potential” as

ai(k) = −i〈ψ (k)| ∂

∂ki
|ψ (k)〉, (D9)

and the Berry curvature for Dirac points in momentum space
is given by

�D = ∂

∂ky
ax(k) − ∂

∂kx
ay(k). (D10)

The topological charge (Chern number) is the integral of the
Berry curvature ��D over the Brillouin zone. By substituting
the vector relationship of Dirac point into the above Berry cur-
vature and integral expressions, we can obtain the topological
charge as follows:

Cσ = 1

2π

∫ 2π

0

∫ π

0
σ

k
2|k|3 dS = −σ. (D11)

The above results accurately coincide with the topologi-
cal charge of vortex polarized beam under spin-up (σ = +1,
LCP) and spin-down (σ = −1, RCP) input state, respectively.
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M. Soljačić, Science 349, 622 (2015).

[4] W. Gao, B. Yang, M. Lawrence, F. Fang, B. Béri, and S. Zhang,
Nature Commun. 7, 12435 (2016).

[5] M. Xiao, Q. Lin, and S. Fan, Phys. Rev. Lett. 117, 057401
(2016).

[6] J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and
M. C. Rechtsman, Nature Phys. 13, 611 (2017).

[7] B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu, B.
Béri, Y. Xiang, D. Fan, A. P. Hibbins, and S. Zhang, Nature
Commun. 8, 97 (2017).

[8] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Nature
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