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Slow and stopped light in dynamic Moiré gratings
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We investigate a theoretical model for a dynamic Moiré grating which is capable of producing slow and
stopped light with improved performance when compared with a static Moiré grating. A Moiré grating super-
imposes two grating periods, which creates a narrow slow light resonance between two band gaps. A Moiré
grating can be made dynamic by varying its coupling strength in time. By increasing the coupling strength the
reduction in group velocity in the slow light resonance can be improved by many orders of magnitude while still
maintaining the wide bandwidth of the initial, weak grating. We show that for a pulse propagating through the
grating this is a consequence of altering the pulse spectrum, and therefore the grating can also perform bandwidth
modulation. Finally we present a possible realization of the system via an electro-optic grating by applying a

quasistatic electric field to a poled x ® nonlinear medium.
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I. INTRODUCTION

There has been a great amount of interest in slow light
since it was demonstrated by Hau et al. [1-3] that a laser
pulse could be brought to almost complete standstill by using
electromagnetically induced transparency (EIT). It has been
a longstanding goal to replicate those results in a solid-state
photonic crystal device [4].

All slow light devices work by the same principle: incom-
ing light is coupled to a resonance which impedes the passage
of light and results in a reduction in its group velocity [5].
In the case of EIT the light is coupled to atomic electron
transitions, while in a photonic crystal the light is coupled into
forward and backward modes via a narrow-band Bragg effect.
In either case, there is a trade off between the achievable
slowdown and the bandwidth of the resonance Af; larger
slowdowns correspond to narrower resonances. The coupling
strength between light and the resonance also impacts on the
performance of the device: A weaker coupling will require
a narrower resonance to achieve the same slowdown as a
stronger coupling. A common figure of merit to characterize
the performance of a slow light device is the delay-bandwidth
product (DBP). A slow light device of length L and group ve-
locity vg, has an induced delay given by At = L/v,. The DBP
is then simply Az A f, which is approximately constant for any
given slow light device. There have been a number of different
papers discussing the DBP limitations of different devices
[6-8]. Unfortunately the initial optimism surrounding slow
light devices for developing optical delay lines, memories, and
other devices has ultimately not come to fruition due to the
DBP. In practice, an optical fiber offers little slowdown but
has a wide acceptance bandwidth and can be made arbitrarily
long, which gives optical fiber loops a DBP superior to slow
light devices.

In order to overcome the delay-bandwidth limitation time-
varying resonant structures have been suggested [9]. Such
structures are based on dynamically varying the bandwidth
of the resonance so that initially the structure has a larger
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bandwidth and higher group velocity, then it is dynamically
altered to a small bandwidth and lower group velocity reso-
nance. It has been shown that dynamically varying a slow light
resonance in this way with a pulse trapped inside the structure
will result in the pulse bandwidth being compressed and the
pulse being brought to a practical standstill [10,11], which is
analogous to the behavior observed in EIT [12]. This behav-
ior has been studied in a general theoretical context [13,14]
and has been applied to various specific devices such as
a quasiphase-matched waveguide using backward frequency
conversion [15], a p-i-n integrated photonic crystal nanocavity
[16], a waveguide with moving index fronts [17] and in a
grating coupled metal-dielectric-metal waveguide [18].

In this work we examine the time-variation of a Moiré
grating with a slow light transmission band. A Moiré grating
is created by superimposing two Bragg gratings with differ-
ent grating periods. Provided the difference in the periods
is small, the dual grating structure creates a narrow slow
light resonance between two band gaps [19]. We show that
a laser pulse localized inside a Moiré grating can be brought
to a standstill by dynamically increasing the grating coupling
strength. We find in accordance with previous work [10] that
dynamic slowing of the pulse corresponds to spectral com-
pression and by applying the time variation symmetrically and
adiabatically the pulse is returned to its previous state. We then
show that by applying the time variation asymmetrically the
bandwidth of the pulse exiting the grating can be compressed
or broadened. Finally we examine a possible realization by
using an electro-optic grating in a quasiphase-matched y ®
nonlinear material.

II. BACKGROUND

It is a well-known feature of Bragg gratings that strong dis-
persion at the band edges of the Bragg resonance can generate
slow light [20]. Intuitively this is understood by light inside
the grating being scattered backwards and forwards before
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FIG. 1. (a) Reflection spectrum, (b) group velocity, and (c) group delay dispersion for a Gaussian apodized Moiré grating with parameters
il = 1.445, 8n = 1073, Az = 1550 nm, Ay = 2.68 mm, and L = 10 cm.

emerging at the far end of the grating, leading to increased
propagation time and a reduction in group velocity. Therefore,
to achieve a low group velocity the carrier frequency must be
tuned close to the band edge in order to increase scattering.
The closer it is tuned to the band gap the lower the achievable
group velocity but the pulse spectrum must remain outside
the band gap in order to allow transmission. Consequently
lower group velocities have smaller available bandwidth re-
sulting in the familiar trade off between bandwidth and delay.
Along with a reduction in group velocity, the band edges
generate strong higher order dispersion effects which cause
pulse broadening and walkoff. The short wavelength edge
of the Bragg resonance generates normal dispersion and the
long wavelength edge anomalous dispersion. Moiré gratings
were suggested [19] as a way to exploit this feature of Bragg
gratings to cancel second order dispersion and minimize pulse
broadening to create a grating better suited to slow light prop-
agation.

A Moiré grating is created in the linear refractive index by
superimposing two gratings with periods A and A». In one
dimension this can be modeled by

_ én
niz)=n+ ?[COS(azz) — cos(a12)], (1)
where 7 is the ac effective refractive index, én is the grat-
ing strength, oy = 2 /A and o = 2w /A,, and we assume
A2 > A].

The addition of an extra grating period in Eq. (1) from
what would otherwise be a standard Bragg grating generates
two Bragg resonances at the wavelengths A; = 2n; A and
A = 2n,A,, where n; and n, are the refractive indices at
wavelengths A and X,. Figure 1(a) shows the reflectance of
a Moiré grating where the dual band gaps separated by a
transmission band can be clearly seen. Note that Fig. 1 serves
as a schematic here; it was calculated using coupled mode
theory as discussed later in this section.

The normal and anomalous dispersion generated by the
two band gaps cancel at the center of the transmission band
as can be seen in Fig. 1(c). This allows pulses to propagate
at this wavelength with minimal pulse broadening while still
experiencing the reduction in group velocity, as shown in
Fig. 1(b).

When the Bragg resonances are sufficiently spectrally
separated they can be modeled as two independent Bragg
gratings. However, this breaks down as the bandwidth separat-
ing the resonances decreases sufficiently, at which point they

must be modeled as a single structure, as discussed further in
Sec. III. One problematic consequence of decreasing the size
of the transmission band is that spectral sidelobes generated
by the band gaps increase reflectance within the transmission
band. It is therefore necessary to apply an apodization to the
grating to suppress the sidelobes and to improve transmission
by reducing reflectivity. An apodization can be incorporated
into the model by making the grating strength in Eq. (1)
spatially dependent,

dn(z) = dnf (), 2

where f(z) is a suitable apodization profile. It is convenient to
express the Moiré grating (1) as the product of two sine waves

3)

with wave numbers op=27/Ap and «a; =27/A;.
The grating periods Ay =2A;A/(Ar— A1) and
Ap =2A1A/(Ay + Ay) are the Moiré and Bragg periods,
respectively, with Ag > Ap, i.e., the Moiré term sin(c,z)
oscillates slower than the Bragg term sin(agz).

In Eq. (3) the Bragg and Moiré terms serve two differ-
ent physical functions; the Bragg term creates a wide band
gap centered on the wavelength Ag = 2ngAp where ng is
the refractive index at Ag. The Moiré term opens a trans-
mission band at Ag within the band gap. The size of this
transmission band is dependent both on Ag and dn and is
generally much narrower than the band gap of the Bragg
term.

To understand why the Moiré term opens a transmission
band we rewrite Eq. (3) as

n(z) = n + én(z) sin(o,z) sin(opz)

n(z) = i+ n(z)| sin(eyz)| sin {apz + 70— sin(o;2)1}, (4

where 6 is the Heaviside step function. The modulus of
the Moiré term, |sin(o,z)|, thus acts as an envelope to the
Bragg grating between 7 phase shifts induced by the term
0[— sin(e,;z)]. If we consider a grating that has length L and
set the Moiré period so that Ag = L, then the grating will
have a single 7 phase shift at its center. If the envelope term
| sin(az)| is neglected then the subsequent grating is equiv-
alent to a standard & phase shift grating. It is a well known
feature of a 7 phase shift grating that a small transmission
band opens at the center of the Bragg resonance [21]. As
the Moiré period is decreased the number of 7w phase shifts
increases and the transmission bandwidth correspondingly
broadens.
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In addition to the Moiré grating, Eqs. (3) and (4), we
therefore introduce the periodically m phase-shifted grating

n(z) = i + dn(z) sgn[sin(o,z)] sin(apz). &)

This grating is simply a Bragg grating with 7 phase shifts
controlled by the Moiré period. Its advantage over the Moiré
grating is that turning the Moiré term sin(o,z) into a square
wave gives a higher average grating strength and correspond-
ingly a higher average coupling strength, which improves
its slow light performance. The trade off is that without the
envelope between the phase shifts, they act as small interfaces
which generate reflections.

Both the Moiré and 7 phase-shifted grating are examples
of superstructure gratings which can be written in the general
form

n(z) = i+ én(z)a(z) sin(apz), (6)

where a(z) is the superstructure envelope. For the Moiré grat-
ing the superstructure envelope is a(z) = sin(«,z) and for the
7 phase-shifted grating a(z) = sgn[sin(x,z)].

We model such superstructure gratings using coupled
mode theory. This is done by choosing a linearly x-polarized
electric field ansatz which is composed of forward- and
backward-propagating modes u(z) and v(z), respectively,

E (z) = u(2)e" P 4 p(g)e P 4 cc., 7

where B is the propagation constant and ® is the angular
frequency. Substituting the ansatz (7) into the scalar wave
equation for the electric field and making a slowly varying
envelope approximation and neglecting small and fast oscil-
lating terms [22] leads to the coupled mode equations

9 .
M (e e, (8)
0z

0 .

0 e @uet, 9)
0z

where the detuning is given by Ag = 8 — 7 /A and the posi-
tion dependent coupling strength by «(z) = én(z)Ba(z)/(2n).
For both Moiré grating types the coupling strength goes to
zero periodically with the Moiré period.

The group velocity in a lossless medium is given by v, =
(Sy/(U) [23] where (S) is the position-averaged Poynting
vector and (U) is the position-averaged energy density. By
using the ansatz (7) and denoting the phase velocity as v, it
can be shown that the group velocity can be written as [24]

L 2 2

dz |ul® — |v]
Vg = v,,fOL—H. (10)
Jo dz ul> + |v]

III. TRANSMISSION BAND

In the approximation where a Moiré grating is modeled
by two distinct Bragg gratings, the band edges are given by
A= A1 (2 + 8n/2) and A, = A(2i — Sn/2) which gives a

transmission bandwidth of
Af = 1 én (11
AV VYA

TN oY

The transmission band decreases as either the Moiré period or
the grating strength is increased. The bandwidth for a Bragg
grating band gap is given by

Afz = v,8n/Ap. (12)

The Moiré transmission bandwidth will be approximately
equal to the Bragg band gap when the Moiré period is equal
to

For Moiré periods less than this, Eq. (11) provides a good
approximation for the transmission bandwidth.

The actual transmission bandwidth can only be calculated
numerically. One way of doing this is to use the position-
averaged energy density

=2 oL
wy = 27 / dz Jul® + vl (14)
L Jo

From Fig. 1(b) it can be seen that the group velocity tends to
zero as the wavelength approaches the band gaps. At these
wavelengths the wave is strongly coupled to the medium
which leads to an increase in energy density. Therefore the
band edges of the transmission band correspond to maxima
in (U). Figure 2(a) shows a plot of the transmission band-
widths given by Eq. (11) and calculated numerically using
the position-averaged energy density from Eq. (14), where the
fields u and v were obtained by solving the coupled mode
equations (8) and (9) using a fourth-or-fifth-order Runge-
Kutta method with initial conditions #(0) = 1 and v(L) = 0.
The vertical line in Fig. 2(a) corresponds to the Moiré period
which gives a transmission bandwidth equal to the Bragg band
gap given by Eq. (13). The transmission bandwidth becomes
a slow light resonance for Moiré periods greater than this as
shown in Fig. 2(b).

IV. TIME-VARYING COUPLING STRENGTH

We now consider a situation in which ézn is increased in
time in a Moiré-type grating while a pulse is propagating
through the transmission band. The band-gap bandwidth of
a Bragg grating is given by Eq. (12) and is proportional to
the grating strength so that as én increases the band gap in-
creases. Thus, in a Moiré grating the transmission bandwidth
decreases due to the broadening of the dual band gaps with in-
creasing grating strength. From Figs. 2(a) and 2(b) we can see
that a smaller transmission bandwidth results in a lower group
velocity. Therefore increasing dn in a Moiré-type grating pro-
duces a slower group velocity within the transmission band.
If a pulse is localized within the transmission band when én
is increased, the pulse will experience a slower group velocity
than the initial group velocity of the grating. By continuing to
increase dn the pulse can be brought to a virtual standstill with
an ultralow group velocity known as “stopped light.”

This behavior can again be modeled using coupled mode
theory but with two modifications. First, the electric field
ansatz has to allow for forward and backward modes that are
also time-dependent,

E (t,2) = u(t, 2)e P 4+ v(r, 2)e P 4 cc.,  (15)

013503-3



MAYBOUR, SMITH, AND HORAK

PHYSICAL REVIEW A 104, 013503 (2021)

300

—— Bragg theory
Moiré grating

250

200

150

100

50

Transmission Bandwidth (GHz)

.,
cea,
......
cees

b'___________

15 2.0 2.5 3.0
Ns(mm)

(a)

[

1.0

0.8

0.6

VglVp

0.4

0.2

0.0

1.0 1.5 2.0 2.5 3.0
As(mm)

(b)

FIG. 2. (a) Moiré transmission bandwidth calculated from Bragg
theory and a numerical calculation and (b) group velocity of a
Moiré grating versus Moiré period Ag. The grating has a Gaussian
apodization with parameters L = 20 cm, Az = 1.55 um, i1 = 1.445,
8n = 1073, The vertical green line indicates the Moiré period beyond
which the approximation of the Moiré grating by two Bragg gratings
begins to break down.

and, second, the refractive index also has to be modified
so that the grating strength becomes both time- and space-
dependent én(t, z),

n(t,z) = n+ dn(t, 2)a(z) sin(apz). (16)

Note that for simplicity we will ignore the wavelength de-
pendence of the refractive index in the following, i.e., we
neglect the material group velocity dispersion, since it is
negligible compared to the grating-induced dispersion for the
bandwidths of interest. Substituting the new expressions (15)
and (16) into the wave equation and making rotating wave,
slowly varying and neglecting small term approximations [22]
gives the coupled mode equations

1 du odu _2iA
—— 4+ — =« 1982, 17
o, oz Kave a7
1 dv v 2iA

— — — = —k(t, Due ", 18
5,00 oz K (t, z)ue (18)

where the coupling strength is given by «(t,2) =
on(t, z)Ba(z)/(2n). These equations are the time-dependent
generalizations of the steady-state coupled-mode equations
(8) and (9).

We write the time-dependent grating strength as

on(t, z) = dnf ()1 + ng)l, 19)

where g(7) is a temporal windowing function which smoothly
varies between 0 and 1 and where w is a parameter that sets
the magnitude of the variation and is constrained such that
> 0. When pu is set to O we recover the grating strength
(2). If it is greater than zero the time variation is controlled
by the temporal envelope. When the envelope g(¢) reaches its
maximum value of 1, the grating strength will be double its
original value when p = 1, three times its original value at
u = 2, and so on.

For a pulse propagating through the transmission band of
a Moiré-type grating, described by Eqs. (17) and (18), the
temporal variation given by Eq. (19) will induce a group
velocity change. Therefore we want any temporal window to
be uniformly applied along the spatial length of a pulse to
avoid any pulse distortion due to different portions of the pulse
having different group velocities. As previously discussed, the
grating must have an apodization f(z) in order to suppress
reflections within the transmission band. Consequently, the
apodization needs to have a flat-top profile. A temporal varia-
tion of the grating strength can then be applied when a pulse
is localized within the flat-top portion of the grating where the
grating strength is spatially uniform.

Figures 3(a) and 3(b) show how the group velocity varies
with the Moiré period Ag and with the parameter u for a
Moiré grating and a m phase-shifted grating, respectively.
As A and p increase the group velocity decreases. The m
phase-shifted grating has a higher average grating strength
than the Moiré grating which means it can achieve a lower
group velocity for the same parameters as the Moiré grating
as shown in the figures. However, in both cases we can expect
orders of magnitude reductions in the group velocity when the
grating strength is changed by relatively small factors p.

To simulate pulse propagation through the transmission
band of a dynamic Moiré grating we substitute the expres-
sion (19) for the time-dependent grating strength into the
coupled-mode equations (17) and (18) and work with a carrier
wavelength equal to the Bragg wavelength so that the detuning
Ap is zero.

We performed the simulation by using a Gaussian pulse
with a full width at half maximum (FWHM) bandwidth of
320 MHz and a 1-m-long grating with a raised cosine apodiza-
tion profile with a 70% flat top. We also used a raised cosine
for the temporal window function g(¢) with a switching time
At =5 us which is the time taken for the function to switch
between 0 and 1. The simulation was then performed by inte-
grating Eqgs. (17) and (18) in time using a fourth-or-fifth-order
Runge-Kutta method with the spatial derivatives calculated
using spectral methods. Figures 4(a) and 4(b) show the sim-
ulated pulse intensity in space and in time with u = 0 and
= 2, respectively. With p = 0 there is no time variation
and the pulse propagates through a static Moiré grating. The
horizontal lines indicate the start and end of the grating and the
region where the apodization profile has a constant value of 1.
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FIG. 3. Group velocity of (a) a Moiré grating and (b) a 7 phase-
shifted grating versus A, and pu. The grating has a raised cosine
apodization with 70% flat top with parameters L =20 cm, i =
1.55 um, i = 1.445, 6n = 1073,

Inside the grating the group velocity is reduced by approxi-
mately one order of magnitude. In Fig. 4(b) the time variation
has magnitude p = 2 and the temporal window switches on
when the pulse is localized in the constant region of the
apodization. The vertical lines indicate the start and end of
the windowing function and the region where the windowing
has a constant value of 1. Switching on the windowing causes
a further reduction in the group velocity so that the overall
group velocity is reduced by approximately three orders of
magnitude as seen in Fig. 3(a). When the window is switched
off the group velocity returns back to that of the static Moiré
grating and when the pulse exits the grating it returns to its
original group velocity so that the whole process happens
adiabatically.

Consequently, we find that dynamically increasing the
grating coupling strength with a pulse localized inside the
grating decreases the group velocity of the pulse. The size of
the decrease is dependent on the change in grating modula-
tion Sn. For a fixed Moiré period, larger values of én result
in a narrower transmission bandwidth, which in turn means
a smaller pulse acceptance bandwidth. In a dynamic Moiré
grating, on the other hand, the bandwidth is determined by
the initial, weak grating while the slowdown is determined by
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FIG. 4. Intensity distribution is space and time of a pulse prop-
agating through (a) a static Moiré grating and (b) a dynamic Moiré
grating with = 2. The grating has a raised cosine apodization with
65% flat top with parameters L = 1 m, Ag =4 mm, Az = 1.55 pum,
it = 1.445, 8n = 1073. The pulse has FWHM spectral bandwidth of
320 MHz with carrier wavelength Ap.

the strong grating after switching the grating strength, thereby
beating the delay-bandwidth product limit of a static grating.
This is made possible by the adiabatic compression of the
pulse spectrum in the time-dependent grating as discussed in
the following section.

V. BANDWIDTH MODULATION

When a pulse with a spectral bandwidth within the trans-
mission band enters the Moiré grating, its leading edge will
experience a smaller group velocity and travel slower than the
trailing edge of the pulse outside the grating. If a pulse has a
FWHM spatial length Az, then Az will be compressed by a
factor of v,/vg as the pulse enters the grating, where vy is the
group velocity outside the grating and v, is the group velocity
inside the grating. By the same argument in reverse, as a pulse
exits the grating Az is broadened by a factor vg/v,. The net
result is that the two factors cancel and the pulse emerges from
the grating unaltered. The compression and decompression
is caused by the grating dispersion and as such the pulse
spectrum is unaltered.

If the group velocity is varied in time to ¥, by switching
on a windowing function when the pulse is localized inside
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the grating, then Az is not compressed further as the variation
happens across the whole pulse at the same time. If we now
consider the pulse exiting the grating without the windowing
function being switched off, the change in group velocity
inside and outside the grating is different from when the pulse
entered the grating and consequently Az is scaled by a factor
Vy/Dg. Through a Fourier transform the FWHM bandwidth
Af of the pulse is related to Az by Af =4cIn(2)/(w Az).
Subsequently the pulse spectrum for the pulse exiting the
grating is scaled by a factor ©,/v, so that

AF = %Af, 20)
8

where Af is the FWHM bandwidth of the pulse exiting the
grating.

We can thus consider a situation in which the group ve-
locity is not varied symmetrically but either increased or
decreased without being subsequently changed back to its
original value. If the group velocity is altered such that it is
larger than the original group velocity, then the spectrum will
be broadened. Correspondingly, if the altered group velocity
is smaller than the original group velocity, then the spectrum
will be compressed.

We simulated this behavior by again integrating equations
(17) and (18) using the same methods as previously described
but using windowing functions which either only switch on or
switch off. Figure 5(a) shows a pulse propagation simulation
where the windowing function is initially switched off and
then switches on when the pulse is localized in the grating,
which causes the pulse spectrum to compress. The windowing
remains on as the pulse exits the grating and the compressed
spectrum causes the pulse the spatially broaden as it leaves the
grating. In contrast, Fig. 5(b) has a windowing function that
is initially switched on and subsequently switched off when
the pulse is localized inside the grating. This causes the pulse
spectrum to broaden such that when the pulse exits the grating
it is spatially compressed.

In both simulations the time variation has magnitude yu =
0.33, which causes a bandwidth compression of one half
in Fig. 5(a) and a spectrum broadening of a factor two in
Fig. 5(b). Figure 5(c) shows a comparison of the pulse spec-
trum upon leaving the grating in cases when the grating is
static (equivalent to the input pulse spectrum), when the spec-
trum is compressed and when the spectrum is broadened.
Figure 6 shows how the spectrum compression factor varies
with Ag and p in the case of a windowing function that is
switching on during pulse propagation. The broadening from
switching the windowing off is the reciprocal of the spectrum
compression factor. By comparing Fig. 6 with Figs. 3(a) and
3(b), we note that ultraslow group velocities correspond to
extreme spectrum compression.

It is therefore possible to stretch or compress the pulse by
several orders of magnitude by switching the grating strength
dynamically by factors of two or three. Moreover, as can be
seen in Fig. 5(c), the spectrum maintains its Gaussian shape
because the refractive index is changed uniformly across the
entire pulse in space. This is in sharp contrast to traditional
spectral broadening methods based, e.g., on self-phase modu-
lation in a Kerr medium [25].
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FIG. 5. Intensity profile of a pulse propagating through (a) a
dynamic spectrum-compressing Moiré grating and (b) a dynamic
spectrum-broadening Moiré grating. (c) Comparison of the input and
output pulse spectra from (a) and (b). Parameters as in Fig. 4. The
time variation magnitude has value u = 0.33 in both (a) and (b).

VI. REALIZATION OF DYNAMIC MOIRE GRATINGS

Dynamic gratings have been proposed by using various
approaches such as an erbium-doped fiber [26], Brillouin scat-
tering [27], and excited free-carriers [28]. The approach we
propose here is to use an electro-optic grating. Such a grating
is created by applying an external quasistatic electric field to a
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FIG. 6. Bandwidth compression factor depending on A and
p in a dynamic Moiré grating with parameters L = 20 cm, Ag =
1.55 um, i = 1.445, 6n = 1073,

periodically poled x® medium [29]. Through the interaction
with the external field the poling induces a Bragg grating in
the linear refractive index as will be shown in the following.

The x® poling process allows only the sign of the x®
nonlinearity to be changed. Therefore a x® poling profile for
an electro-optic Moiré grating is given by

x?@ () = xPsgnlsin(asz)lsgnlsin(agz)].  (21)

The Moiré and Bragg terms sin(agz) and sin(«gz) respectively
are determined by the poling where ap = 27 /A and A is the
poling period. If the Moiré period is an integer multiple of the
poling period, the term sgn[ sin(csz)] will introduce & phase
shifts into the sgn[sin(apz)] term. The m phase shifts have
the effect of creating a single double-length poling period
after each Moiré period. An illustration of an example x
Moiré grating profile is given in Fig. 7. Gratings of this type
have previously been studied for multiwavelength conversion
in quasiphase-matched nonlinear crystals [30,31].

+1 +1 | +1 gyl +1

A A

FIG. 7. An example x® Moiré grating with a Moiré period that
is three times the length of the poling period. The effect of the Moiré
period is to create a single double-length poling period after each
Moiré period.

The harmonic content of the square waves in Eq. (21) can

be understood by expanding them as a Fourier series:
@ sin [ag(2m — 1)z]

sgn[sin(ocsz)]z — . (22

4x
T

xP) =

m=1
The higher order Fourier components have larger denomi-
nators which reduce the overall strength of x®; therefore
we will limit our analysis to only the first component in the
following. The x® grating profile can thus be written as
4y @
x?@) =

A set of coupled-mode equations for the grating can be
derived by substituting the x ®) grating (23) into the nonlinear
wave equation

sgn[sin(agz)] sin(opz). (23)

’E  n*9d’E 92pNL
0z2 2% or? a2
with the nonlinear polarization PNt = ¢y x @ (2)E>.
The electric field ansatz needs to be modified from Eq. (15)

to include an external quasistatic field Ep (¢, z) to enable time
variation of the grating strength,

E(t,7) = Ep + ue' P 4 ye=iFten 4 ¢ c. (25)

= o 24)

The linear part of Eq. (24) can be decomposed into forward
and backward transport equations for the respective modes,
which gives

e=b) (9’E  n? O’E 1 du du
. = a2 | ¥t (29
2ip \ 9z2  c* or? v, 9t 9z
e irtb) (32E 2 3’E 1 dv v
7\ a2 | 27
2ip 9z 2 or? v, 9t 93z

The decomposition is an approximation that is achieved by ne-
glecting small and fast oscillating frequency terms and taking
a slowly varying envelope approximation which are the stan-
dard approximations used to derive coupled-mode equations
[22]. Making the same decomposition and approximations to
the nonlinear part of the wave equation yields

ei(wtfﬂz) aZPNL

208 Mo ~ kPsgnlsin(asz)lve 4, (28)
—i(wt+pz) g2 pNL )
¢ 1 LABZ

28 " o2 ~ —cPsgnlsin(es2)lue™,  (29)

where the detuning is the same as for the linear grating and
the nonlinear coupling is given by

2Bx®Ep(t, 2)

/c(z)(t,z) — —
n-=im

(30)

By comparing the nonlinear coupling «® with the linear
coupling «, the application of the quasistatic field Ep has the
affect of inducing a nonlinear grating strength given by

B 4xPEp(t, z)
- nm '
Equations (26), (28), (27), and (29) can be combined to

yield the same coupled-mode equations (17) and (18) as be-
fore but with the coupling given by

k(t,7) = kD(t, z)sgn[sin(asz)]. (32)

8§, 2) 31)
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Therefore an electro-optic grating can create a realization
of a dynamic Moiré grating by inducing the grating coupling
by an external quasistatic field Ep. Varying the externally
applied field allows for dynamic control of the group velocity
within the transmission band. As the group velocity reduction
is determined by the overall coupling strength, a linear grating
(3) could also be included so that the coupling becomes

k(t,7) = k sin(asz) + k@(z, z)sgn[sin(esz)], (33)

where the Bragg period is equal to the poling period so that
the overall maximum coupling is given by « + x@.

A realizable device would need to be based on a thin film
lithium niobate waveguide [32] in order to achieve the nec-
essary electric field density needed to generate a sufficiently
strong x®. Current limits of poling technology allow for
periods of around 750 nm [33,34] which would give a Bragg
wavelength of approximately 3 um which is within the trans-
parency window for lithium niobate. The reported coercive
field strength for lithium niobate is 21 V/um [35]. Applying
a field strength at half the coercive field over a 3 um thin film
lithium niobate waveguide would induce a grating modulation
strength in the order of 10~*. This is a factor of 10 smaller than
in our numerical examples above and a practical realization
would therefore involve a smaller slow light resonance which
would in turn require a longer device.

VII. CONCLUSION

In conclusion we have investigated dynamic Moiré grat-
ings capable of producing slow and stopped light which
provide improved delay-bandwidth performance compared to

a static Moiré grating. This is achieved by increasing and
subsequently decreasing the coupling strength of the grating
in time. When a pulse is localized within the grating, in-
creasing the coupling strength compresses the pulse spectrum
and reduces its group velocity. This process is adiabatically
reversible by decreasing the coupling strength to its orig-
inal value. This means that lower group velocities can be
achieved for a given acceptance bandwidth which overcomes
the usual delay-bandwidth constraint. We then showed that if
the coupling strength is varied in a nonsymmetric manner so
that is either increased or decreased, then the pulse spectrum
can be compressed or broadened once it exits the grating.
We finally investigated a possible realization of a dynamic
Moiré grating by using an electro-optic grating. This works
by applying an external quasistatic electric field to a poled
x® medium which induces a grating in the linear refractive
index. Varying the strength of the applied field then varies
the coupling strength of the induced grating which makes it
a viable method for creating a dynamic Moiré grating.

All data supporting this study are openly available from the
University of Southampton repository [36].
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