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Sensitive detection of entanglement in exciton-polariton condensates via spin squeezing
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We propose a method of generating and detecting entanglement via spin squeezing in an exciton-polariton
condensate. Spin squeezing is a sensitive detector of entanglement because any squeezing below shot noise
implies entanglement. In our scheme, two polariton spin species are resonantly pumped, forming a particle num-
ber fluctuating effective spin. The naturally occurring nonlinear interactions between the polaritons produce an
effective one-axis squeezing interaction, which drives the system toward a spin-squeezed state at steady-state. We
investigate the squeezing level that is attainable at the steady state for realistic experimental parameters and show
the favorable parameters for strong squeezing. The amount of squeezing tends to improve with larger pumping,
due to the bosonic enhancement of the one-axis twisting Hamiltonian. Using number-fluctuating versions of
the Wineland squeezing criterion and optimal spin inequalities, we show how multipartite entanglement can be
detected.
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I. INTRODUCTION

Entanglement is considered one of the hallmarks of quan-
tum mechanics, which distinguishes it from classical physics
[1–5]. While it is most commonly associated with the mi-
croscopic world, for sufficiently coherent systems and using
states that are relatively robust under decoherence, it has
been observed also at the larger scale [6–9]. Entanglement
in the mesoscopic regime has been achieved in experiments
with superconductors, resulting in the recent fast progress of
superconducting quantum computers [10–13]. Entanglement
plays a central role in quantum technologies to obtain practi-
cal advantages over devices based on classical physics. This
has made the generation of entanglement one of the central
tasks that must be achieved for any experimental platform in
quantum information science.

In the context of quantum metrology, squeezed states are
a specific type of entangled state that allows for enhanced
measurements beyond the standard quantum limit [14–16].
While squeezing was first studied in the context of optics,
analogous states have been studied for many-particle systems
such as atomic ensembles and Bose-Einstein condensates
(BECs) [17]. Numerous studies have aimed at realizing quan-
tum correlations and entanglement within an atomic BEC
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and spin squeezing is one of the most well-studied direc-
tions [18–22]. More recently, the generation of many-particle
entanglement within a single atomic BEC has also been in-
vestigated and realized in some experiments; in this case,
entanglement was detected between different spatial regions
of a single BEC [23–25]. This has spurred the study of more
specific types of entanglement, such as Einstein-Podolsky-
Rosen (EPR) steering and Bell correlations [26]. Currently,
there has not been an experimental demonstration of entan-
glement between spatially separated BECs but there have
been numerous theoretical proposals using a variety of meth-
ods based on interactions [27–29], Rydberg excitations [30],
or light-mediated methods [31–35]. In addition to quantum
metrology applications, entanglement between atomic ensem-
bles has been proposed to be useful for quantum information
applications such as quantum communications and computa-
tion [18,19,36–39].

Another rich platform exhibiting quantum degeneracy
is that of exciton-polariton condensates [40–48]. Exciton-
polaritons are a superposition of an exciton (an electron-hole
bound pair) and a cavity photon formed in planar semicon-
ductor microcavity structures. The extremely light effective
mass of the exciton-polaritons, inherited from the cavity pho-
tons, led to the milestone achievement of BECs [40,49,50].
Meanwhile, the matter component produces an effective non-
linear interaction which originates from a Coulomb exchange
[51–53]. This combination makes them fascinating hybrid
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FIG. 1. Schematic experimental system that we consider in this
paper. (a) A semiconductor microcavity formed by quantum wells
(QWs) sandwiched by distributed Bragg reflectors (DBR) is pumped
using laser light to excite the exciton-polaritons. The condensate is
represented by the circle in QWs. At sufficient densities the exciton-
polaritons form a condensate. Polaritons leak through the mirrors
to produce photoluminescence, which is imaged using a camera.
(b) The condensate is formed by exciton-polaritons of spin ±1
species, which have a natural non-linear interaction. As the system is
pumped, the many-particle system approaches steady-state involving
entanglement (zig-zag lines). By detecting the polarization of the
photoluminescence, entanglement can be inferred from the presence
of spin squeezing.

systems for studying highly coherent phenomena familiar
from optical systems, while simultaneously having matterlike
properties [54–61]. They also have the advantage that, using
different semiconductor materials, it is possible to achieve
higher condensation temperatures, even at room temperature
[62–66]. Experimental investigations of squeezing in polari-
tons has been shown in several works using four-wave mixing
and resonant excitation techniques [67–69]. It is only recently
that beyond mean-field effects have been experimentally de-
tectable in polariton condensates [70]. However, to date, there
has not been any explicit demonstration of entanglement in
polariton condensates, either within a single condensate or
between two spatially separate condensates.

In this paper, we examine an approach to generate entan-
glement within an exciton-polariton condensate. The origin
of the entanglement is the nonlinear self-interactions between
exciton-polaritons. In our proposed setup, the two spin species
of exciton-polaritons are pumped initially with linearly polar-
ized light (Fig. 1). This induces a macroscopic population of
exciton-polaritons within the QW, containing a superposition
of the two spin species. Due to the exchange interaction be-
tween excitons of the same spin, this produces an effective
one-axis twisting type of interaction, when written in the total
spin language. By examining the spin variance and driving the
system toward the steady state, we show that this forms a spin-
squeezed state. Then, using well-developed relations between

spin squeezing and entanglement, we deduce the presence of
entanglement in the coherent ensemble of exciton-polaritons.

Entanglement detection via spin squeezing provides a sen-
sitive way of inferring entanglement in the system. It is
well-established that any spin squeezing that is below shot
noise (i.e., 0 dB) implies the presence of entanglement [18].
This is in contrast to quadrature squeezing, where at least
3 dB of squeezing is required to detect entanglement [71].
We note that a similar approach of observing polarization
squeezing and entanglement has been demonstrated with cold
atoms [72,73]. In the work of Josse et al., the atomic excitation
is created by linearly polarized light passing through cold
cesium atoms. For polaritons considered here, the squeez-
ing is as a result of the exchange interactions among the
electron-hole pairs, giving rise to self-interactions among po-
laritons of the same species. Polarization squeezed light and
the squeezed exciton-polariton condensates have no fixed total
particle number, hence it is important to take into effect the
of number fluctuations. We discuss appropriate criteria that
allows for detection of entanglement in such highly number-
fluctuating states.

This paper is organized as follows. In Sec. II, we introduce
the theoretical model for the pumped spinor exciton-polariton
condensate. In Sec. IV, we discuss and analyze our simulation
results by calculating quantities such as the average particle
number, spin Q functions, and variances. In Sec. V, we trans-
late what this means in terms of entanglement using different
detection schemes. Finally, in Sec. VI, we summarize and
discuss our results.

II. THEORY OF SPIN SQUEEZING WITH PUMPED
POLARITONS

A. Master equation

We consider a system of exciton-polaritons within a semi-
conductor microcavity as shown in Fig. 1(a). Excitons within
a high-mobility quantum well (QW) are strongly coupled to
cavity photons defined by a distributed Bragg reflector (DBR).
Two polariton spin species s = ±1 exist in the microcavity,
which can be distinguished by the polarization of the light
that emerges as photoluminescence from the cavity. The po-
laritons are resonantly pumped using an external laser light
of linearly polarized light with a rate A, which populates the
two spin species. The orientation of the linearly polarized light
changes the relative phase of the polariton spin species. The
microcavity has a loss rate of γ for each of the spin species.
Polaritons of the same species interact with energy h̄U , and
have a cross-spin interaction of energy h̄V .

Such a system can be described by the master equation in
the interacting picture as

dρ

dt
= − i

h̄
[H0 + Hpump + Hint, ρ] − γ

2
L[a, ρ] − γ

2
L[b, ρ],

(1)

where the Hamiltonians are defined,

H0 = h̄�(a†a + b†b),

Hpump = h̄A(a†e−iθa + aeiθa + b†e−iθb + beiθb ),
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Hint = h̄U

2
(a†a(a†a − 1)) + h̄U

2
(b†b(b†b − 1))

+ h̄Va†ab†b, (2)

where a†, b† and a, b are the creation and annihilation oper-
ators for the two zero-momentum polariton spin species s =
±1, respectively, which obey bosonic commutation relations

[a, a†] = [b, b†] = 1,

[a, b] = 0. (3)

We neglect higher momentum polariton modes since these
do not contribute to the spin squeezing entanglement that we
are interested in for this study. Here, the Hamiltonian H0 de-
fines the energy h̄� of the zero-momentum polaritons relative
to the pump laser. Hpump is the Hamiltonian for the pump laser
with amplitude A, and θa and θb are the pumping phases of
the laser for modes a and b respectively. The Hamiltonian Hint

contains the nonlinear interaction with energy h̄U between the
same spins and h̄V for different spins. The superoperator

L[a, ρ] = a†aρ + ρa†a − 2aρa†,

L[b, ρ] = b†bρ + ρb†b − 2bρb†
(4)

is the Lindbladian loss for photons leaking through the cavity.
Polaritons are lost with a rate γ .

The nonlinear terms in the Hamiltonian Hint are expected
to produce spin squeezing since the self-interaction terms can
be rewritten as

Hint = (U − V )

4
(Sz )2 + (U + V )

4
N 2 − UN

2
, (5)

where we defined the total number operator

N = a†a + b†b, (6)

and the Schwinger boson (total spin) operators as

Sx = a†b + b†a,

Sy = i(b†a − a†b), (7)

Sz = a†a − b†b,

which obey the commutation relations

[Sl , Sm] = 2iεlmnSn, (8)

where εlmn is the Levi-Civita symbol and l, m, n ∈ {x, y, z}.
The total number operator commutes with all spin operators

[N , Sl ] = 0, (9)

hence they share the same set of eigenstates. In the interaction
Hamiltonian (5), the (Sz )2 term is known to produce a one-axis
twisting squeezing interaction [14]. Note that if U = V , then
the (Sz )2 term cancels and there will not be any squeezing.

B. Spin mapping

A major difference between atom BECs and exciton-
polariton condensates is that the latter is an open dissipative
system and does not obey a conservation law for the total
polariton number. In an atomic system, the atom number can
be considered to be constant shot to shot, but in the polari-
ton system the pumping terms Hpump in (1) actively produce

superpositions in the polariton number states. Ultimately, we
will be interested in generating spin squeezing between modes
a and b, and thereby generating entanglement. In this section,
we discuss how a system without a fixed particle number can
be mapped into an effective spin space.

To identify the spin mapping, first let us expand the density
matrix as

ρ =
∑
klk′l ′

ρklk′l ′ |k, l〉〈k′, l ′|, (10)

where

|k, l〉 = (a†)k (b†)l

√
k!l!

|0〉 (11)

are the normalized Fock states. For atomic BECs, the number
of atoms can often be considered to be fixed, meaning that
k and l satisfy the relation k + l = N , where N is the fixed
atom number. To identify the different spin sectors, we project
the density matrix of the full Hilbert space to its equivalent
spin version with a total of N particles. We define the density
matrix in the N-particle sector as

ρN = �Nρ�N

pN
, (12)

where

�N =
N∑

k=0

|k, N − k〉〈k, N − k| (13)

is the projector on the N-particle subspace. The denominator
in (12) is needed such as to normalize the state properly. The
probability of projection on the N-particle sector is defined as

pN = Tr(�Nρ�N ). (14)

As usual, pN is a probability distribution and satisfies∑
N

pN = 1. (15)

We introduce the notation that any expectation value with
the subscript N should be taken with respect to the state ρN ,

〈X 〉N ≡ Tr(ρNX ), (16)

for any operator X . Any state after projection is in a fixed total
polariton number subspace

〈N 〉N = Tr(NρN ) = N. (17)

The number projected state can be used to form the number
averaged density matrix:

ρ� =
∑

N

�Nρ�N =
∑

N

pNρN . (18)

This is a mixture of spin density matrices of different
particle numbers. While ρ� �= ρ in general, for expectation
values of any product of spin operators it is possible to use
either state. For example, for a single spin operator

〈Sl〉ρ�
= Tr(Slρ�)

=
∑

N

pN Tr(SlρN )
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= Tr

(∑
N

�N Sl�Nρ

)

= Tr(Slρ)

= 〈Sl〉ρ, (19)

where we used the fact that [Sl ,�N ] = 0, �2
N = �N , and∑

N �N = I , and the cyclic property of the trace Tr(XY Z ) =
Tr(ZXY ). For any product of spin and number operators, the
same logic holds, as the particle number is conserved. Thus, in
terms of evaluating expectation values of spin operators, one
does not need to use the number projected state ρ�, since the
spin operators (7) do not mix different number sectors.

C. Noninteracting limit

We illustrate the spin mapping procedure by a simple but
relevant example. Consider the limiting case of the master
equation (1) where interactions are set to zero U = V = 0.
In this case, the master equation can be exactly solved, and
the steady-state solutions take the form of a coherent state. To
find the steady-state amplitudes, we multiply (1) by a and b,
respectively, to obtain

d〈a〉
dt

= −i(�〈a〉 + Ae−iθa ) − γ 〈a〉
2

,

d〈b〉
dt

= −i(�〈b〉 + Ae−iθb ) − γ 〈b〉
2

.

(20)

Setting the time derivatives to zero, we obtain the steady-
state coherent state amplitudes

α0 = Ae−i(θa+π/2)

γ /2 + i�
,

β0 = Ae−i(θb+π/2)

γ /2 + i�

(21)

for modes a and b, respectively. The steady-state final state is
thus

|α0〉|β0〉 = e−(|α0|2+|β0|2 )/2eα0a†
eβ0b† |0〉. (22)

Now let us use the spin mapping to find the effective spin
state in the N-particle sector. Applying the projector (13), we
have

�N |α〉|β〉 = e−(|α0|2+|β0|2 )/2�N

∑
kl

αk
0β

l
0√

k!l!
|k, l〉

= e−(|α0|2+|β0|2 )/2
∑

k

αk
0β

N−k
0√

k!(N − k)!
|k, N − k〉

= √
pN

∣∣∣∣∣ α0√
|α0|2 + |β0|2

,
β0√

|α0|2 + |β0|2

〉〉
. (23)

Here we defined the spin coherent state

|α, β〉〉 = 1√
N!

(αa† + βb†)N |0〉

=
∑

k

√(
N

k

)
αkβN−k|k, N − k〉, (24)

which has a fixed particle number N |α, β〉〉 = N |α, β〉〉 and is
normalized for |α|2 + |β|2 = 1. The probability of obtaining
this particle number sector is

pN = e−(|α0|2+|β0|2 ) (|α0|2 + |β0|2)N

N!
. (25)

The above result (23) shows that, as expected, no squeezing
or entanglement is present when there are no interactions,
since a spin coherent state is an example of a state that is at
the standard quantum limit [17].

The number averaged density matrix is then

ρ� =
∑

N

pN

∣∣∣∣∣ α0√
|α0|2 + |β0|2

,
β0√

|α0|2 + |β0|2

〉〉

×
〈〈

α0√
|α0|2 + |β0|2

,
β0√

|α0|2 + |β0|2

∣∣∣∣∣. (26)

This is an incoherent mixture of spin coherent states with
the same Bloch sphere coordinates.

D. Observables

Here we define the main observables that are relevant for
showing spin squeezing in the polariton system.

1. Variances

The most direct way to show spin squeezing is by eval-
uating the variance of the spin operators (7). The variance
is evaluated along the perpendicular direction to the average
spin. For example, if the average spin is in the Sx direction,
then the variance is evaluated in the Sy-Sz plane

S� = Sy sin � + Sz cos �, (27)

where � is the angle with respect to the z axis. The variance
for the N-particle sector is then calculated as

VarN (S�) = 〈
S2

�

〉
N − 〈S�〉2

N , (28)

where the subscript N on the variance indicates that the fixed
number state ρN is used. The spin in the particle number sector
N is said to be squeezed if [14,17,74]

VarN (S�) < N. (29)

For example, for a spin coherent state |1/
√

2, 1/
√

2〉〉, the
variance obeys VarN (S�) = N , and hence is unsqueezed.

Since each particle sector N has a different threshold for
squeezing as seen in (29), we define a normalized variance
VarN (S�)/N such that the squeezing threshold is 1. Then the
average squeezing parameter across particle number sectors
labeled by N can be defined as

χ (�) =
∑

N

pN

(
VarN (S�)

N

)
. (30)

In the zero-particle sector, we define the state to have no
squeezing such that the term in the brackets for N = 0 is set
to 1. A state exhibits squeezing on average if

χ (�) < 1. (31)
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2. Spin Q distribution

To visualize the quantum state in the N-particle sector, an
effective way is to find the spin Q distribution, which we
define as [75]

QN (θ, φ) = (N + 1)

4π

〈〈
cos

θ

2
, eiφ sin

θ

2

∣∣∣∣ρN

×
∣∣∣∣ cos

θ

2
, eiφ sin

θ

2

〉〉
, (32)

where the spin coherent states are defined in (24) and are taken
to be in the N-particle sector. Each of the QN functions are
normalized, ∫

QN (θ, φ) sin θdθdφ = 1, (33)

hence we may then take the average and calculate its average
Q function across all the particle number sectors. We hence
define

Q(θ, φ) =
∑

N

pN QN (θ, φ). (34)

This is also a normalized function:∫
Q(θ, φ) sin θdθdφ = 1. (35)

III. SIMULATING THE MASTER EQUATION

A. Parameters

We first discuss the parameters of the evolution of the
central equation (1) that we calculate in this study. Dividing
(1) by γ throughout, we have a total of six independent pa-
rameters: the detuning �/γ , pump rate A/γ , the pump phases
θa, θb, intraspecies interaction U/γ , interspecies interaction
V/γ . We assume that the first four of these parameters can be
freely changed (within reasonable physical ranges) by simply
adjusting the laser parameters. For example, by adjusting the
frequency of the pump laser around the lower polariton res-
onance, �/γ can be adjusted, while the intensity, phase, and
polarization of the laser affects A/γ , θa, θb. While γ itself is
not tunable since it is set by the physical characteristics of the
microcavity, the ratio of four of the parameters is adjustable.

Meanwhile, the polariton-polariton interactions are less
easily adjusted and are typically given by naturally occur-
ring parameters. The intraspecies interaction can be estimated
from

U = 30e2aB|X |4
h̄π3εA , (36)

where e is the electronic charge, X is the exciton Hopfield
coefficient, ε is the effective permittivity in the semiconductor,
aB is the Bohr radius, and A is the trapping area [51,53,54,76].
In GaAs-based structures with aB = 10 nm, permittivity ε =
13ε0, zero detuning X = 1/

√
2, and a spot size of 1 μm,

we have h̄U ∼ 4 μeV. Using a conservative estimate of the
polariton lifetime using low-Q cavities where 1/γ ∼ 6 ps, we
obtain U/γ ∼ 0.05. For a higher-Q cavity where 1/γ ∼ 36
ps, we have U/γ ∼ 0.3. As explained in Refs. [51,53,54], the
repulsive interaction between low-momentum polaritons orig-
inate from exchange interaction between electrons and holes

that compose the excitons. Thus, for different spin species,
there is no repulsive interaction to lowest order. We thus set
the interspin interactions to V = 0 throughout [51,77]. We
note that tuning the interactions in exciton-polariton conden-
sates has been achieved in Refs. [78–81].

B. Numerical methods

QUTIP [82,83] was used to perform the time evolution of
the master equation (1). In any numerical simulation, trun-
cation of the Hilbert space is required, since the polaritons
occupy an infinite dimensional space. We employ a simple
strategy of truncating the Fock states (11) such that the max-
imum range is k, l ∈ [0, Nmax]. What this means in terms of
the evolution of (1) is that any state that is connected where
k, l > Nmax is set to zero. This allows us to obtain a truncated
version of (1) within the Fock states with k, l ∈ [0, Nmax]. This
means that all quantities involving a summation over Fock
states such as (10), (15), and (34) have their upper limits
changed to Nmax.

Since we will later perform a spin mapping by applying the
projection operator (13), we discuss the effect of the trunca-
tion on the relevant spin spaces. Consider a plot of the possible
Fock states (11) on a square lattice such that the horizontal
axis labels the k � 0 and the vertical labels the l � 0. Then
the effect of the truncation is to keep states within a square
region 0 � k, l � Nmax. Lines of constant N , as projected
upon by (13), are along the negative diagonal lines such that
l = N − k. What this amounts to is that for a given Nmax,
the largest N that can be calculated without truncation is
N = Nmax. One may ask why the region with l > N − k is still
kept in the context of calculating the effective spin. First, to
calculate observables for a given spin sector N , generally one
requires taking Nmax > N such that truncation effects do not
affect the calculation. Second, we will primarily be dealing
with states with spins in the vicinity of the equator of the
Bloch sphere since in (1), a, b are pumped with the same
amplitude A. What this results in is that the populations of a, b
are always of a similar order, such that l ∼ k. Thus, in terms
of our truncation, the most important regions are along the
positive diagonal l ∼ k, and along the edges of the truncated
square the population is smaller. Thus as long as Nmax is large
enough to keep track of the primarily populated states, the
simple truncation approach is an effective method to keep the
most relevant states.

IV. STEADY-STATE SOLUTIONS OF THE MASTER
EQUATION

We now discuss the numerical results obtained by directly
simulating the master equation (1). We first discuss how the
steady-state solutions are obtained, then directly calculate the
Q functions in various particle sectors, as well as the average
values. Then the amount of squeezing is evaluated using vari-
ances and the squeezing parameter χ .

A. Reaching steady-state and numerical truncation

To obtain the steady-state solutions, we numerically evolve
(1) until static solutions are reached. To evaluate whether the
steady state has been reached, we calculate the expectation
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FIG. 2. Average particle number (6) and variance (30) versus
evolution time t (a), (c) and Nmax (b), (d), respectively. Common
parameters are �/γ = 0, A/γ = 1,V = θa = θb = 0.

value of the total number operator N . The results are shown
in Fig. 2. We expect that the timescale of the approach to
the steady state is set by the polariton loss rate γ , hence
the steady state should be achieved for several multiples of
the dimensionless unit γ t . We find that after approximately
γ t = 10, the average number remains constant for all cases.

The steady-state particle number is generally a function
of all parameters of the master equation (1). From (21), we
obtain that the steady-state total particle number in the nonin-
teracting limit is

〈N 〉 ≈ |α0|2 + |β0|2

= 2A2

γ 2/4 + �2
. (37)

For the parameters used in Fig. 2, the steady-state values
should approach 〈N 〉 = 8. The steady-state particle number
is generally seen to decrease with the interaction strength U
for the same pumping rate A, where for the U/γ = 0.05 case
a similar value to the noninteracting case is achieved, but for
U/γ = 0.3 the average number is significantly reduced. We
attribute this to the interactions giving an effective detuning
effect such that the pumping is less efficient at generating
polaritons at the target frequency as the polariton population
increases.

In Fig. 2(b), we examine the effect of the truncation on
the average polariton number on the steady-state values. The
average polariton numbers are calculated at γ t = 20, which
well approximates the steady-state results. We see that con-
vergence is generally attained when Nmax ∼ 〈N 〉 as expected,
since the calculation is large enough to contain the dominant
polariton population. For larger pump rates, as expected, a
larger Nmax is required to reach convergence. Convergence
shows that by taking Nmax large enough, the effect of the
numerical truncation can be made to not affect the physical
results.

To verify that the attainment of the steady state and the
dependence on the truncation is well estimated using the num-
ber operator, we also calculate the time and Nmax dependence
for the squeezing parameter (30). We generally see similar
results, where the steady state is attained for γ t = 10 and
convergence with Nmax ∼ 〈N 〉, at similar values as calculated
with the average particle number. We will henceforth consider

(b)

(c)

(d)

)e()a(

(f )

(g)

(h)

FIG. 3. Individual QN -function (32) for a fixed polariton number
N in the (θ, φ) plane. Parameters are U/γ = 0.05 for (a) N = 1,
(b) N = 2, (c) N = 4, (d) N = 9, and U/γ = 0.3 for (e) N = 1,
(f) N = 2, (g) N = 4, (h) N = 9. Common parameters are �/γ =
0, A/γ = 1 and V = θa = θb = 0, Nmax = 20. Angles are in units of
radians.

all our results after they have reached the steady state, and
take Nmax large enough such that the physical results are
independent of the truncation.

B. Q functions and variances

We now turn to calculating the QN functions as defined
in (32) for various particle sectors. The results are shown in
Fig. 3. We choose parameters such that the polaritons are
pumped with θa = θb = 0 and � = 0, which in the nonin-
teracting limit generates coherent states with α = β = 2A/γ

according to (21). After the spin mapping, this corresponds to
a spin coherent state |1/

√
2, 1/

√
2〉〉 which is polarized in the

Sx direction from (23). The first thing we notice is that the size
of the QN functions decrease with N . This is as expected since
the size of the QN functions scale as ∼1/

√
N [17].

More importantly, we see that the QN functions show
more squeezing for the larger particle number sector N . For
instance, the squeezing is higher at N = 9 compared to the
case N = 4 in Figs. 3(c) and 3(d) and Figs. 3(g) and 3(h).
Unsqueezed QN functions appear as a symmetric Gaussian-
shaped distribution, and it is clear that squeezing is being
generated for the larger N values. We attribute this to the
fact that for larger systems the same amount of squeezing is
attained for shorter interaction times. The optimal squeezing
time scales as ∼1/N2/3 [14,17], which originates from the
bosonic enhancement of the squeezing interaction Hamilto-
nian S2

z . Thus, for the larger particle number sectors, the
interaction only needs to act for a smaller time to achieve the
same effect. We can imagine this physically that the polaritons
enter the cavity for a typical time 1/γ , and within this time
they become squeezed. For the larger particle-number sectors,
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

(i)

(j)

FIG. 4. Average Q function (34) in the (θ, φ) plane and variance
(30) as a function of � for (a) and (f) A/γ = 1,U/γ = 0; (b) and (g)
A/γ = 1,U/γ = 0.05; (c) and (h) A/γ = 2,U/γ = 0.05; (d) and
(i) A/γ = 1,U/γ = 0.3; (e) and (j) A/γ = 2,U/γ = 0.3. Common
parameters are �/γ = 0 and V = θa = θb = 0, Nmax = 20. Angles
are in units of radians.

the squeezing timescales are shorter by ∼1/N2/3, hence there
is a larger squeezing effect.

The results as shown in Fig. 3 experimentally would
correspond to performing a measurement on various particle-
number sectors N and plotting the Q function for these
postselected results. Since N varies from shot to shot, to
measure the full Q function one would need to take a large
number of measurements for each θ and φ to have a chance
of getting shots with the same particle number N to compose
the images. To remove the postselection on N , we hence also
look at the average Q function (34) which is over all particle
number sectors. The results for various choices of parameters
are shown in Figs. 4(a)–4(e). We observe that for all parameter
choices with U > 0, there is a squeezing effect, where there is
a deviation from the circular distribution obtained for U = 0.
The squeezing in the diagonal direction is as expected for a
one-axis squeezing interaction, where the optimal squeezing
angle is dependent upon the interaction time and N [17].

C. Squeezing parameter

For a more quantitative measure of the squeezing, we plot
the squeezing parameter (30) for each of the parameters,
as shown in Figs. 4(f)–4(j). We observe that for all cases
with U > 0, at the optimal angle the squeezing parameter
is below unity χ < 1, meaning that squeezing is attained on
average below the standard quantum limit. A value of χ = 1
corresponds to shot noise at the standard quantum limit, or

)b()a(

(d)

U/γ=0.3

U/γ=0.05

(c)

U/γ=0.05

U/γ=0.3

(rad)

(r
ad

)

FIG. 5. Optimal spin squeezing χ of polaritons at steady state. In
each case, the optimal spin direction � in (30) is found as a function
of (a) A/γ with �/γ = θa = θb = 0; (b) �/γ with A/γ = 1, θa =
θb = 0; (c) θa, θb with �/γ = −0.25, A/γ = 1,U/γ = 0.05, θa =
θb = 0; (d) A/γ , �/γ with U/γ = 0.3, θa = θb = 0. Common pa-
rameters are V = 0, Nmax = 20.

zero intensity noise in Ref. [67]. Examining the minimum
value of χ that is attained, we see that as expected for larger
interactions U , generally more squeezing is present, where
the best squeezing attained is about χ ≈ 0.78 for low-Q cav-
ities [Fig. 4(g)] and χ ≈ 0.68 for high-Q cavities [Fig. 4(i)].
We remind the reader that small χ means large squeezing.
What is interesting is that for both the low-Q and high-Q
cavities, we see that increasing the pump rate A tends to
increase squeezing, from χ ≈ 0.78 to 0.7 when the pump rate
is doubled [Figs. 4(g) and 4(h), respectively]. This again can
be explained by the same reason that the QN functions show
more squeezing for larger N . For larger N , the same squeezing
occurs for a shorter time or, put another way, more squeezing
is attained for the same time interval. Since larger pumping
gives, on average, polaritons that are in larger particle-number
sectors N , this results in more squeezing for larger pumping.

We show the effect of the squeezing on the pumping rate A
in Fig. 5(a). For each value of A, we choose the optimal spin
squeezing angle � to show the best squeezing. We see clearly
that the squeezing increases monotonically with pumping, for
all the parameters chosen. In our simulations, we only con-
sider relatively small polariton numbers due to the limitation
of our numerics. Hence, in a realistic experimental situation,
the pump rates are likely to be much larger. While we must
extrapolate the graphs to larger values, we do not expect that
significantly different behavior will occur when the polariton
numbers are further increased. The fact that a larger amount of
squeezing is obtained for larger pump rates is favorable exper-
imentally, since the realistic polariton numbers are typically
much larger than what we consider in our calculations. Hence
we expect that the naturally occurring polariton nonlinearities
are sufficient to observe squeezing.

We also investigate the effect of the squeezing on the
detuning �. For exciton-polaritons, in practice, only small de-
tunings would be possible as the pump laser would need to be
in resonance with the lower polariton branch. In Fig. 5(b), we
see that the detuning does play an important role in enhancing
squeezing. The best squeezing occurs when the pump laser
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is negatively detuned with respect to the polariton resonance.
Qualitatively, we understand this as due to a stabilizing effect
of the detuning in the presence of interactions. The effect of
the detuning is to apply a phase to the coherent state as seen
in (21). At the mean-field level, the interactions U also create
a phase on the coherent state. The negative detuning acts to
cancel off this interaction-induced phase.

The squeezing as a function of the pumping phase shows
a simpler dependence, as shown in Fig. 5(c). We see that the
best squeezing occurs when the phases of the pump lasers are
matched θa − θb = nπ , where n is an integer. We henceforth
set the phases of the pump lasers to θa − θb = 0 such as to
target the optimally squeezed states. In Fig. 5(d), we see the
optimal squeezings in the (A,�) plane, the best squeezing is
about χ ≈ 0.60, corresponding to 2.2 dB squeezing. We see
that for larger pumping, the optimal detuning becomes more
negative. The amount of squeezing tends to improve with the
pumping, as observed before.

V. ENTANGLEMENT DETECTION

The spin squeezing of the exciton-polaritons corresponds
to the generation of multiparticle entanglement. In this sec-
tion, we evaluate two criteria that can be used to detect the
entanglement.

A. Wineland squeezing parameter

A simple scheme for detecting entanglement is to use the
Wineland squeezing parameter, defined as [74]

ξ 2
N = N min�[VarN (S�)]

〈Sx〉2
N + 〈Sy〉2

N

, (38)

where the variance is defined in (28) and the expectation
values are taken over a fixed number of particles. In the single
particle-number sector N , this is a detector for entanglement
if [18]

ξ 2
N < 1. (39)

Since in our case the total polariton number is not fixed,
(38) would need to be applied for each particle number sector
N . In this case it is more appropriate to use the number-
fluctuating version of the squeezing parameter defined as
[84,85]

ξ 2 = 〈N 〉 min�[Var(S�)]

〈Sx〉2 + 〈Sy〉2
, (40)

where the variance over all particle number sectors is

Var(S�) = 〈
S2

�

〉 − 〈S�〉2

= Tr(ρ(S�)2) − Tr(ρ(S�))2, (41)

and the expectation values are defined over the full ρ, as in
(19). All the quantities in (40) can be evaluated in the presence
of number fluctuations hence is an experimentally accessible
quantity. Entanglement is verified in the system if [84,85]

ξ 2 < 1. (42)

We show a proof of this in Appendix A. Clearly, in the case
of a fixed particle number, state (40) reduces to (38), and the
same criterion as (39) is obtained.

(a)

(c)

U=0.3

U=0.05

(b)

Δ=0.25

Δ=0

(d)

FIG. 6. Wineland squeezing parameter (40) at steady state. Any
value of ξ 2 less than 1 indicates entanglement (dashed lines). We
plot ξ 2 as a function of (a) pump rate A/γ with �/γ = 0, Nmax = 20;
(b) interaction strength U/γ with A/γ = 1, Nmax = 20; (c) pump rate
A/γ and detuning �/γ for U/γ = 0.05, Nmax = 30; and (d) pump
rate A/γ and detuning �/γ for U/γ = 0.3, Nmax = 20. Common
parameters are V = 0 and θa = θb = 0.

In Figs. 6(a) and 6(b), we show the number-fluctuating
Wineland squeezing parameter (40) as a function of the pump-
ing rate A/γ and interaction strength U/γ , respectively. We
see that in all cases entanglement can be detected for all
parameter choices of A/γ and U/γ . Of particular note is that
the squeezing parameter tends to decrease with the pumping
rate A/γ [Fig. 6(a)]. Since we expect that the pump rates will
be performed at high rates in a realistic experiment, the most
relevant regime is for large A/γ . The fact that the squeezing
level tends to improve monotonically with A/γ shows that
it is favorable to be in the high pumping regime, as also
discussed previously. In Fig. 6(b), we see that the squeezing
level reaches a minimum with interaction strength and tends
to increase thereafter. A similar effect is seen for the detuning,
where there is an optimal value. In Figs. 6(c) and 6(d), the
squeezing is plotted in the two-dimensional parameter space
of A/γ and �/γ . Here we see that the squeezing tends to
generally improve with A/γ but there is an optimal value of
�/γ for a given pump rate. This dependence was also seen in
Fig. 5(d), where there was an optimal detuning for the best
squeezing. Returning to Fig. 6(b), we attribute the optimal
value of U/γ for the squeezing to be due to a similar effect to
the detuning. Comparing Figs. 6(c) and 6(d), we interestingly
see that similar levels of squeezing are obtained for both cases,
despite the larger effective interaction in Fig. 6(d). Thus, a
larger interaction does not necessarily always lead to more
squeezing. To take full advantage of the nonlinearity of value
U/γ , the detuning �/γ needs to be adjusted to obtain a highly
squeezed state.

B. Optimal spin-squeezing criteria

A potentially more sensitive criterion for entanglement was
provided in Ref. [38] involving the first and second moments
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of the spin operators,

N (N + 2) �
〈
S2

x

〉
N

+ 〈
S2

y

〉
N

+ 〈
S2

z

〉
N
, (43)

VarN (Sx ) + VarN (Sy) + VarN (Sz ) � 2N, (44)

(N − 1)VarN (Sk ) �
〈
S2

i

〉
N

+ 〈
S2

j

〉
N

− 2N, (45)

(N − 1)[VarN (Si ) + VarN (S j )] �
〈
S2

k

〉
N

+ N (N − 2), (46)

where i, j, k take all the possible permutations of x, y, z. The
above inequalities are valid for separable states, hence, to
verify entanglement a violation is required, i.e., that the LHS
< RHS. These criteria can detect a large range of entangled
states such as Fock states. Again, the number-fluctuating ver-
sion of the criterion is more suitable in our context and some
possibilities are given in Eqs. (15)–(18) of Ref. [85]. For
the first two inequalities, we can define their corresponding
number-fluctuating versions [85]:

E1 = 〈
S2

x

〉 + 〈
S2

y

〉 + 〈
S2

z

〉 − 〈N (N + 2)〉, (47)

E2 = Var(Sx ) + Var(Sy) + Var(Sz ) − 2〈N 〉. (48)

For separable states,

E1 � 0, (49)

E2 � 0, (50)

hence entanglement is detected if these are violated. The
number-fluctuating versions in Ref. [85] for the remaining two
criteria are not easily used since the inequalities involve ex-
pectation values involving factors (N − 1)−1, which diverge
for N = 1.

We therefore derive our own number-fluctuating versions
of the criteria, corresponding to (45) and (46). We first define
the quantities

E3 = 〈
S2

k (N − 1)
〉 − 〈Sk

√
N − 1〉2 − 〈

S2
i

〉 − 〈
S2

j

〉 + 2〈N 〉,
(51)

E4 = 〈
S2

i (N − 1)
〉 − 〈Si

√
N − 1〉2,

+ 〈
S2

j (N − 1)
〉 − 〈S j

√
N − 1〉2 − 〈

S2
k

〉 − 〈N (N − 2)〉.
(52)

These criteria have all quantities evaluated over number-
fluctuating states. We show in Appendix B that these
quantities can be connected to (45) and (46), respectively, and
we may deduce that for separable states

E3 � 0, (53)

E4 � 0. (54)

Hence a violation of this inequality detects entanglement.
Evaluating the four quantities (47), (48), (51), and (52),

we find that E1 = 0, E2 > 0, and E4 > 0 for all parameters.
We hence focus upon E3 for the entanglement detection; our
calculated results are shown in Fig. 7. Figure 7(a) shows
E3 as a function of the pump rate, which again shows that
the correlations increasingly correspond to that of an entan-
gled state. This is consistent with what was found with the
squeezing parameters χ and ξ 2. In Fig. 7(b), we again see

U=0.3

U=0.05

(a) (b)

Δ=0.25

Δ=0

(c) (d)

FIG. 7. Spin-squeezing entanglement criterion parameter E3

from (51) at steady state. In (51), we choose spin directions i =
x, j = y, k = z. Any value of E3 less than 0 indicates entanglement
(dashed lines). We plot E3 as a function of (a) pump rate A/γ

with �/γ = 0, Nmax = 20; (b) interaction strength U/γ with A/γ =
1, Nmax = 20; (c) pump rate A/γ and detuning �/γ for U/γ = 0.05,
Nmax = 30; and (d) pump rate A/γ and detuning �/γ for U/γ = 0.3,
Nmax = 20. Common parameters are V = 0 and θa = θb = 0.

that the presence of interactions U/γ produces an entangled
state, but the level of violation starts to decrease. This is
the same behavior as that seen for the Wineland squeezing
parameter in Fig. 6(b). The behavior of E3 as a function of
A/γ and �/γ is shown in Figs. 7(c) and 7(d). Generally, a
very similar behavior with the parameters are seen for both
cases U/γ = 0.05, 0.3. The region of violation for ξ 2 and E3

is seen to be very similar, with a small region around �/γ < 0
and A/γ ∼ 1 failing to be detected. With the exception of
this small region in parameter space, generally both criteria
work very well in detecting entanglement. We thus find that
both quantities tend to be quite similar in performance for
this particular system. In terms of evaluation, E3 does not
require any optimization (except for the choice of spin axes)
and hence may be advantageous in this regard.

VI. SUMMARY AND CONCLUSIONS

We find that it is possible to generate spin-squeezed en-
tanglement at the steady state with exciton-polaritons. The
spin squeezing is defined by mapping two spin modes of
the exciton-polaritons onto an effective spin space. Using the
spin mapping, it is possible to evaluate spin variances, Q
functions, and entanglement criteria to show the level of spin
squeezing present. The best squeezing is observed for large
pump rates A/γ and large self-interactions U/γ . While it is
expected that large self-interactions should give an enhanced
squeezing, it is fortuitous that large pumping also contributes
to better squeezing. This occurs due to the fact that the optimal
squeezing time for a S2

z interaction scales as ∝ 1/N2/3. Hence,
for highly pumped systems with large average N , only a short
interaction time is required. Hence even for low-Q cavities
where the time that the polariton spends in the cavity is short,
significant squeezing should be able to be generated within
this time for large polariton populations. Similar results have
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been found in experiments with cold atoms [72]. Interestingly,
there is an optimal detuning of the pumping with respect
to the squeezing. For larger pumping, the optimal detuning
becomes larger. This behavior was observed in polariton ex-
periments where large pump power [67] or detuning [68,86]
led to intensity squeezing of light. At higher pump power,
detuning requires optimization to find the sweet spot. In an
experimental situation, this can be performed by sweeping the
frequency of the pump laser.

Squeezing levels can be improved with high-Q cavities as
expected. The effect of the high-Q cavities is the increase in
magnitude of all the parameters, but considering the relatively
limited tunability of U , the largest impact this has is to be
able to access effectively larger interaction regions. In this
paper, we limited ourselves to naturally occurring values of
the polariton-polariton interaction, but numerous studies have
examined methods of enhancing it, which would improve
squeezing levels. These include using creating dipole inter-
actions between polaritons [87,88] or using charged excitons
[89,90]. There are also methods and proposals to achieve
polariton blockade in the weak interaction regime [53,91–93].
To take advantage of the larger nonlinearities, it is required to
tune the detuning parameter to generate the largest squeezing
levels. Our results show that even for a small nonlinearity,
this can effectively be compensated by applying a large pump
rate at the appropriate detuning. While in our ideal theoretical
calculations this may be true, we expect that in practice other
sources of decoherence may be present, where it would be
advantangeous to have high-Q cavities. In our calculations,
the main source of decoherence—loss—is included but other
types of decoherence which may be detrimental to working at
the standard quantum limit may also be present. Hence, while
our results are promising to observe entanglement in polariton
condensates, further studies should include other sources of
decoherence. We also note that there should also be squeezing
present in the transient dynamics (e.g., t = 0 to t = 1/γ )
before going to the steady state. While it might be possible
to see even stronger squeezing by looking at the transient
dynamics, this will probably add more complex experimental
challenges as Q functions and spin measurements must be
measured on the picosecond timescale. Hence, in the interest
of simplicity of the experimental demands we did not examine
this, although this may also be an interesting avenue of future
research.
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APPENDIX A: PROOF OF NUMBER FLUCTUATING
WINELAND SQUEEZING CRITERION

Following Ref. [18], we first consider a number fluctuating
separable state of the form

ρ =
∑
k,N

PkNρ
(1)
kN ⊗ · · · ⊗ ρ

(N )
kN . (A1)

Here the density matrices for the ith particle is denoted
ρ

(i)
kN , and the probability of obtaining the kth spin ensemble

containing N particles is PkN , where∑
k,N

PkN = 1. (A2)

In this notation, the total spin operators are defined as

S j =
∑

i

σ
(i)
j , (A3)

where j ∈ {x, y, z} and i labels the particles. Spin expectations
can be calculated as

〈Sz〉 =
∑
k,N

PkN

∑
i

〈
σ (i)

z

〉
kN , (A4)

where the expectation value over subspins is defined as〈
σ (i)

z

〉
kN = Tr

(
σ (i)

z ρ
(i)
kN

)
. (A5)

We can then evaluate that

Var(Sz ) = 〈
S2

z

〉 − 〈Sz〉2

= 〈N 〉 −
∑
k,N

PkN

∑
i

〈
σ (i)

z

〉2
kN

+
∑
k,N

PkN 〈Sz〉2
kN − 〈Sz〉2, (A6)

where we defined the average particle number:

〈N 〉 =
∑
k,N

PkN N. (A7)

We now find the three inequalities as in Ref. [18]. First,
using the Cauchy-Schwartz inequality, we have

〈Sz〉2 =
(∑

k,N

PkN 〈Sz〉kN

)2

�
∑
k,N

PkN 〈Sz〉2
kN . (A8)

Second, starting from〈
σ (i)

x

〉2
kN + 〈

σ (i)
y

〉2
kN + 〈

σ (i)
z

〉2
kN � 1, (A9)

we multiply by PkN and sum over k, N, i to obtain

−
∑
k,N

PkN

∑
i

〈
σ (i)

z

〉2
kN � − 〈N 〉 +

∑
k,N

PkN

∑
i

〈
σ (i)

x

〉2
kN

+
∑
k,N

PkN

∑
i

〈
σ (i)

y

〉2
kN . (A10)
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Finally, again using the Cauchy-Schwartz inequality, we
have

〈Sx〉2 =
(∑

k,N,i

PkN
〈
σ (i)

x

〉
kN

)2

� 〈N 〉
∑
k,N

PkN

∑
i

〈
σ (i)

x

〉2
kN . (A11)

Finding the same inequality for 〈Sy〉2 and adding, we thus
have

〈Sx〉2+〈Sy〉2�〈N 〉
∑
k,N

PkN

∑
i

(〈
σ (i)

x

〉2
kN + 〈

σ (i)
y

〉2
kN

)
. (A12)

Substituting (A6), (A8), (A10), and (A12) into (40) to
obtain an upper bound, we obtain the criterion (42).

APPENDIX B: PROOF OF NUMBER FLUCTUATING
OPTIMAL SPIN INEQUALITY

In this Appendix, we show that for separable states (53)
and (54) hold.

1. Proof of Eq. (53)

First consider the second term in (51). Due to the number-
conserving nature of the operator Sk

√
N − 1, we can use a

similar argument to (19) to write

〈Sk

√
N − 1〉2 =

(∑
N

pN 〈Sk

√
N − 1〉N

)2

�
∑

N

pN 〈Sk

√
N − 1〉2

N

=
∑

N

pN (N − 1)〈Sk〉2
N , (B1)

where in the second line we used the Cauchy-Schwartz
relation E (XY )2 � E (X 2)E (Y 2) where Y = 1 in this case.
Meanwhile, all the other terms can be directly written as a
sum over N using similar arguments to (19). For example, the
first term in (51) is

〈
(N − 1)S2

k

〉 =
∑

N

pN (N − 1)
〈
S2

k

〉
N . (B2)

Putting these expressions into (51), we obtain

E3 �
∑

N

pN
[
(N − 1)

〈
S2

k

〉
N − (N − 1)〈Sk〉2

N

− 〈
S2

i

〉
N − 〈

S2
j

〉
N + 2N

]
. (B3)

The quantity in the square brackets is exactly (45), hence
we conclude that E3 � 0 for any separable state.

2. Proof of Eq. (54)

Using (B1), (B2), and similar arguments in (19), we can
write

E4 �
∑

N

pN
[
(N − 1)

〈
S2

i

〉
N

− (N − 1)〈Si〉2
N + (N − 1)

〈
S2

j

〉
N

− (N − 1)〈S j〉2
N − 〈

S2
k

〉
N − N (N − 2)

]
The quantity in the square brackets is exactly (46), hence

we conclude that E4 � 0 for any separable state.
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