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Three-body recombination near the d-wave resonance in ultracold 85Rb-87Rb mixtures
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In this study, we investigate the three-body recombination (TBR) rates on both sides of the interspecies
d-wave Feshbach resonance in the 85Rb -87Rb-87Rb system using the R-matrix propagation method in the
hyperspherical coordinate frame. Our calculations are based on the Lennard-Jones model potential for the
Rb-Rb interaction. Two different mechanisms of recombination-rate enhancement for positive and negative
85Rb -87Rb d-wave scattering lengths are analyzed. On the positive-scattering-length side, recombination-rate
enhancement occurs due to the existence of three-body shape resonance, while on the negative-scattering-length
side, the coupling between the lowest entrance channel and the highest recombination channel is crucial to the
appearance of the enhancement. In addition, our study shows that the intraspecies interaction has a significant
role in determining the emergence of recombination-rate enhancements. Compared to the case in which the three
pairwise interactions are in d-wave resonance, when the 87Rb-87Rb interaction is near the d-wave resonance, the
values of the interspecies scattering length that produce the recombination enhancement shift. In particular,
when the 87Rb-87Rb interaction is away from the d-wave resonance, the enhancement disappears on the side
with negative interspecies scattering length.

DOI: 10.1103/PhysRevA.104.013317

I. INTRODUCTION

Three-body recombination (TBR) occurs in ultracold
atomic gases as a result of a three-body collision in which the
atoms gain kinetic energy due to the formation of a two-body
bound state. This process is vitally important in a number of
physical and chemical contexts and has been recognized as
one of the most important scattering observables [1–5]. As an
exothermic reaction, TBR is one of the main loss mechanisms
in systems with ultracold atoms, limiting the density and life-
time of a Bose-Einstein condensate [6–8]. Additionally, the
recombination process is employed as a way to form weakly
bound diatoms in ultracold degenerate Fermi gases [9–11].

Particles with resonant s-wave interactions will exhibit the
Efimov effect, i.e., an infinite sequence of universal bound
states characterized by discrete scale invariance [12,13]. The
universal properties of the Efimov effect have been investi-
gated both theoretically [14–23] and experimentally [24–47]
in ultracold atomic gases. Due to the novel characteristic of
the Efimov effect in few-body physics, whether the Efimov
effect is possible for p-wave or higher partial-wave interaction
is fundamentally important [48,49]. Nishida [50] noted that
Efimov states cannot be realized in physical situations for
non-s-wave interactions. The studies of Efremov et al. [51]
indicated that the effective potential is attractive and de-
creases as the third power of the interatomic distance for a
heavy-heavy-light system with a p-wave resonant interaction
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when employing the Born-Oppenheimer approximation
method. With the same method, Zhu and Tan [52] provided a
more general discussion of the universal properties for atoms
near higher partial-wave Feshbach resonances and found that
the effective potential behaved as 1/ρ2L+1 when the distance
ρ between two heavy atoms was large. These two works
also demonstrated that the Efimov effect does not occur in
few-body systems interacting via higher partial-wave resonant
interactions.

For d-wave dimers, Gao [53] predicted that the bound
states would always appear at a universal value of the s-wave
scattering length of as ≈ 0.956 rvdW. rvdW = (2μ2bC6)1/4/2 is
the van der Waals length, which characterizes the length scale
between the two neutral atoms interacting via the van der
Waals interaction −C6/r6 with two-body reduced mass μ2b.
For a system of three identical bosons that interact via a
d-wave resonant interaction, the study of Wang et al. [54]
showed that a universal three-body state associated with the
d-wave dimer is formed at as ≈ 1.09 rvdW. Calculations by Yao
et al. [55] showed that the TBR rate monotonically increases
through the unitary point and is nearly a constant on the
quasibound side. Despite this progress, universal properties of
heteronuclear systems interacting via resonant higher partial-
wave interactions are less well understood [56].

Experimentally, great efforts have been devoted to studying
strongly interacting atomic Bose gases with s-wave reso-
nances [24–27,32–47,57–61], but only a few studies have
investigated the many-body properties of interacting fermions
near a p-wave resonance [62–69]. For higher partial-wave
resonances, challenges arise due to their short lifetimes and
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narrow resonance widths [70]. Recently, two broad d-wave
resonances were observed via atom loss in a 85Rb -87Rb
mixture [70]. Very recently, a d-wave shape resonance and
Feshbach resonance were observed in degenerate 41K and
39K gases, respectively [71,72]. Moreover, both p-wave and
d-wave Feshbach resonances were observed in the 133Cs -
6Li system [73]. This experimental progress has provided a
platform to study the universal properties of few-body physics
with d-wave resonant interactions.

In this paper, we investigate the TBR process in a het-
eronuclear system with d-wave resonant interactions. In real
ultracold atomic systems, inter- and intraspecies interactions
are generally not controlled independently. Thus, complica-
tions arise in heteronuclear three-body systems due to the two
different scattering lengths. Near the interspecies Feshbach
resonance, two identical atoms interact with each other over
a small scattering length. Thus, we also focus on the more
realistic case in which two heteronuclear atoms are in d-wave
resonance while homonuclear atoms interact over a finite scat-
tering length. As a result, ultracold gases of heteronuclear
systems are expected to show rich few-body physics com-
pared to the homonuclear case.

The TBR rates are obtained using quantum calculations
based on a combination of the slow-variable-discretization
(SVD) method, traditional hyperspherical adiabatic method,
and R-matrix propagation method [74–79]. Following the
method of Ref. [77], first, we solve the Schrödinger equa-
tion with the hyperradius divided into two regimes. At short
distances, the SVD method is employed to overcome the nu-
merical difficulties at sharp nonadiabatic avoided crossings,
and at large distances, the traditional adiabatic hyperspherical
method is utilized to avoid the large memory and central
processing unit (CPU) time needed in SVD. Second, by prop-
agating the R matrix from short distances to large distances,
we can obtain scattering properties through the S matrix by
matching the R matrix with asymptotic functions and bound-
ary conditions. The Lennard-Jones potential, which has been
shown to be an excellent model potential, is utilized to mimic
the interactions between atoms [14,15,44,54,80].

This paper is organized as follows: In Sec. II, our calcu-
lation method and all necessary formulas for calculations are
presented. In Sec. III, we discuss the results and emphasize the
significant role of intraspecies interactions in heteronuclear
systems. We then provide a brief summary. Atomic units are
applied throughout the paper unless stated otherwise.

II. THEORETICAL FORMALISM

This numerical study focuses on the heteronuclear system
with total angular momentum J = 0. We use mi (i = 1, 2, 3)
to represent the mass of three atoms and use ri j to represent
their distance. We choose the 85Rb -87Rb -87Rb system as an
example and use the mass of Rb atoms in our calculations.
In the center-of-mass frame, six coordinates are needed to de-
scribe the three-particle system. Three of these coordinates are
taken to be the Euler angles—α, β, and γ —which specify the
orientation of the body-fixed frame relative to the space-fixed
frame. The remaining degrees of freedom can be represented
by the hyperradius R and the two hyperangles θ and φ. In our
method, we employ Delves’s hyperspherical coordinates. We

introduce the mass-scaled Jacobi coordinates. �ρ1 is the vector
from atom 1 to atom 2, with the reduced mass denoted by μ1;
the second Jacobi �ρ2 is measured from the diatom center of
mass to the third atom, with reduced mass μ2. θ is the angle
between �ρ1 and �ρ2. The hyperradius R and hyperangle φ are
defined as

μR = μ1ρ
2
1 + μ2ρ

2
2 (1)

and

tan φ =
√

μ2

μ1

ρ2

ρ1
, 0 � φ � π

2
, (2)

respectively, where μ is an arbitrary scaling factor that is
chosen as μ = √

μ1μ2 in our calculations. R is the only
coordinate with the dimension of length, which represents
the size of the three-body system. θ , φ, and the three Euler
angles (α, β, γ ) can be collectively represented by 	 [	 ≡
(θ, φ, α, β, γ )], which describes the rotation of the plane that
contains the three particles.

In hyperspherical coordinates, the Schrödinger equation
can be written in terms of the rescaled wave function
ψυ ′ (R; 	) = �υ ′ (R; 	)R5/2 sin φ cos φ:[

− 1

2μ

d2

dR2
+

(
2 − 1

4

2μR2
+ V (R; θ, φ)

)]
ψυ ′ (R; 	)

= Eψυ ′ (R; 	), (3)

where 2 is the squared “grand angular momentum oper-
ator,” whose expression is given in Ref. [81]. The volume
element relevant to integrals over |ψυ ′ (R; 	)|2 then becomes
dR sin θdθdφdα sin βdβdγ . The index υ ′ labels the different
independent solutions. The three-body interaction V (R; θ, φ)
in Eq. (3) is taken to be a sum of the three pairwise two-body
interactions υ(ri j ):

V (R; θ, φ) = υ(r12) + υ(r13) + υ(r23) . (4)

The interparticle distances ri j can be described in terms of the
internal coordinates as follows:

r12 = R
√

μ

μ1
cos φ, (5)

r23 = R

(
μ

μ2
sin2 φ + 1

4

μ

μ1
cos2 φ − 1

2
sin 2φ cos θ

)1/2

,

(6)

r13 = R

(
μ

μ2
sin2 φ + 1

4

μ

μ1
cos2 φ + 1

2
sin 2φ cos θ

)1/2

.

(7)

The wave function ψυ ′ can then be expanded with the
complete, orthonormal adiabatic channel functions �υ as

ψυ ′ (R; 	) =
∞∑

ν=0

Fνυ ′ (R)�ν (R; 	) . (8)

We determine the adiabatic potentials Uν (R) and correspond-
ing channel functions �ν (R; 	) at a fixed R by solving the
following adiabatic eigenvalue equation:(

2 − 1
4

2μR2
+ V (R; θ, φ)

)
�ν (R; 	) = Uν (R)�ν (R; 	) . (9)
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The channel function is further expanded on Wigner rotation
matrices DJ

KM as

�J�M
ν (R; 	) =

J∑
K=0

uνK (R; θ, φ)D
J�

KM (α, β, γ ), (10)

D
J�

KM = 1

4π

√
2J + 1

[
DJ

KM + (−1)K+J�DJ
−KM

]
, (11)

where J is the total nuclear orbital angular momentum, M
is its projection onto the laboratory-fixed axis, and � is
the parity with respect to the inversion of the nuclear co-
ordinates. The quantum number K denotes the projection
of J onto the body-frame z axis and takes the values K =
J, J − 2, . . . ,−(J − 2),−J for the “parity-favored” case,
� = (−1)J , and K = J − 1, J − 3, . . . ,−(J − 3),−(J − 1)
for the “parity-unfavored” case, � = (−1)J+1.

For the 85Rb -87Rb -87Rb system, the wave function is sym-
metric with respect to the exchange of the two 87Rb atoms, and
thus, this exchange symmetry can be built into the boundary
conditions of the body-frame components as follows:

P12D
J�

KM = �(−1)K D
J�

KM, (12)

P12θ = π − θ. (13)

For even parity, uνK should be symmetric about π/2 with even
K and antisymmetric with odd K . For odd parity, uνK should
be antisymmetric for even K and symmetric for odd K . To
satisfy the permutation requirements, uνK is expanded with
symmetric B-spline basis sets

uνK (R; θ, φ) =
Nφ∑
i

Nθ /2∑
j

ci, jBi(φ)[Bj (θ ) + BNθ+1− j (π − θ )]

(14)

or antisymmetric B-spline basis sets

uνK (R; θ, φ) =
Nφ∑
i

Nθ /2∑
j

ci, jBi(φ)[Bj (θ ) − BNθ+1− j (π − θ )],

(15)

where Nθ and Nφ are the sizes of the basis sets in the θ

direction and φ direction, respectively. The constructed sym-
metric B-spline basis sets utilized in the θ direction reduce the
number of basis functions to Nθ /2.

The goal of our scattering study is to determine the scatter-
ing matrix S from the solutions of Eq. (3). We calculate the R
matrix, which is defined as

R(R) = F(R)[̃F(R)]−1, (16)

where matrices F and F̃ can be calculated from the solution of
Eqs. (3) and (9) by

Fν,υ ′ (R) =
∫

d	�ν (R; 	)∗ψυ ′ (R; 	), (17)

F̃ν,υ ′ (R) =
∫

d	�ν (R; 	)∗
∂

∂R
ψυ ′ (R; 	) . (18)

Following the method of Ref. [77], we divide the hy-
perradius into (N − 1) intervals with the set of grid points
R1 < R2 < · · · < RN . At a short distance, we use the SVD
method to solve Eq. (3) in the interval [Ri, Ri + 1]. In the

SVD method, the total wave function ψυ ′ (R; 	) is expanded
in terms of the discrete-variable-representation (DVR) basis
πi and the channel functions �ν (R; 	) as

ψυ ′ (R; 	) =
NDVR∑

i

Nchan∑
ν

Cυ ′
iν πi(R)�ν (Ri; 	), (19)

where NDVR is the number of DVR basis functions and Nchan is
the number of included channel functions. Inserting ψυ ′ (R; 	)
into the three-body Schrödinger equation yields the standard
algebraic problem for the coefficients Cυ ′

iν :

NDVR∑
j

Nchan∑
μ

Ti jOiν, jμCυ ′
iν + Uν (Ri )C

υ ′
iν = Eυ ′

Cυ ′
iν , (20)

where

Ti j = 1

2μ

∫ Ri+1

Ri

d

dR
πi(R)

d

dR
π j (R)dR (21)

are the kinetic-energy matrix elements, Ri and Ri+1 are the
boundaries of the calculation box, and

Oiν, jμ = 〈�ν (Ri; 	)|�μ(Rj ; 	)〉 (22)

are the overlap matrix elements between the adiabatic chan-
nels defined at different quadrature points.

At large distances, the traditional adiabatic hyperspherical
method is used to solve Eq. (3). When substituting the wave
functions ψ (R; 	) into Eq. (3), a set of coupled ordinary
differential equations is obtained:[

− 1

2μ

d2

dR2
+ Uν (R) − E

]
Fν,υ ′ (R)

− 1

2μ

∑
μ

[
2Pμν (R)

d

dR
+ Qμν (R)

]
Fμυ ′ (R) = 0, (23)

where

Pμν (R) =
∫

d	�μ(R; 	)∗
∂

∂R
�ν (R; 	) (24)

and

Qμν (R) =
∫

d	�μ(R; 	)∗
∂2

∂R2
�ν (R; 	) (25)

are the nonadiabatic couplings that control the inelastic tran-
sitions and the width of the resonance supported by adiabatic
potential Uν (R). In our calculations, the relation between P
and Q is d

dR P = −P2 + Q, where

P2
νμ(R) = −

∫
d	

∂

∂R
�ν (R; 	)∗

∂

∂R
�μ(R; 	). (26)

The coupling matrices have the following properties: Pνμ =
−Pμν and P2

νμ = P2
μν , which lead to Pνν = 0 and Qνν = −P2

νν .
The effective hyperradial potentials, which include hyperra-
dial kinetic-energy contributions with the P2

νν term, are more
physical than adiabatic hyperpotentials and are defined as

Wνν (R) = Uν (R) − h̄2

2μ
P2

νν (R). (27)

Next, the R-matrix propagation method is employed. Over
the interval [R1, R2], for a given R matrix (16), the R-matrix

013317-3



CAI-YUN ZHAO, HUI-LI HAN, AND TING-YUN SHI PHYSICAL REVIEW A 104, 013317 (2021)

propagation method can be used to calculate the correspond-
ing R matrix at another point R = R2 as follows:

R(R2) = R22 − R21[R11 + R(R1)]−1R12. (28)

The K matrix can be expressed in the following matrix
equation:

K = ( f − f ′R)(g − g′R)−1, (29)

where fνν ′ =
√

2μ

πkν
kνR jlν (kνR)δνν ′ and gνν ′ =√

2μ

πkν
kνRnlν (kνR)δνν ′ are the diagonal matrices of energy-

normalized spherical Bessel and Neumann functions. For
the recombination channel, lν is the angular momentum
of the third atom relative to the dimer and kν is given
by kν = √

2μ(E − E2b). For the entrance channel,
lν = λν + 3/2, and kν = √

2μE . The scattering matrix S
is related to K as follows:

S = (1 + iK)(1 − iK)−1 . (30)

Using the convention of Mott and Massey [82], the N-body
cross section in d dimensions is defined as

σ f i(J
�) = Np

(
2π

ki

)d−1 1

	(d )

∑
i

(2J + 1)
∣∣SJ�

f i − δ f i

∣∣2
,

(31)

where 	(d ) = 2πd/2/�(d/2) is the total solid angle in d
dimensions and Np is the number of terms in the permuta-
tion symmetry projection operator. In the 85Rb -87Rb -87Rb
system, Np = 2 !, d = 6, and the total TBR rate is then

K3 = k

μ
σ3 =

∑
J,�

KJ,�
3 = 2!

∑
J,�

∑
f ,i

32(2J + 1)π2

μk4

∣∣SJ,�
i→ f

∣∣2
,

(32)

where i and f label the three-body continuum (incident)
channel and TBR (outgoing) channel, respectively. σ3 is the
generalized TBR cross section. KJ,�

3 is the partial recombina-
tion rate corresponding to J� symmetry, and k = (2μE )1/2 is
the wave number in the incident channels.

Since experiments are performed at a fixed temperature
instead of a fixed energy, the thermal average becomes cru-
cial for proper comparison with the experiment. Assuming a
Boltzmann distribution, the thermally averaged recombination
rates are given by

〈K3〉(T ) =
∫

K3(E )E2e−E/(kBT )dE∫
E2e−E/(kBT )dE

= 1

2(kBT )3

∫
K3(E )E2e−E/(kBT )dE . (33)

The results presented in Sec. III C are given for T = 120 nK.
In our calculations, Eq. (9) is solved with 134 SVD sec-

tors and 10 SVD points in each sector for R < 2 000a0. In
the interval 2000a0 < R < 22 000a0, we use the traditional
adiabatic hyperspherical method with Pμν and Qμν calculated
by an improved method in Ref. [54]. The matrix elements of
coupling Pμν and effective potential Wνν can be fitted to an
inverse polynomial series at a large distance, and the fitting
results of Pμν and Wν are applied beyond R = 22 000a0.

III. RESULTS AND DISCUSSION

A. Hyperspherical potential curves near the interspecies
d-wave resonance

We use the Lennard-Jones potential to model the inter-
actions between two atoms. The advantages of the Lennard-
Jones potential is that it has the van der Waals length and can
also avoid numerical difficulties in a short range [14]. Thus, it
has been widely used and proven to be an excellent model
potential to explore van der Waals universality in Efimov
physics [14,15,44,54,80]. The potential is expressed in the
following form:

υ(ri j ) = −C6,i j

r6
i j

[
1 − 1

2
(
γi j

ri j
)6

]
. (34)

In this study, γi j is adjusted to give the desired scatter-
ing length and number of bound states. The value of C6 for
two Rb atoms we adopted here is 4698 from Ref. [83]. The
low-energy behavior of the lth partial wave phase shift for
scattering by a long-range central potential 1/rs(s > 2) satis-
fies

tan δl (k,∞) ∼ −k2l+1λl

− π

2s

�(s − 1)�
(
l + 3

2 − 1
2 s

)
�2

(
1
2 s

)
�

(
l + 1

2 + 1
2 s

) 2μ2bCsk
s−2,

(35)

with 2 < s < 2l + 3 [52,84,85]. For the Lennard-Jones po-
tential s = 6, the scattering phase shift of the d-wave has the
following expansion:

tan δ2(k,∞) ∼ −k5λ2 − π

26

�(5)�(2)

�2(3)�(11/2)
2μ2bC6k4. (36)

ad = λ
1/5
2 is denoted as the “d-wave scattering length” to

characterize the findings in terms of the d-wave interactions,
which diverges when a d-wave dimer is almost bound.

Figure 1 shows the s-wave scattering length as (blue solid
line) and d-wave scattering length ad (red dashed line) as a
function of γi j . No obvious difference is observed between
85Rb -87Rb and 87Rb -87Rb, so we show the results for only
one case. The vertical dotted lines enclose the 85Rb -87Rb
parameter range considered in our numerical calculations. In
this range, one two-body s-wave bound state exists before the
d-wave bound state emerges. For a homonuclear interaction,
we focus on the case in which two 87Rb atoms are in d-wave
resonance (point I in Fig. 1) and the more realistic case, in
which 87Rb -87Rb interact via the s-wave scattering length
as = 100a0, which is indicated by arrows II and III. As shown
in Fig. 1, the two 87Rb atoms have one s-wave bound state
at points II and IV. At point III, the two 87Rb atoms have no
bound states and are located away from the d-wave resonance.

In the scattering process, the adiabatic potential curves
Uν (R) are important in understanding three-body physics.
Figure 2 shows the hyperspherical potential curves of the
85Rb -87Rb-87Rb system with the 85Rb -87Rb d-wave scatter-
ing length ad = −115a0 [Fig. 2(a)] and ad = 90a0 [Fig. 2(c)].
87Rb -87Rb interact via the s-wave scattering length as =
100a0 with the parameter γi j adjusted to point II in Fig. 1.
In each case, the solid potential curves correspond to the
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FIG. 1. Two-body s-wave scattering length (blue solid line) and
d-wave scattering length (red dashed line) as a function of the ad-
justing parameter γi j . The 85Rb -87Rb interaction range is adjusted
around the two-body d-wave resonance that is shown between the
two black dotted lines. For the 87Rb -87Rb interaction, points I, II,
III, and IV are focused on.

TBR channels and asymptotically approach the dimer binding
energy. The effective potentials for these channels exhibit
asymptotic behavior, given by

Wf (R) = l f (l f + 1)

2μR2
+ E ( f )

2b , (37)

where E ( f )
2b is the dimer energy and l f is the relative orbital

angular momentum between the atom and the dimer. The sub-
script f distinguishes the recombination channels. The dashed
lines in Figs. 2(a) and 2(c) denote the three-body breakup
channels (or entrance channels); that is, all three atoms exist
far from each other as R → ∞, where the potentials behave
as

Wi(R) = λi(λi + 4) + 15/4

2μR2
. (38)

The values of λi are nonnegative integers determined by J�

and the identical particle symmetry [86]. We use the di-
mensionless quantity of the nonadiabatic coupling strength
defined by

fvv′ (R) = Pvv′ (R)2

2μ[Uv (R) − Uv′ (R)]
(39)

to characterize the nonadiabatic coupling magnitude, which
mainly controls the recombination process. The coupling
strength between the highest recombination channel and the
lowest entrance channel is shown in Figs. 2(b) and 2(d).

When the 85Rb -87Rb d-wave scattering length ad is nega-
tive, as shown in Figs. 2(a) and 2(b), the nonadiabatic coupling
strength between the lowest entrance channel and the first
recombination channel is localized at a short distance. Here,
recombination occurs primarily by tunneling through the po-
tential barrier in the lowest three-body entrance channel to
reach the region of large coupling. Thus, the potential barrier
in the lowest three-body entrance channel has an important

role in the recombination process. Figure 3(a) shows the
barrier for several negative 85Rb -87Rb scattering lengths ad .
The height of the barrier decreases as the 85Rb -87Rb d-wave
interaction strengthens. Diminishing of the potential barrier
in the entrance channel is responsible for the recombination
enhancement on this scattering side [87]. In addition, when
the 85Rb -87Rb interaction becomes sufficiently strong, a two-
body d-wave shape resonance appears [88]. As a result, this
resonance will produce a series of avoided crossings in the
three-body potential curves at energies near the position of
the resonance, as shown in Figs. 3(b)–3(d). Reference [89]
also found this phenomenon in a three-fermion system when
the two-body scattering volume was negative. The positions
of these avoided crossings might be expected to approach the
three-body breakup threshold when the 85Rb -87Rb d-wave
interaction strengthens. This result can be demonstrated by
Figs. 3(b)–3(d).

For the positive 85Rb -87Rb d-wave scattering length case,
the important feature is the broad avoided crossing between
the lowest entrance channel and the highest recombination
channel, as shown in Fig. 2(c). The shallowest recombination
channel has an attractive well followed by a repulsive barrier
at a larger distance. If the barrier is high enough, the atom
and dimer could be trapped inside. Such almost bound states
above the threshold of the potential are the shape-resonance
states. Figure 4(a) shows the lowest entrance channel and the
shallowest recombination channel of the 85Rb -87Rb -87Rb
system for different 85Rb -87Rb d-wave scattering lengths with
the parameter γi j of the 87Rb -87Rb interaction adjusted to
point II in Fig. 1. The two-body threshold moves towards the
three-body breakup threshold with an increase in the 85Rb -
87Rb d-wave scattering length. Thus, when the top of the
barrier is above the collision energy, recombination will be
suppressed by this extra barrier, except possibly at energies
that match atom-dimer three-body shape resonances behind
this barrier. The existence of three-body shape resonance will
lead to more or fewer sudden jumps of the phase shift by π .
The phase shift is well described by the analytical expression

δl (E ) = δbg − arctan

(
�/2

E − ER

)
, (40)

where ER is the resonance position, � is the resonance width,
and δbg is a smoothly energy-dependent background phase
shift [90]. The phase shift δ f for atom-dimer elastic scattering
is related to the diagonal S-matrix element by the formula

S0+
f ← f = exp(2iδ f ). (41)

The subscript f distinguishes the recombination channels. In
Figs. 4(b)–4(d), we plot the atom-dimer scattering phase shift
δ, tan δ, and the analytical formula for tan δ associated with
the highest recombination channel as a function of energy. In
Figs. 4(b) and 4(c), the resonances appear as a jump of the
atom-dimer scattering phase shift of 0.993π , which implies
that shape resonances exist when the 85Rb -87Rb scattering
length is ad = 114a0 and ad = 90a0. By fitting the tan δ points
with the analytical expression, we obtain resonance positions
of −2.7 × 10−12 [Fig. 4(b)] and −3.5 × 10−11 [Fig. 4(c)].
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FIG. 2. Three-body adiabatic potential curves for the 85Rb -87Rb-87Rb system with 85Rb -87Rb d-wave scattering length (a) ad = −115a0

and (c) ad = 90a0. The 87Rb -87Rb s-wave scattering length is as = 100a0 with the parameter γi j adjusted to point II in Fig. 1. (b) and
(d)The avoided crossings between the highest recombination channel and the first entrance channel with their nonadiabatic coupling strengths
corresponding to (a) and (c), respectively.

B. Three-body recombination rates

The partial rates KJ�
3 and total K3 for J� = 0+, 1−, and

2+ symmetries as a function of the collision energy with the
85Rb -87Rb d-wave scattering length fixed at ad = −115a0

[Fig. 5(a)] and ad = 90a0 [Fig. 5(b)] are shown in Fig. 5. The
parameter of the 87Rb -87Rb interaction is adjusted to point
II in Fig. 1. In the zero-energy limit, the recombination rate
obeys the threshold behavior KJ�

3 ∼ Eλmin , where λmin is the
minimum value of λ in Eq. (38). For J� = 0+, 1−, 2+, we
have λmin = 0, 1, 2 in the 85Rb -87Rb -87Rb system [76,86];
that is, the J� = 0+ partial rate increases, like E0, from the
threshold, while rates 1− and 2+ behave as E1 and E2, re-
spectively. At high collision energies, K3 decreases as E−2,
required by unitary. For the positive d-wave scattering length,
Fig. 5(b) shows that the Wigner threshold law holds only
at small energies E < 10 μK. Note that the Wigner thresh-
old regime can be characterized as energies smaller than the
smallest energy scale, which is typically a molecular binding
energy [91]. In this case, when ad = 90a0, the newly formed
d-wave dimer binding energy is approximately 12 μK, which
shows rough agreement with the attained threshold regime of
E < 10 μK.

Although the J� = 0+ case is predicted to be the dominant
symmetry in the zero-collision-energy limit, other symme-

tries may contribute substantially. Therefore, studying the
energy-dependent partial recombination rates that correspond
to various symmetries is interesting. Figure 5 shows that the
contributions from J� = 1− and J� = 2+ partial waves are
significant when the energy exceeds 40 μK.

C. Nonnegligible role of the intraspecies interaction in the
heteronuclear system

In a real ultracold atomic system, the inter- and intraspecies
interactions are generally not controlled independently, and
thus, a finite intraspecies scattering length exists. For the
85Rb -87Rb -87Rb system, near the interspecies d-wave Fes-
hbach resonance, 87Rb -87Rb interact with each other through
a smaller s-wave scattering length as = 100a0. As shown in
Fig. 1, 87Rb -87Rb has an s-wave bound state at point II but
no s-wave bound state at point III with the same 87Rb -87Rb
s-wave scattering length.

To examine how the 87Rb -87Rb interaction influences the
TBR, we plot the hyperspherical potential curves for the
first entrance channel and the highest-lying recombination
channel for the same 85Rb -87Rb d-wave scattering length
ad = −115 a0 but different 87Rb -87Rb. Interaction details are
shown in Figs. 6(a1), 6(b1), 6(c1), and 6(d1). The interaction

013317-6



THREE-BODY RECOMBINATION NEAR THE D-WAVE … PHYSICAL REVIEW A 104, 013317 (2021)

FIG. 3. (a) Lowest entrance channels with barriers in 85Rb -87Rb-87Rb for the different 85Rb -87Rb d-wave scattering lengths. (b)–(d) Po-
tential curves that show a series of avoided crossings near the 85Rb -87Rb two-body d-wave resonance. These avoided crossings approach the
three-body breakup threshold when ad → −∞. The 87Rb -87Rb s-wave scattering length is as = 100a0 with the parameter γi j adjusted to point
II in Fig. 1.

details of 87Rb -87Rb greatly affect the coupling between
the lowest entrance channel and the highest recombination
channel. The Landau-Zener parameter Ti j , which estimates
the nonadiabatic transition probabilities [92], can quantita-
tively reflect this coupling strength and be calculated by

Ti j = e−δi j = e
− π�2

i j
2αi j ν , where �i j = Ui − Uj is evaluated in the

transition region and αi j is obtained from P-matrix analysis.
When 87Rb -87Rb are in d-wave resonance (87Rb -87Rb

s-wave scattering length as = 84a0), point I in Fig. 1,
the Landau-Zener parameter approaches 1, as shown in
Fig. 6(a1), implying that a nonadiabatic transition occurs and
the potential well of the recombination channel deepens. A
d-wave-related trimer state [peak A in Fig. 6(a2)] can thus
be supported, which will enable enhancement of the TBR
rate. When we plot the total and partial J� = 0+ TBR rates
as a function of the 85Rb -87Rb d-wave scattering length
at fixed 87Rb -87Rb s-wave scattering length as = 84a0, the
total rate exhibits two clear enhancements, labeled A and
B, as shown in Fig. 6(a2). This phenomenon was predicted
by Wang et al. [54] in a three-identical-boson system. Peak
A corresponds to the d-wave-related trimer state across the
collision threshold. According to our analyses of the influence
of the 87Rb -87Rb interaction on the coupling between the
first entrance channel and the highest-lying recombination

channel, enhancement A will shift or disappear depending
on the interaction details of the two identical atoms in the
heteronuclear system. This result can be demonstrated in the
following results of K3, when 87Rb -87Rb is not exactly in
d-wave resonance.

Figures 6(b1) and 6(c1) show the hyperspherical potential
curves with the same 85Rb -87Rb two-body scattering length
ad = −115a0, as shown in Fig. 6(a1), while 87Rb -87Rb inter-
act through s-wave scattering length as = 100a0 with different
interaction details. We focus on the case in which the param-
eter of the 87Rb -87Rb interaction is adjusted to point II in
Fig. 1, where 87Rb -87Rb has one s-wave bound state near
the d-wave resonance. In this case, we find that the position
of enhancement A shifts from 1.19rvdW to 1.08rvdW (rvdW is
the van der Waals length between 85Rb and 87Rb) compared
to the case in which the homonuclear atoms are in d-wave
resonance, as shown in Fig. 6(a2). When the parameter γi j

is changed to point III in Fig. 1, where the interaction of
87Rb -87Rb is away from the d-wave resonance, the coupling
between the first entrance channel and the highest-lying re-
combination channel weakens. Figure 6(c1) shows that the
Landau-Zener parameter is 0.186 in this case, implying that
an adiabatic transition occurs. As a result, the potential well
in the recombination channel may not be deep enough to sup-
port the trimer state, leading to the absence of enhancement
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FIG. 4. (a) Lowest entrance and highest recombination channels for the three positive 85Rb -87Rb d-wave scattering lengths ad . The
parameter of the 87Rb -87Rb interaction is adjusted to point II in Fig. 1. (b)–(d) The corresponding atom-dimer scattering phase shifts δ and
tan δ and the analytical formula for tan δ associated with the highest recombination channel as a function of energy. The red sold lines in

(b) and (c) are the fitting results from the analytical formula tan δ = tan δbg− �
2(E−ER )

1+tan δbg
�

2(E−ER )
.

A in Fig. 6(c2). Figure 6(d1) show the hyperspherical poten-
tial curves, where the parameter γi j is changed to point IV in
Fig. 1, where 87Rb -87Rb interact through s-wave scattering
length as = 1.3a0 away from the d-wave resonance. We note

that the Landau-Zener parameter is 0.345 and enhancement A
also disappears in this case.

Peak B formed after the d-wave dimer became bound.
Our analysis in Sec. III A shows that this enhancement cor-

FIG. 5. Partial rates KJ�
3 and their total K3 for J� = 0+, 1−, and 2+ symmetries as a function of the collision energy when the 85Rb -87Rb

d-wave scattering length is fixed at (a) ad = −115a0 and (b) ad = 90a0 with the parameter of the 87Rb -87Rb interaction adjusted to point II in
Fig. 1. The dashed lines represent the threshold laws or unitary limit.
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FIG. 6. (a1), (b1), (c1), and (d1) The hyperpotential curves for the first entrance channel and highest recombination channel and
corresponding Landau-Zener parameter Tna for the same 85Rb -87Rb d-wave scattering length ad = −115a0. (a2), (b2), (c2), and (d2) The
TBR rate K3 variation with the 85Rb -87Rb interaction when the 87Rb -87Rb interaction is fixed at different points in Fig. 1.The vertical black
dotted lines in (a2), (b2), (c2), and (d2) indicate the positions of 85Rb -87Rb d-wave resonances.

013317-9



CAI-YUN ZHAO, HUI-LI HAN, AND TING-YUN SHI PHYSICAL REVIEW A 104, 013317 (2021)

responds to the three-body shape resonance. Its position is
also affected by the interaction details of the two homonu-
clear atoms, as shown in Figs. 6(a2), 6(b2), 6(c2), and 6(d2).
Our results demonstrate that the intraspecies interaction has a
significant role in determining the TBR in the heteronuclear
system.

IV. CONCLUSIONS

In summary, we have investigated the TBR rate for the
heteronuclear atomic system near the interspecies d-wave
Feshbach resonance. The 85Rb -87Rb-87Rb system was cho-
sen as an example, and calculations were based on the
Lennard-Jones model potential for the Rb-Rb interaction.
The TBR rates were obtained using quantum calculations
in the frame of the hyperspherical coordinates, which are
based on a combination of the SVD method, traditional
hyperspherical adiabatic method, and R-matrix propagation
method. Our study revealed two different mechanisms of
recombination-rate enhancement for positive and negative
85Rb -87Rb d-wave scattering lengths. When the 85Rb -87Rb
d-wave scattering length is positive and large, a loosely bound
dimer is produced, and enhancement occurs due to the exis-
tence of three-body shape resonance. We have identified two
such shape resonances on the positive 85Rb -87Rb d-wave
scattering-length side. For the case in which 87Rb -85Rb in-
teract via a negative d-wave scattering length, the coupling
between the lowest entrance channel and the highest recom-
bination channel is crucial to the formation of the three-body
state. When the coupling strengthens, a nonadiabatic transi-
tion occurs, which deepens the potential well in the highest

recombination channel and thus supports the three-body state.
The enhancement on the side with the negative interspecies
scattering length corresponds to the three-body state crossing
the three-body threshold.

In addition, we investigated the influence of the finite
87Rb -87Rb interaction on the recombination enhancement.
With the same 87Rb -87Rb s-wave scattering length as =
100a0, when the interaction is near the d-wave resonance,
the coupling between the lowest entrance channel and the
highest recombination channel strengthens, enhancing the
recombination rate. However, if the parameter of the 87Rb -
87Rb interaction is adjusted to a point away from the d-wave
resonance, then the enhancement will disappear. Moreover,
our study reveals that the intraspecies interaction affects the
85Rb -87Rb d-wave scattering length values at which the
enhancement appears. Our results have confirmed the main
results of Ref. [54] for the homonuclear case and provide nu-
merical evidence that the TBR rates in heteronuclear systems
are more complex than those in homonuclear systems.
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