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Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates
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The phase diagram of lowest-energy vortices in the polar phase of spin-1 Bose-Einstein condensates is
investigated theoretically. Singly quantized vortices are categorized by the local ordered state in the vortex core
and three types of vortices are found as lowest-energy vortices, which are elliptic AF-core vortices, axisymmetric
F-core vortices, and N-core vortices. These vortices are named after the local ordered state, ferromagnetic (F),
antiferromagnetic (AF), broken-axisymmetry (BA), and normal (N) states apart from the bulk polar (P) state.
The N-core vortex is a conventional vortex, in the core of which the superfluid order parameter vanishes. The
other two types of vortices are stabilized when the quadratic Zeeman energy is smaller than a critical value.
The axisymmetric F-core vortex is the lowest-energy vortex for ferromagnetic interaction, and it has an F core
surrounded by a BA skin that forms a ferromagnetic-spin texture, as exemplified by the localized Mermin-Ho
texture. The elliptic AF-core vortex is stabilized for antiferromagnetic interaction; the vortex core has both
nematic-spin and ferromagnetic orders locally and is composed of the AF-core soliton spanned between two BA
edges. The phase transition from the N-core vortex to the other two vortices is continuous, whereas that between
the AF-core and F-core vortices is discontinuous. The critical point of the continuous vortex-core transition is
computed by the perturbation analysis of the Bogoliubov theory and the Ginzburg-Landau formalism describes
the critical behavior. The influence of trapping potential on the core structure is also investigated.
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I. INTRODUCTION

In an ordered state after spontaneous symmetry-breaking
phase transition, the ground states of the considered system
are energetically degenerate. The ordered state is described
by the order parameter field and the topology of the order
parameter space depends on the type of symmetry that is bro-
ken via the phase transition. In multicomponent superfluids,
topological defects can take a variety of structures according
to the multidegree of freedom of the order parameters, such
as domain walls (solitons), vortices (strings), and monopoles
(hedgehogs) as two-dimensional, one-dimensional, and zero-
dimensional defects in three dimensions [1–4]. The type of
defect formed depends on the symmetry of the order parame-
ter space of the ground (bulk) state.

Recently, it has been shown theoretically that a singly
quantized vortex can have a nonaxisymmetric form in the
polar (P) phase of a spin-1 Bose-Einstein condensate (BEC)
with a quadratic Zeeman shift [5]. A nonaxisymmetric vortex,
called an elliptic vortex, is considered the equilibrium state
of a wall-vortex composite defect observed in an experiment
of a spin-1 BEC [6] while the composite defect was thought
to be dynamically unstable owing to the snake instability.
The elliptic vortex is stabilized by the appearance of a local
ordered state in the vortex core with a symmetry different
from that in the bulk state. An elliptic vortex is considered
as the Joukowski transform of an axisymmetric vortex, and
thus its hydrodynamic behavior is different from that of a
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conventional axisymmetric vortex. These facts strongly sug-
gest that not only the symmetry of the bulk ordered state but
also the local ordered state in the core of topological defects
may be crucial to the properties of topological defects in
multicomponent superfluids.

The classification of topological defects in spinor BECs
has been performed extensively based on the homotopy theory
by considering the symmetry and phase diagram of the bulk
ordered state with respect to the interatomic interaction and
the Zeeman shift (see Ref. [4] and the references therein).
However, few systematic studies have investigated which type
of local ordered state is energetically preferred in the core of
topological defects by taking into account the Zeeman shift.
Recently, the impact of the quadratic Zeeman shift on the core
of solitons and vortices has been investigated systematically
[7,8] and it has been shown that the size of topological defects
can diverge in the zero limit of the quadratic Zeeman shift
in the P and antiferromagnetic (AF) phases of spin-1 BECs.
These results imply that the property of topological defects
can be sensitive to the finite-size effect or system boundary
when the quadratic Zeeman shift is small. In other words, the
fundamental property in uniform systems can be ambiguous
in a trapping system when the condensate size or the Thomas-
Fermi radius is comparable with the characteristic size of a
defect determined by the quadratic Zeeman shift, called the
Zeeman length. Nevertheless, the core structure of solitons in
trapped spin-1 BECs with zero or nonzero quadratic Zeeman
shift has been investigated in the literature without recogniz-
ing the importance of the finite-size effect characterized by
the Zeeman length [9–11]. In Ref. [7] the core structure of
a soliton in uniform systems and its phase diagram in the
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FIG. 1. Phase diagram of the lowest-energy vortices and
schematic of three types of singly quantized vortices in the P phase
of spin-1 BECs. An elliptic AF-core vortex (AFc) has two BA edges
with opposite transverse spin density, and the local F state around the
vortex axis with longitudinal spin density is surrounded by a BA skin
with transverse spin density in an axisymmetric F-core vortex (Fc)
(see also Fig. 2). The conventional vortex, called the N-core vortex
(Nc) in this paper, is also described for reference. The phase transi-
tion at the boundary between the regions of the N-core vortex and the
AF- or F-core vortex in the phase diagram is continuous, whereas the
boundary cs = 0 between the AF- and F-core vortices corresponds to
a discontinuous phase transition. The former boundary is described
by qC

μ
= −(1 + M̃ ) cs

cn
− ε̃ [Eq. (48)] with dimensionless constants

M̃ ≈ 0.45 and ε̃ = −0.25. The phase boundary of the BA phase in
the bulk (grey line) is given by cs

cn
= − q

2μ
.

P phase have been revealed in the context of spontaneous
symmetry breaking, leading to the prediction of the ferromag-
netic (F)-core soliton observed in the recent experiment [12].
On the other hand, the phase diagram of vortices in the P
phase has never been investigated in a proper manner under
the effect of the quadratic Zeeman shift, although it has been
done partly for a 23Na condensate with antiferromagnetic spin
interaction [5]. It should be also mentioned that there are a
few researches on the fundamental aspect of vortex dynamics
under the quadratic Zeeman effect [13–15]. This is in con-
trast to the fact that a good understanding of a rich variety
of topological defects in superfluid 3He has been developed
with experimental and theoretical investigations of the core
structure [1,2], such as the phase diagram of vortices in the A
and B phases of superfluid 3He [16,17].

In this work, the core structure of a singly quantized vortex
in the P phase of spin-1 BECs in uniform systems is inves-
tigated theoretically by changing the parameters associated
with the spin interaction and the quadratic Zeeman energy
without external rotation. It is shown that the ordered states
other than the bulk state, the AF, broken-axisymmetry (BA),
and F states, occur locally in the vortex core with different
configurations depending on the parameters. The theoretical
predictions are summarized as the phase diagram of vortices
and the schematic vortex-core structures in Fig. 1. These
predictions are consistent with numerical analyses and can be
examined by experiments on spin-1 BECs.

The reminder of this paper is organized as follows. In
Sec. II, we briefly introduce the background theory to un-
derstand the main contents of this work by focusing on the
aspect of the nematic-spin order. In Sec. III, we provide a brief
overview of the phase diagram of vortices and demonstrate the
numerical result by showing the typical vortex structure for
antiferromagnetic and ferromagnetic interaction in Fig. 2. De-
tailed analyses are described in the following sections and thus
readers who want to understand the main contents quickly can
skip to Sec. VIII, after reading Sec. III. Section IV is mainly
devoted to a theoretical description of the physical interpre-
tation of the vortex core structure in an axisymmetric vortex
based on the hydrostatic approximation. This approximation
provides a systematic method for us to determine the local
ordered states in the vortex core. In Sec. V, the structure of
an elliptic vortex is explained from a different viewpoint from
that in Ref. [5]. In Sec. VI, the continuous phase transition of a
normal-core vortex is described by the perturbation theory of
the Bogoliubov theory, and the Ginzburg-Landau formalism is
introduced to describe the critical behavior of the vortex-core
phase transition. The influence of the trapping potential and
the finite-size effect is mentioned from a general perspective
in the context of the hydrostatic approximation. We conclude
in Sec. VIII, with a summary and discussions of the relation
to similar problems in other systems and the future prospects
of this work.

II. FORMULATION

Here, the formulation of the concept of the nematic-spin
order and certain fundamental energetics are introduced. We
restrict the contents to the minimum necessary to understand
the main part of this work. Readers may refer to the review
paper [4], for example, for full details of the conventional
formulation and the phase diagram of spin-1 BECs.

A. Lagrangian

Spin-1 BECs are described by the macroscopic wave func-
tions �m (m = 0,±1) of the |m〉 Zeeman component at low
temperatures. To express the vortex states in the P phase, it is
convenient to introduce the Cartesian representation [18]

� =
⎡
⎣�x

�y

�z

⎤
⎦ =

⎡
⎣

−1√
2
(�+1 − �−1)

−i√
2
(�+1 + �−1)

�0

⎤
⎦. (1)

This system obeys the Lagrangian in the Gross-Pitaevskii
(GP) model,

L(�) =
∫

d3xih̄�∗ · ∂t� − G(�), (2)

with the thermodynamic energy functional

G =
∫

d3x

[
h̄2

2M

∑
j=x,y,z

(∂ j�
∗) · (∂ j�) + U

]
(3)

and

U = cn

2
n2 + cs

2
s2 − q|�z|2 − (μ − q)n − psz. (4)
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FIG. 2. The cross-section profiles of |�0|2 (left) and s (right) in the core of (a) an AF-core vortex with ( q
μ
, cs

cn
) = (2−16, 0.008) and (b) an

F-core vortex with (2−7, −0.004). Left: The direction and color of the arrows represent the unit vector d
|d| and phase �0 = arg �0, respectively.

The black curves show the contour of �0. The nematic-spin order is demonstrated as the texture of the pseudodirector field d̂ = d
|d| for s = 0,

and d̂ is ill defined for s �= 0. Right: The direction and length of the arrows imply those of the spin density s. The contour of |�+1|2 is
represented by the black curves. We have |�+1|2 = |�−1|2 for the AF-core vortex, whereas |�−1|2 is negligibly small for the F-core vortex.
The length scale of each plot is shown by a double-headed arrow.

Here, the condensate density and the spin density are repre-
sented by the dot product

n = �∗ · � =
∑

m

|�m|2 (5)

and the cross product

s =
⎡
⎣sx

sy

sz

⎤
⎦ = i� × �∗ =

⎡
⎣

√
2Re[(�+1 + �−1)�∗

0 ]√
2Im

[
�0(�∗

+1 − �∗
−1)

]
|�+1|2 − |�−1|2

⎤
⎦, (6)

respectively. The coupling constants cn and cs are expressed
in terms of particle mass M and s-wave scattering length
aF of the total spin-F channel as cn = 4π h̄2

3M (2a2 + a0) and

cs = 4π h̄2

3M (a2 − a0). The linear and quadratic Zeeman shifts
are parametrized by p and q, respectively. The chemical po-
tential μ and p are the Lagrange multipliers associated with
the conservation of the total particle number

∫
d3xn and the

total magnetization
∫

d3xsz along the spin quantization axis.
Here, we consider the “nonbiased” case of p = 0, as has been
realized experimentally [6,19].

B. Nematic-spin order parameter

In spin-1 BECs with p = 0, there are four ordered phases
with different ground states, which are the P, F, AF, and BA
phases. The ground state in uniform systems is obtained by
minimizing U with the four given variables (μ, q, cn, and
cs) fixed. We consider ordered states with finite amplitude of
order parameters for μ > 0 and cn > 0 whereas the normal
(N) state � = 0 is the ground state for μ � 0 with cn > 0. To
express the different ordered states in a unified manner, the
order parameter is represented as

� = ei�(d + ie) (7)

with the global phase � and the real vectors d = [dx, dy, dz]T

and e = [ex, ey, 0]T. The spin density is written as s = 2d × e.

For the ground states of zero spin density s = 0 with e = 0
in the P and AF phases, the order parameter reduces to

� = √
nei�d̂ (8)

with the unit vector d̂. The ground states in the P and AF
phases correspond to d̂ · ẑ = ±1 and d̂ · ẑ = 0, respectively.
The vector d̂ is called the pseudodirector because its behavior
is similar to the director d̃ in a uniaxial nematic liquid crystal
[20]. In liquid crystals, the ordered state of d̃ is identical to
that of −d̃. The nematic behavior is imitated by combining
d̂ with the global phase �; the ordered state is invariant
under the operation (d̂,�) → (−d̂,� + π ). This property is
sometimes called the nematic-spin or spin-nematic order.

To explicitly reveal the condition s = 0 for the nematic-
spin order, we write the square of the spin density as s2 =
s2
⊥ + s2

z with

s2
⊥ = 2|�0|2

(|�+1|2 + |�−1|2 + 2|�+1||�−1| cos δ�
)

(9)

and

δ� = arg �+1 + arg �+1 − 2 arg �0. (10)

The nematic-spin order is realized when δ� = π and sz = 0
with |�+1| = |�−1|.

The P phase, our target phase, occurs for q > 0 and cs
cn

>

− q
2μ

, and the ground state is the P state � = �P,

�P = ±√
nPei�ẑ (11)

with nP = μ

cn
. In terms of �m, the P state is (�0, �±1) =

(
√

nPei�0 , 0). The ground state in the AF phase (q < 0 and
cs > 0) is written as �AF = √

nAFei�ρ̂ with ρ̂⊥ẑ. In the BA
and F phases, s is parallel and perpendicular to the z axis with
s = ±ẑ and s = ρ̂, respectively.

C. Vortex energy

The energy of a straight vortex is defined as the excess
energy in the presence of the vortex in a cylindrical system.
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The vortex energy per unit length is written as

Evortex = G(�vortex ) − G(�bulk )

Lz
, (12)

where � = �vortex is a stationary state of a straight vortex,
�bulk = �P is the bulk state, and Lz is the length of the vortex
along the z axis. The value of Eq. (12) represents the tension of
the vortex, which is important for determining its dynamical
properties, such as Kelvin waves and vortex rings [21]. In this
work, we focus on the static properties, especially the internal
structure of the vortex core.

D. Characteristic lengths

For p = 0, the P phase is parametrized by two dimension-
less variables, q

μ
and cs

cn
, by rescaling energy and length by μ

and the density healing length

ξn = h̄√
Mμ

, (13)

respectively. In our system, the quadratic Zeeman shift q gives
another important scale, called the Zeeman length,

ξq = h̄√
Mq

. (14)

This length is introduced to characterize the core size of the
AF-core soliton in the P phase [7] and the nematic-spin vortex
in the AF phase [8], where the local phase transition in the
core is determined by the competition between the density
healing length and the Zeeman length.

III. PHASE DIAGRAM

The phase diagram of vortices is summarized in Fig. 1.
Here, we give a qualitative interpretation of the phase diagram
mainly based on the facts from the numerical results. The
detailed theoretical analysis is demonstrated in the following
sections.

The core structure of a singly quantized vortex in the P
phase is computed numerically. We assume a straight vortex
along the z axis and solve the time-independent GP equations,
0 = δG

δ�m
, in two dimensions. Figure 2 shows the typical struc-

tures of a vortex core. Here, the core structures in the vicinity
of the vortex axis at (x, y) = (0, 0) are demonstrated, and we
solved the GP equation with a cylindrical potential whose
radius R is much larger than the relevant lengths, R ≈ 243ξn.
The method of numerical computation is the same as that in
Ref. [5].

A vortex with the lowest energy is classified into three
types depending on the two variables q

μ
and cs

cn
. The simplest

type of vortex is a normal (N)-core vortex, whose core is
vacant by forming “the normal (N) state” with �m = 0 at the
vortex axis. An N-core vortex has the lowest energy when
q
μ

exceeds a critical value qC

μ
, which is a function of cs

cn
. For

q < qC and cs > 0, the vortex axis is occupied by the AF state
with a nonaxisymmetric density profile forming an elliptic
velocity field, as was found in Ref. [5]. We call this vortex an
elliptic AF-core vortex [Fig. 2(a)] or, more simply, an AF-core
vortex in this paper. The (axisymmetric) F-core vortex has
the lowest energy for −2 cs

cn
<

q
μ

<
qC

μ
and cs < 0. The vortex

axis of an F-core vortex is magnetized with sz = ±|�±1|2 and
|�∓1|2 = 0, and its density profile is axisymmetric [Fig. 2(b)].

The transition between AF- and F-core vortices is discon-
tinuous. An AF (F)-core vortex can be realized as a metastable
vortex in certain parameter regimes in the numerical simula-
tions for cs < 0 (cs > 0), in which the difference in the vortex
energy between the lowest-energy vortex and the metastable
one is not so large. Metastable F-core vortices were observed
as vortices with finite magnetization at the core in the later
stage of quenched phase transition dynamics in the experi-
ment [6]. It is implied that the probability of the appearance
of metastable vortices in quench dynamics will increase for
larger q

μ
and smaller cs

cn
because of the fact that the energy

difference increases with decreasing q
μ

or increasing cs
cn

. The
energy difference is attributed mainly to the spin interaction
energy; an F-core vortex is largely magnetized compared with
an AF-core vortex, which makes the vortex energy of an
F-core vortex smaller (larger) than that of an AF-vortex for
negative (positive) cs.

In contrast, the transition from an N-core vortex to an
AF-core vortex or an F-core one is continuous. The transition
is realized by the appearance of the m = ±1 component in
the vortex core, which is preferred energetically for smaller
q
μ

. This transition could be understood as the occurrence of
another ordered state at the core of the topological defect
by analogy with the phase transitions of solitons in the P
phase [7] and nematic-spin vortices in the AF phase [8]. In
such a transition, where the spin interaction is negligible with
|cs| 
 cn or s = 0, the relevant length scales are the (density)
healing length ξn and the Zeeman length ξq. Especially speak-
ing, for q 
 μ, the spatial variation of the density is negligible
and thus the size of the topological defect is determined by
the balance between the quadratic Zeeman energy and the
gradient (kinetic) energy associated with the pseudodirector
field. Actually, we found that the m = ±1 component occu-
pies the vortex core, such that the total density n is nearly
homogeneous for small q

μ
in the cross-section profiles (not

shown).
The vortex becomes an N-core vortex when the core size

ξq is comparable to ξn for |cs|
cn


 1, giving the critical point
qC

μ
≈ 0.25 according to Ref. [5]. The dependence of the criti-

cal point on the spin interaction is qualitatively understood as
follows. In general, the energy of a state with magnetization
increases with increasing cs. Therefore, a vortex state with
magnetization at the core is more preferred for smaller cs

energetically. Thus, the transition point qC

μ
is a decreasing

function of cs
cn

as is shown in the phase diagram.

IV. AXISYMMETRIC VORTEX

The properties of an axisymmetric vortex are investigated
analytically. A singly quantized vortex in the P phase is
axisymmetric for − q

2μ
< cs

cn
� 0 or q � qC, including the crit-

ical point of cs = 0. We derive the vortex winding rule from
the general formalism of an axisymmetric vortex in spin-1
BECs, which is also important to understand the axisymmetry
breaking of elliptic vortices. The hydrostatic approximation is
introduced to qualitatively describe the cross-section profiles
of the vortex core.
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A. Vortex winding rule

First, we discuss the stationary solutions of an axisymmet-
ric vortex by starting from the following ansatz:

�m = fm(ρ)ei(Lmϕ+ϑm ), (15)

with the radius ρ =
√

x2 + y2 and the azimuthal angle ϕ in
cylindrical coordinates. Here, the winding number Lm is an
integer, ϑm is a real constant, and fm(ρ) is a real function. By
substituting Eq. (15) into the time-independent GP equations
0 = δG

δ�m
, we obtained the following coupled radial equations:

0 = h0 f0 + cs f0
(

f 2
+1 + f 2

−1 + 2 f+1 f−1eiδ�
)
, (16)

0 = h±1 f±1 + cs f 2
0

(
f±1 + f∓1e−iδ�

)
, (17)

with

hm = h̄2

2M

(
− d2

dρ2
− ρ−1 d

dρ
+ L2

m

ρ2

)
.

−μ + m2q − mp + cnn + mcssz. (18)

According to Eqs. (16) and (17), δ� must be an integer
multiple of π for f+1 f−1 f0 �= 0 with cs �= 0. Hence, the wind-
ing numbers satisfy the vortex winding rule as follows:

Lm = L + mN, (19)

with integers L(= L0) and N , which are related to the mass
and spin currents around the vortex. Here, we set ϑ+1 + ϑ−1 −
2ϑ0 = 0 in general, because δϑ = π is reproduced by chang-
ing the sign of fm, for example, f+1 → − f+1 or f−1 → − f−1

with arg �0 = 0. Assuming these conditions, Eqs. (16) and
(17) are reduced to

0 = h0 f0 + cs f0( f+1 + f−1)2, (20)

0 = h±1 f±1 + cs f 2
0 ( f+1 + f−1). (21)

The amplitudes fm in the axisymmetric vortex states obey
these equations.

B. Local phase transition in a coreless vortex

Here, we introduce a qualitative analysis to describe the
core structure of a vortex in the P phase. In the core of a
singly quantized vortex in scalar BECs, the order parameter
vanishes by forming a normal (disordered) state at the vortex
axis (ρ = 0). One might expect the same thing to happen for a
vortex in the P phase, in which the order parameter is a scalar
complex field �0, as is the case for scalar BECs. However,
the core may be occupied by other spin components to reduce
the energy, where the order parameter �+1 and/or �−1 have
a finite amplitude at the vortex axis.

This is typical in multicomponent superfluids. Such a vor-
tex is sometimes called a coreless vortex. Note that we should
not confuse coreless vortices with continuous vortices in a
narrow sense. According to the literature of superfluid 3He [1],
the total amplitude of the multicomponent order parameter
is homogeneous in a continuous vortex; that is, the ordered
state in the bulk is the same as that in the core except for
the “orientation” of the order parameter. The most famous
example of a continuous vortex is the Mermin-Ho vortex,
the vortex core structure of which is expressed as a spatial

variation of the orientation of the vector order parameter,
called the Mermin-Ho texture [1]. A vortex is categorized as
a singular vortex when the bulk ordered state is not realized
in the vortex core. All vortices in the P phase are singular
vortices in the sense that ordered states other than the bulk
P state are realized in the vortex core.

The concept of the coreless vortex is more general than
that of the continuous vortex. A coreless vortex is a quantized
vortex whose vortex core is occupied by other ordered states.
Therefore, the AF- and F-core vortices are coreless vortices.
A change in the internal state in the vortex core can be un-
derstood as an occurrence of local phase transition, because
the ordered state in the vicinity of the vortex axis is different
from that in the bulk. We evaluate such phase transition for an
axisymmetric vortex in an approximate model below.

C. Hydrostatic approximation

Although the N-core vortex is not categorized as a coreless
vortex, we first consider the local phase transition in a conven-
tional vortex in scalar BECs as the simplest case. The vortex
state is described by the following equation, as obtained from
Eq. (20) with f+1 = f−1 = 0:

0 =
[

h̄2

2M

(
− d2

dρ2
− ρ−1 d

dρ

)
− μ̄ + cn f 2

0

]
f0 (22)

with

μ̄ = μ − h̄2L2

2Mρ2
. (23)

This quantity is called the hydrostatic chemical potential,
which is named after the (hydro)static pressure in the context
of the Bernoulli theorem in quantum hydrodynamics [22].
Accordingly, we call the first and second terms on the right-
hand side of Eq. (23) the total and (hydro)dynamic chemical
potentials, respectively.

In the hydrostatic approximation, by neglecting the radial
gradient of f0, the local equilibrium state is determined by the
hydrostatic chemical potential μ̄. Although we have f0 = 0
for nonpositive μ̄, the order parameter has a finite amplitude
with f0 � 0 in the approximation for μ̄ � 0,

f0(ρ) =
√

μ̄(ρ)

cn

(
r � |L|ξn√

2

)
. (24)

The result suggests that a normal state is realized in the vortex
core by forming an N-core vortex.

Next, we take into account the contribution of the m = ±1
components more generally. To describe the phase transition
of the vortex core systematically, we define the hydrostatic
Zeeman coefficients as

q̄ = q + h̄2N2

2Mρ2
, (25)

p̄ = p − h̄2LN

Mρ2
. (26)
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By substituting Eqs. (23)–(26) into Eqs. (20) and (21), and
neglecting the gradient terms of fm, the hydrostatic approxi-
mation yields

0 = h̄0 f0 + cs f0( f+1 + f−1)2, (27)

0 = h̄±1 f±1 + cs f 2
0 ( f+1 + f−1), (28)

with

h̄m = −μ̄ + m2q̄ − mp̄ + cnn + mcssz. (29)

These equations have the same form as Eqs. (20) and (21)
after the replacement hm → h̄m. In this approximation, the
local value of fm(ρ) is obtained from the bulk solution with
(μ, q, p) replaced by (μ̄, q̄, p̄). Therefore, we can describe the
ordered state in the vortex core according to the phase diagram
of spin-1 BECs in the bulk, as shown in Fig. 3(a) (see also
Fig. 3(c) in Ref. [4]).

Now, the vortex solutions are characterized by three di-
mensionless variables, q̄

μ̄
, cs

cn
, and p̄

μ̄
. The ordered state around

the vortex core can change depending on the distance ρ from
the vortex axis in the hydrostatic approximation, because the
three variables, q̄

μ̄
, cs

cn
, and p̄

μ̄
, are expressed as functions of

ρ

ξn
. Here, we restrict ourselves to the case of cs � 0 because a

nonaxisymmetric vortex is energetically preferred for antifer-
romagnetic interaction cs > 0 except for the case of q > qC,
for which an N-core vortex is realized as the lowest-energy
vortex.

D. Ferromagnetic interaction (cs < 0)

We consider an axisymmetric vortex of L = 1 for p = 0.
The lowest energy state is investigated for N = 0,±1. For
ferromagnetic interaction 0 > cs

cn
> − q

2μ
in the P phase, the

local phase transition from the P phase to the BA phase occurs
with (

p̄

μ̄

)2

=
(

q̄

μ̄

)2

+ 2
cs

cn

q̄

μ̄
(P-BA transition). (30)

This condition is satisfied at ρ = ρBA.
For N = ±1, the radius ρBA is given by

ρ2
BA

ξ 2
n

=
√

8c̃sq̃ + 4q̃2 + c̃2
s (1 + q̃)2 + c̃sq̃ − c̃s − q̃

2q̃(2c̃s + q̃)
(31)

with c̃s = cs
cn

and q̃ = q
μ

. In addition to the P-BA transition
at ρ = ρBA, the phase transition from the BA phase to the F
phase occurs at ρ = ρF < ρBA. The transition radius is given
by the relation

q̄ = | p̄| (BA-F transition), (32)

which yields

ρ2
F

ξ 2
n

= μ

2q
. (33)

For the case of (L, N ) = (1, 0), we have solutions
of neither ρN < ρBA nor ρN < ρF. This means that an
N-core vortex is always realized in this case. This is
reasonable, because all components vanish at the vortex
axis owing to the centrifugal term with L0,±1 �= 0. In

FIG. 3. (a) Bulk phase diagram of spin-1 BECs for cs
cn

= −0.004.
The chemical potential μ and the Zeeman coefficients q and p are
replaced by their hydrostatic counterparts μ̄, q̄, and p̄, respectively.
The dotted lines correspond to the parametric equations of the posi-
tion ( p̄/μ̄, q̄/μ̄) in the phase diagram for q

μ
= 0.01, 0.02, 0.03, and

0.04 with p = 0, where the parameter is ρ

ξn
. (b) Radial profile of the

local phase transition in an F-core vortex for cs/cn = −0.004 and
p = 0, corresponding to the mapping ( p̄/μ̄, q̄/μ̄) → (q/μ, ρ/ξn)
from (a) in the hydrostatic approximation. Solid curves represent
ρ = ρF (blue) and ρ = ρBA (black), respectively. The P phase is
unstable and the BA phase is energetically preferred in the bulk when
q
μ

is smaller than −2 cs
cn

(gray dashed line). The gray, shaded area
corresponds to the parameter region, where the BA phase is realized
in the bulk. The dash-dotted line represents ρ = ξq. The F phase is
realized in the vicinity of the vortex axis (F for ρ < ρF). The F core
is surrounded by the BA skin (ρF < r < ρBA), in which the local BA
phase occurs. The P phase is the lowest energy state in the bulk and
is realized for ρ > ρBA. The F-core vortex is never realized for a
large q

μ
, where ρBA and ρF are smaller than ρN, and an N-core vortex

is realized. The dotted curves indicate ρ = ρBA for cs
cn

= −0.016
(top) and −0.001 (bottom). The BA skin becomes thinner for smaller
negative values of cs

cn
.

fact, we have never obtained such vortex states as the
lowest-energy solution for q < qC in the numerical simu-
lations. Hence, we consider the case of (L, N ) = (1,±1)
below.
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Figure 3(b) shows the radial distribution of the local or-
dered states in the vortex core for cs

cn
= −0.004 with p = 0, as

obtained by the hydrostatic approximation. A similar value of
cs
cn

is realized for spin-1 BECs of 87Rb. The results of Eqs. (31)
and (33) are displayed as black and blue solid curves, respec-
tively. The approximation suggests the existence of the local
BA phase as the “BA skin” surrounding the local F phase in
the vortex core [see also the schematic of an F-core vortex
(Fc) in Fig. 1]. The vortex core structure is understood more
easily from the bulk phase diagram. The four dotted lines in
Fig. 3(a) correspond to the parametric plots of ( q̄(ρ)

μ̄(ρ) ,
| p̄(ρ)|
μ̄(ρ) )

from ρ = 0 to ρ = ∞ for q
μ

= 0.01, 0.02, 0.03, 0.04 with

p = 0. The bulk P phase is realized for | p̄|
μ̄

→ 0 (ρ → ∞).

The BA skin appears by increasing | p̄|
μ̄

(decreasing ρ), and the
local state is finally in the local F phase for | p̄| > q̄.

The presence of the BA skin between the local F and P
phases implies that the spin density s lies in the xy plane for
large ρ

ξn
=

√
μ

| p̄| with p = 0. This is because, for ρ � ξn, sz

is proportional to p̄ and becomes negligibly small compared
with s⊥ in the approximation. Moreover, the existence of the
F core is topologically protected by the vortex winding rule;
according to Eq. (19) with L = 1 and N = ∓1, the m = ±1
component can take a finite amplitude at the vortex axis with
L±1 = 0 whereas f∓1 and f0 must be zero because of the

centrifugal potential ∝ L2
m

ρ2 in Eq. (18). Then, we have the

magnetization with sz = ± f 2
±1 = ±n and s⊥ = 0 at ρ = 0.

This suggests that the spin texture in the vortex core can be
similar to that of the Mermin-Ho vortex [1]; the orientation of
the spin in the texture sweeps a semisphere in the spin space.
In the Mermin-Ho vortex, the amplitude of the order param-
eter is homogeneous, and thus the texture is represented by a
unit vector field throughout the system. In contrast, however,
the texture of an F-core vortex is localized and disappears for
ρ

ξn
→ ∞ [see Fig. 2(b) for N = −1]. This is because the order

parameter in the core is different from that in the bulk, where
the spin density disappears far from the vortex core.

To investigate the core structure more precisely, we ob-
tained the radial profiles of fm and s by numerically solving
Eqs. (16) and (17) for L = N = 1 [23]. Figure 4 shows the nu-
merical results for several values of q

μ
with cs

cn
= −0.004. For

small q
μ

, the numerical result is consistent with the prediction
by the hydrostatic approximation. In this case, the vortex core
is approximately divided into two regions associated with the
spin distribution. A region around the vortex axis (ρ = 0) is
in the F state, where |sz| is larger than s⊥, corresponding to
the F core. The other is in the BA state with s⊥ > |sz|, which
forms the BA skin. The P state with s⊥ 
 nP and | f0| � | f±1|
is present outside the BA skin. The boundaries between these
different states are not clearly visible in the numerical plots,
owing to the penetration effect of the macroscopic wave func-
tion. This effect is described by the gradient term of fm, which
is neglected in the hydrostatic approximation.

To understand the penetration effect beyond the hydro-
static approximation, we consider the asymptotic behavior
of the spin density. This effect is described by the pen-
etration of f±1 in the deep P-state region (ρ � ρBA) as
g± ≡ ±

√
cn
2μ

( f+1 ± f−1) ∼ −
√

ξn

ρ
e− ρ

ξ± according to Eq. (17),

FIG. 4. Numerical results of the radial profiles of fm (left) and
s j ( j = x, y, z) (right) in an F-core vortex of L = N = 1 for cs

cn
=

−0.004 with (a) q
μ

= 0.01, (b) q
μ

= 0.10, and (c) q
μ

= 0.25. The
m = −1 component has a finite amplitude at the vortex axis (ρ = 0),
forming an F-core vortex for q < qC = 0.2522, whereas an N-core
vortex with �m(ρ = 0) = 0 is formed for q > qC.

where we used ξ+ = ξq/
√

2 + 4 csμ

cnq and ξ− = ξq/
√

2. As a

result, the penetration depths of s⊥ ≈ −2nPg+ ∝ e− ρ

ξ⊥ and
sz = −2nPg+g− ∝ e− ρ

ξz are given by

ξ⊥ = ξ+ = 1√
2
ξq, (34)

ξz =
(

1

ξ+
+ 1

ξ−

)−1

=
(

1 +
√

1 + 2
cs/cn

q/μ

)−1

ξ⊥. (35)

The presence of the BA skin is justified by the fact that ξ⊥ is
always larger than ξz. This result also explains the behavior of
the core structure near the critical point for q ∼ qC, where the
hydrostatic approximation breaks down with ρBA ∼ ξn; the
amplitude of sz decreases with increasing q

μ
more rapidly than

s⊥, and sz becomes negligibly small in the critical regime, as
shown in Fig. 4(c).

The core size of an F-core vortex is characterized by Zee-
man length ξq because the penetration depth of Eq. (34) is
understood as the radius of the BA skin according to the
asymptotic behavior. This conclusion is also supported by
the hydrodynamic approximation. To compare ξ⊥ with the
hydrostatic approximation, we plot ρ = ξq as a dash-dotted
curve in Fig. 3(b) as reference. We can see that the hydrostatic
approximation (ρ = ρBA) is supported by the above conclu-
sion quantitatively except near the transition point of the bulk
BA phase.

E. Critical point (cs = 0)

It is instructive to consider the critical point cs = 0, across
which the lowest-energy vortex changes from the F-core
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vortex to the AF-core vortex. The winding rule is not appli-
cable at the critical point, because the terms of the exponent
e±iδ� in Eqs. (16) and (17) become zero with cs = 0. Then,
we may assume an axisymmetric vortex with, for example,
(L+1, L0, L−1) = (0, 1, 0). In this vortex state, both f+1 and
f−1 may be finite at the vortex axis. Because the energy
density U depends on �±1 only through the term n⊥ =
f 2
+1 + f 2

−1 with cs = p = 0, the energy of the axisymmetric
vortex is invariant under the rotation of the unit vector field

1√
n⊥(ρ) [ f+1(ρ), f−1(ρ)]T, which does not change the radial

profile of n⊥(ρ).
An operation of the vector rotation realizes an AF-core

vortex with f 2
±1 = n⊥

2 , where s(r = 0) = 0 at the vortex axis
forming the local AF phase. Similarly, the local F phase oc-
curs for f 2

±1 = n⊥ and f∓1(ρ) = 0, forming an F-core vortex.
Therefore, the AF-core vortex has the same energy as the
F-core vortex at the critical point of cs = 0. The local BA
phase never occurs at the vortex axis, because s⊥ vanishes
there with �0 = 0.

The above argument implies that the m = ±1 components
vanish in the F-core vortex with (L, N ) = (1,±1) when the
parameter cs

cn
(< 0) approaches the critical point, cs

cn
→ 0. This

conjecture is consistent with the fact that the amplitude of
m = +1 is very small in Fig. 4 with a small negative cs. It
was also found numerically that the amplitude increases with
increasing |cs| (not shown). The vector rotation transforms the
vortex state from the F-core vortex into the AF-core vortex
with axisymmetry without an energy change at the critical
point. Then, we can say that the elliptic vortex on the positive-
cs side recovers axisymmetry as cs

cn
is close to zero. The core

size of the AF-core and F-core vortices at the critical point
is characterized by ξq, because we have ρBA = ρF ∼ ξq with
cs = 0 in the hydrostatic approximation.

As was mentioned before, the vortex core transition at the
critical point is discontinuous and one of the two types of
vortices is the lowest-energy vortex or the metastable vortex
for finite cs. The former claim is justified by the fact that
we require an operation of the vector rotation by π

4 for the
transformation from an AF-core vortex to an F-core vortex at
the critical point while the operation must be an infinitesimal
rotation for continuous transition. The latter is understood by
considering the contribution of the spin interaction as follows.
The transverse magnetization is broadly distributed in the
F-core vortex, whereas it is localized at the BA edges of the
AF-core vortex. In addition, the longitudinal spin density is
present around the vortex axis in the F-core vortex. The energy
contribution from the spin interaction is relatively large in the
F-core vortex, and hence the AF-core vortex is the lowest-
energy vortex and the metastable vortex for cs > 0 and cs < 0,
respectively.

V. ELLIPTIC VORTEX

An elliptic vortex is the lowest-energy vortex in the P phase
for cs

cn
> 0 and small q

μ
. This vortex is no longer axisymmetric

by forming an elliptic velocity field with a planar singularity
in vorticity. In Ref. [5], an elliptic vortex is evaluated by
applying the Joukowski transformation to an axisymmetric
vortex. Here, we demonstrate a qualitative description of the
distribution of the ordered state in the core of an elliptic

vortex from a viewpoint different from the quantitative analy-
sis in Ref. [5]. The hydrostatic approximation demonstrated
above is applied after some modification according to the
transformation.

To describe the core structure of an elliptic vortex qual-
itatively, we assume an axisymmetric state of L0 = 1 and
L+1 = L−1 = 0 in Eq. (15) with ϑ0 = 0. This consideration
gives us an intuitive approach for understanding the elliptic
structure, although the state is not realistic by breaking the
vortex winding rule. Additionally, we consider that the local
AF phase is realized at the axis of this vortex with �0(ρ =
0) = 0, and then set ϑ+1 + ϑ−1 = π to realize s⊥ = 0 there,
yielding

δ� = 2ϕ + π. (36)

This state is not axisymmetric in the sense that the transverse
spin density of Eq. (9) depends on the azimuthal angle ϕ. The
magnetization is minimized and maximized at ϕ = 0, π , and
ϕ = ±π

2 , respectively. This vortex state can be regarded as the
consequence of the inverse of the Joukowski transformation
from an elliptic vortex.

To highlight the essential points, we consider the profiles
of the order parameters along the x axis and y axis in the
vortex, which are similar to the AF-core and BA-core soliton
of Ref. [7], respectively. In the profile along the x axis, the
wave function of the m = 0 component is real, �0(x, y =
0) = sgn(x) f0(ρ = |x|), and the real function changes its sign
at x = 0, forming a structure such as a dark soliton. The
core of the soliton is occupied by the m = ±1 components
with �+1(y = 0) = f+1 and �−1(y = 0) = f−1 = − f+1. This
structure is the same as the core structure of the AF-core
soliton found in Ref. [7]. Accordingly, the local AF phase is
realized at the vortex axis (x = y = 0).

The wave function is written as �0(x = 0, y) =
sgn(y) f0(ρ = |y|)i along the y axis, and the real function
i�0 forms a dark soliton. The transverse spin density is
nonzero near the center of the soliton core at y = 0 with
sy = sgn(y)

√
2 f0( f+1 − f−1). This profile is physically

identical to that of the BA-core soliton [7] when s is rotated
about the z axis by π/2. Correspondingly, the local BA phase
occurs near the vortex axis along the y axis. This transverse
magnetization corresponds to the two spin spots as the BA
edges of the elliptic vortex.

The local AF phase is energetically preferred over the local
BA phase for antiferromagnetic interactions. In this sense, the
BA edges are regarded as the by-products of the AF core,
which could occur owing to the winding of the phase arg �0.
This energetic argument can be restated in terms of the soliton
energy as follows: the AF-core soliton is energetically pre-
ferred over the BA-core soliton for cs > 0. This is a qualitative
explanation of why the AF-core region is elongated along the
y axis in the elliptic vortex [see Fig. 2(a)] by forming an AF-
core soliton of a finite length while the length of the BA-core
soliton becomes “zero” to avoid an unnecessary energy cost.

The length of the AF-core soliton is determined by a
balance between the soliton energy and the hydrodynamic
potential induced by the elliptic velocity field [5]. Therefore,
the soliton length between the two spin spots depends on
the tension coefficient of the soliton. The tension coefficient
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FIG. 5. Cross-section plots of |�0|2 (left), |�1|2 (center), and sy (right) of the AF-core vortices for (a) q/μ = 2−16, (b) q/μ = 2−11, and
(c) q/μ = 2−5. The top, middle, and bottom panels show the plots of cs/cn = 0.128, 0.032, and 0.008, respectively. The red arrow represents
the distance between the two spin spots estimated by the phenomenological model of Eq. (38). Each plot is displayed on the same scale as is
indicated by a double-headed arrow in the lower left.

is an increasing function of q
μ

and takes its highest value
for q > qC, where the soliton becomes a dark soliton with
�±1 = 0. Then, the soliton length is zero and forms an N-core
vortex.

The size (radius) of a spin spot is uniquely characterized
by the spin healing length for small q

μ
, such that ξq � ξs,

where the density n is approximately homogeneous. Here, the
healing length is estimated as

ξs = h̄√
M|cs|nP

. (37)

Figure 5 shows the cross-section plots of AF-core vortices
for several values of the parameters. The spin healing lengths
for cs

cn
= 0.128 (top), 0.032 (middle), and 0.008 (bottom) are

given by ξs

ξn
≈ 2.8, 5.6, and 11.2, respectively. We can see that

the size of the spin spots consistently decreases with ξs.
The width of the elliptic vortex or the length of the AF-core

soliton depends on not only q
μ

, but also cs
cn

. The q
μ

dependence
comes from the tension coefficient, as demonstrated in detail
for cs

cn
= 0.016 in Ref. [5]. According to the phenomenologi-

cal theory [5], the distance d between the two spin spots in an
elliptic vortex for ξq � ξs is estimated by

d

ξn
= ξs

4ξn

(√
1 + 8π

ξq

ξs
− 1

)
. (38)

This estimation is in good agreement with the numerical re-
sults for small q

μ
, as shown by the red arrow in Figs. 5(a) and

5(b).

VI. TRANSITION FROM A NORMAL-CORE VORTEX

Here, we describe the continuous phase transition of
the vortex core from the N core to other core states. In

general, the critical behavior of a continuous phase transi-
tion can be affected by long-wavelength fluctuations of the
order parameter beyond the mean-field prediction based on
the Ginzburg-Landau (GL) theory. In our case, the mean-
field theory is applicable to the vortex-core transition at zero
temperature, because the ordered state is localized in the
restricted space of the vortex core, where the effect of the
fluctuations is less important. Here, we investigate the critical
behavior of the continuous vortex-core transition within the
mean-field approach based on the Bogoliubov theory and GL
formalism.

A. Vortex-core transition as the thermodynamic instability

The phase transition from the N-core vortex to the F-core
or AF-core vortex is continuous, as described by the mean-
field theory of the GL model [24]. When q becomes smaller
than a critical value qC, the vortex state is a saddle point or the
thermodynamic energy G is “convex upwards” with respect
to a certain fluctuation in the configuration space of �m. This
instability is referred as the thermodynamic instability. Then,
the energy of an elementary excitation or a quasiparticle in
the quantum fluid is negative, leading to spontaneous creation
and amplification of the excitation to reduce the energy in the
dissipative system, which is called the Landau instability in
the context of low-temperature physics.

The thermodynamic instability is evaluated by the Bo-
goliubov theory. The bosonic quasiparticle is described as a
collective excitation, the fluctuation of the order parameters
δ�m(t, r) = �m(t, r) − �m(r) around the stationary solution
�m(r) of the N-core vortex state. By linearizing the La-
grangian L(�m + δ�m) with respect to δ�m and applying the
Bogoliubov transformation

δ�m = um(r)e−iωt − [vm(r)e−iωt ]∗, (39)
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one obtains three eigenvalue equations,

h̄ω

(
u0

v0

)
=

(
M0 −cn�

2
0

cn�
∗
0

2 −M0

)(
u0

v0

)
, (40)

h̄ω

(
u±1

v∓1

)
=

(
M± −cs�

2
0

cs�
∗
0

2 −M±

)(
u±1

v∓1

)
. (41)

Here, we used

M0 = − h̄2

2M
∇2 − μ + 2cn|�0|2, (42)

M± = − h̄2

2M
∇2 − μ + q ∓ p + (cn + cs)|�0|2. (43)

Because the excitation energy is written as

ε = h̄ω

∫
d3x

∑
m

(|um|2 − |vm|2), (44)

the condition for the Landau instability for an excitation is
given by ε < 0.

Equation (40) is independent of the contributions from the
m = ±1 component, and the eigenvalue problem is identical
to that for excitations in an N-core vortex in a scalar BEC. In
this system, there are two excitations with the lowest energy
as the Nambu-Goldstone modes with zero energy associated
with the spontaneous breaking of the U(1) symmetry and
translational symmetry, corresponding to the varicose and
Kelvin waves [25] with zero wave numbers, respectively. This
means that the excitation energy of the nontrivial solutions in
Eq. (40) is non-negative. Therefore, the contributions of u0

and v0 are implicitly neglected in the following discussion to
focus on the instability induced by the m = ±1 component.

The N-core vortex is unstable when the lowest excitation
energy

εmin = min(ε) (45)

becomes negative. Therefore, the critical point of the vortex-
core transition is obtained from the relation

εmin = 0. (46)

B. Perturbation analysis for bosonic quasiparticles

Here, it is revealed that the lowest excitation energy de-
pends on q in a simple manner as follows:

εmin = q − qC. (47)

More concretely, qC

μ
is given by

qC

μ
= −(1 + M̃ )

cs

cn
− ε̃, (48)

with dimensionless constants M̃ and ε̃. To obtain these re-
sults analytically from Eq. (41), we extend the method of
the perturbation theory for bosonic quasiparticles, which was
introduced in the context of the splitting instability of a doubly
quantized vortex [26,27] and succeeded in precisely describ-
ing the instability in scalar BECs [28]. Here, we extend the
theory to the vortex-core instability in spin-1 BECs.

1. Formalism of the perturbation theory

For the case of p = 0, we have M+ = M− and the eigen-
value equations of �u↑ = (u+1, v−1)T and �u↓ = (u−1, v+1)T are
identical to each other. For simplicity, we drop the suffixes, ↑
and ↓, and then the eigenvalue equation is reduced to

h̄ω�u =
(

ĥ + cs|�0|2 −cs�
2
0

cs�
∗
0

2 −ĥ − cs|�0|2
)

= (ĥ + δĥ)�u (49)

with ĥ = diag(h,−h),

h = − h̄2

2M
∇2 − μ + q + cn|�0|2, (50)

and

δĥ =
(

cs|�0|2 −cs�
2
0

cs�
∗
0

2 −cs|�0|2
)

. (51)

The mathematical treatment of this problem is similar to the
perturbation analysis of single-particle problems in quantum
mechanics. Here, ĥ and δĥ play the roles of the nonperturbed
Hamiltonian operator and the perturbation, respectively. In
contrast, the norm of the wave functions can be positive,
negative, and even zero, whereas it is unity (positive) in con-
ventional quantum mechanics.

The eigenvector �u is represented by a linear combination
of a complete set of nonperturbed solutions as follows:

�u =
∑
ν>0

(Cν �uν + C−ν �u−ν ). (52)

Here, �uν = (φν, 0)T, and �u−ν = (0, φν )T are the eigenvectors
of the eigenequation ε±ν �u±ν = ĥ�u±ν , reduced to

hφν = ενφν (53)

with ε−ν = −εν . The normalization condition∫
d3xφ∗

νφν ′ = δν,ν ′ (54)

with the Kronecker delta δν,ν ′ is represented in terms of �u±ν as

N±ν,±ν ′ =
∫

d3x�u†
±ν σ̂z�u±ν ′ = ±δν,ν ′ , (55)

with σz = diag(1,−1). According to Eq. (44), using this for-
mula, the nonperturbed excitation energy by the eigenmode of
±ν is given by

ε = ε±νN±ν,±ν = εν. (56)

2. Two-mode approximation

The Landau instability occurs when there exists at least one
excitation with negative energy. Such an excitation is related
to the eigenmode �u±1 with the lowest eigenvalue minν (εν ) =
ε1. As a result, the vortex-core transition is described the-
oretically by the ground-state solution of the single-particle
Schrödinger problem of Eq. (53). The unperturbed solution is
represented by a linear combination of the lowest-eigenvalue
solutions in the two-mode approximation as follows:

�u = C+1�u+1 + C−1�u−1. (57)
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Substituting this formula into Eq. (49), one obtains the eigen-
value equation

h̄ωC±1 = ε±1C±1 + M±1,±1C±1 + M±1,∓1C∓1 (58)

with

M+1,+1 = cs

∫
d3x|�0|2|φ1|2 = −M−1,−1 = MD, (59)

M+1,−1 = −cs

∫
d3x�2

0 |φ1|2 = −M∗
−1,+1 = MO. (60)

The off-diagonal component MO vanishes as follows. In the
Schrödinger problem of Eq. (53), the density profile of the
condensate determines the symmetry of the potential for
the single-particle wave function φν . The ground-state wave
function φ1 is axisymmetric about the z axis, because the
condensate density |�0|2 = f 2

0 is axisymmetric about the vor-
tex axis. Therefore, the integral in MO becomes zero with
�0 = f0(ρ)eiϕ .

From Eq. (57) with MO = 0, we have h̄ω = ε1 + MD and
−ε1 − MD for the eigenvectors (C+1,C−1)T = C+ and C−,
respectively. Here, we used

C+ = (ei�+ , 0)T, (61)

C− = (0, ei�− )T (62)

with constants �±. Substituting these results into Eq. (44),
one finds both of the eigensolutions give the same excitation
energy,

εmin = ε1 + MD. (63)

When this value is negative, the N-core vortex becomes ther-
modynamically unstable, and the Landau instability causes
the spontaneous creation and condensation of the single-
particle state φ1 in the vortex core. Because the excitation of
�u↑ with the coefficient vector C± is physically identical to �u↓
with the coefficient C∓, we consider only �u↑ in the following.

3. Dimensionless constants

Now, we are ready to compute the dimensionless constants
M̃ and ε̃ in Eq. (48). Here, we show that the dimensionless
form of Eq. (63) is expressed as

εmin

μ
= q

μ
+ (1 + M̃ )

cs

cn
+ ε̃ (64)

with the dimensionless constants ε̃ ≈ −0.25 and M̃ ≈ 0.45.
The constants ε̃ and M̃ are computed by solving the di-

mensionless version of the Schrödinger equation [Eq. (53)]
for ν = 1,

ε̃φ1 = −1

2
∇̃2φ1 + Ṽvortexφ1, (65)

with ε̃ = ε1−q
μ

, ∇̃2 = ξ 2
n ∇2, and Ṽvortex = f̃ 2

0 − 1. Here, f̃0 =√
cn
μ

|�0|2 obeys the dimensionless version of Eq. (22),

0 =
[

1

2

(
− d2

dρ̃2
− ρ̃−1 d

dρ̃

)
− 1 + f̃ 2

0

]
f̃0 (66)

with ρ̃ = ρ

ξn
. The constant M̃ is computed by

M̃ =
∫

d3xṼvortex|φ1|2. (67)

The integral ξ−1
n

∫
dz is replaced by unity in our case with

translational symmetry along the z axis.

4. Spin fluctuation

The distribution of the spin density in the vortex core is
reproduced as a result of the condensation of the excitations
as follows. The condensation of the single-particle state φ1

causes magnetization in the vortex core, because the negative-
energy excitations cause a fluctuation in the spin density
whereas the N-core vortex has no magnetization.

The spin fluctuation δsx,y,z of sx,y,z by the excitation �u = �u↑
of C± is written as

δsx = ±
√

2φ1Re(ei�±�∗
0 ) = ±

√
2 f0φ1 cos(ϕ + �±),

(68)

δsy =
√

2φ1Im(�0e−i�± ) =
√

2 f0φ1 sin(ϕ − �±), (69)

δsz = ±φ2
1 . (70)

Here, φ1 and f0 are assumed to be positive functions without
loss of generality.

The condensation of the excitation of C± leads to an F-
core vortex because each excitation has a finite magnetization
along the z axis. The wave function φ1 is localized as a bound
state in the vortex core and the C+ excitation with �+ = 0
reproduces the localized Mermin-Ho texture like the right-
hand panel in Fig. 2(b). As observed in the F-core vortex
with q ∼ qC in Fig. 4(c), the amplitude of sz = δsz is small
compared to s⊥ =

√
δs2

x + δs2
y , because the former and the

latter are proportional to φ1 and φ2
1 (
 φ1), respectively.

The transition to the AF-core vortex is induced by the com-
bination of the excitations of C+ and C−. The sum of the spin
fluctuations with �+ = �− causes sy �= 0 and sx = sz = 0.
The distribution of the spin density is similar to that of the
right-hand panel in Fig. 2(a). The direction of the spin density
on the xy plane is arbitrarily determined by changing �± with
�+ − �− = 0 or π .

Note that the excitations that cause the transition to the AF-
and F-core vortices have the same energy in the perturbation
theory. Therefore, the above analysis does not tell us which
of the AF- and F-core vortices is the lowest-energy vortex.
This is because the second-order term (∝ δs2

z ) associated with
the spin interaction is neglected in the Bogoliubov formalism.
This inconsistency may be resolved by taking into account
the next-to-leading-order terms or corrections. A qualitative
perspective was presented to explain the discontinuous phase
transition between the AF- and F-core vortices at cs = 0 in
Sec. IV E, and thus we cease to consider the higher-order
corrections.

5. Comparisons with the full Bogoliubov theory

To examine the validity of the result of the perturba-
tion analysis, we compare it with the numerical result of
the full eigenvalue problem. The full eigenvalue equations,
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FIG. 6. Excitation spectrum of l = −1 around the critical point
for cs

cn
= −0.004 (left) and 0.016 (right). The plots show the lowest

values of excitation energy. The solid lines represent Eq. (47) with
the critical value of Eq. (48).

as obtained by linearizing the Lagrangian with respect to
um and vm, were diagonalized numerically. The equation re-
duces to the one-dimensional equation of [ūm, v̄m] by writing
as [um(r), vm(r)] = [ūm(ρ)eiLmϕ, v̄m(ρ)e−iLmϕ]eilϕ with Lm =
1 [29]. The lowest excitation energy εmin appears in the energy
spectrum of l = −1, where the centrifugal potential (∝ Lm+l

ρ2 )
vanishes for the wave function ūm.

The numerical result of the excitation spectrum of an N-
core vortex with Lm = 1 is plotted together with the result of
the perturbation theory in Fig. 6. The perturbation theory ex-
plains well the numerical result of the negative-energy modes,
which occur below the critical point qC. The zero-energy
Kelvin mode (l = −1) corresponds to the data distributed
along the ε = 0 line while the varicose mode with l = 0
does not appear in this plot. We also observe the linear q
dependence of the lowest-energy spectrum even for larger
values of cs

cn
, whereas a slightly greater difference is found

between the theoretical result and the numerical result (not
shown). Considering that spin-1 BECs are realized mostly
for very small |cs|

cn
, the difference is sufficiently small and

the theoretical prediction is available on a practical level for
making the phase diagram of Fig. 1. The smallness of the
difference is presented in a later discussion on the critical
behavior in Sec. VI C (see Fig. 7).

C. Critical behavior

The critical behavior of the continuous vortex-core
phase transition is investigated. In the transition from
an N-core vortex to an F- or AF-core vortex, the con-
densate density grows from zero at the vortex axis.
Accordingly, we regard �±1(0) at the axis as the or-
der parameter of the continuous transition and evaluate
the critical behaviors of n(0) = |�+1(0)|2 + |�−1(0)|2 and
sz(0) = |�+1(0)|2 − |�−1(0)|2.

The phenomenology of the GL model is applied to the
vortex core transition. The vortex energy Evortex is phe-
nomenologically represented by a power-series expansion of
the effective order parameter �±1(0). By taking into ac-
count the form of the energy functional G, the energy is
represented as

Evortex = EN + α(q − qC)n(0) + βnn(0)2 + βssz(0), (71)

FIG. 7. The critical behavior of the condensate density |�±1(0)|2
at the vortex axis (ρ = 0) in the AF- and F-core vortices for cs

cn
=

−0.128, −0.004, 0.016, and 0.128. The solid and open symbols
represent |�+1(0)|2 and |�−1(0)|2, respectively. The m = −1 com-
ponent vanishes at the vortex axis in the F-core vortex with L =
−N = 1. The solid curves show the results obtained using Eq. (73),
with the critical value of Eq. (48).

where EN is the vortex energy of an N-core vortex, and the
spatial variation along the z axis is neglected. The vortex core
is in an ordered state for q < qC, and the energy is minimized
with

n(0) = α

2βn
(qC − q) (q → qC). (72)

The sign of βs is derived from that of cs and we have sz = 0 for
βs > 0 and sz = ±n(0) for βs < 0, representing the AF-core
and F-core vortices, respectively.

In the hydrostatic approximation with �0 = 0 and p = 0,
the core density is given by n(0) = nAF = μ−q

cn
for the AF-

core vortex and n(0) = nF = μ−q/2
cn+cs

for the F-core vortex. This
approximation is valid for small q, such that the spatial gra-
dient of the order parameters is negligibly small with a large
vortex core size. Considering the interpolation between the
hydrostatic approximation and the GL model, we evaluate the
core density by

n(0) = neq

(
1 − q

qC

)
(73)

with neq = nAF for cs > 0 and neq = nF for cs < 0.
In Fig. 7, the numerical result of the core density n(0) is

plotted as a function of q
μ

, together with the interpolating for-
mula of Eq. (73). The core density is nearly a linear function
of q

μ
, which is consistent with the critical behavior of Eq. (72).

For cs > 0, both the m = +1 and m = −1 components grow
from zero with the same amplitude, whereas the amplitude of
the m = ±1 component remains zero in the F-core vortex with
sz = ∓n(0). The critical value qC is simply estimated from
the numerical data by applying the least-squares method to
the three smallest values of |�±1(0)|2

nP
(> 10−7), and we obtain

qC

μ
= 0.3345, 0.2514, 0.2430, and 0.1902 for cs

cn
= −0.128,

−0.004, 0.016, and 0.128, respectively. These estimations are
in good agreement with the prediction of the perturbation
analysis with a small error, which gives qC

μ
≈ 0.32, 0.25, 0.24,

and 0.17. It is found that Eq. (73) agrees with the numerical

013316-12



PHASE DIAGRAM OF VORTICES IN THE POLAR PHASE … PHYSICAL REVIEW A 104, 013316 (2021)

data quantitatively, not only near the critical point but also in
all parameter regimes, except for the case of cs

cn
= −0.128.

This inconsistency indicates the lack of validity of the hydro-
static approximation for large negative cs

cn
; we have no solution

of the F-core vortex for q
μ

< −2 cs
cn

, where the bulk is not the
P phase but the BA phase. We also found that the transverse
spin density s⊥ is no longer localized around the vortex axis
and is broadly distributed with a finite amplitude for q

μ
� 0.25

in the numerical solution of cs
cn

= −0.128. This effect may be
an additional reason for the inconsistency, and is discussed as
the finite-size effect in Sec. VII.

VII. FINITE-SIZE EFFECT

The effect of trapping potentials can be crucial in actual
experiments for small q

μ
, for which the size of the vortex

core becomes comparable to the size of the atomic cloud.
Most previous studies on vortices in spinor BECs considered
vortices in trapped systems, but did not take into account the
quadratic Zeeman effect [9]. Here, we briefly mention the
effect of the trapping potential on the vortices based on the
above theoretical analyses.

First, we consider the finite-size effect in a cylindrical box
with a radius of R. In a spin-1 BEC with ferromagnetic inter-
action of cs < 0, the bulk P phase disappears if the outer radius
ρBA of the BA skin is larger than R, ρBA > R. In such a small
system, the m = ±1 components are not localized around the
vortex axis but are distributed broadly. This is just the vortex
solution obtained numerically for small q

μ
with cs

cn
= −0.128,

as mentioned in the last paragraph in Sec. VI C. The vortex
is regarded as an F-core vortex in the BA phase in the sense
that the ordered state outside the F core is in the local BA
phase within the hydrostatic approximation. For cs > 0, it is
found that the vortex structure disappears when the width d
of an elliptic vortex becomes comparable to the system size
for small q

μ
. This effect implies the difficulty of preparing

vortices in a trapping system for q → 0. This is similar to the
situation in the AF phase, where the vortex core size (∼ξq) of
a nematic-spin vortex diverges for small negative q [8].

Next, we consider the effect of nonuniformity due to a
trapping potential. For simplicity, we assume the same exter-
nal potential Vm(r) = Vext (r) for all components. In a similar
manner to the formalism in the hydrostatic approximation, this
effect is included effectively as the local chemical potential

μext (r) = μ − Vext (r). (74)

The density healing length also varies spatially according to
Eq. (13) by replacing μ → μext. This replacement deforms
the phase diagram in Fig. 3 because the parameters of the
vertical and horizontal axes are also shifted. Accordingly,
the critical point qC of the vortex-core transition is shifted
as qC → qlocal

C = qC
μext

μ
. Therefore, in a spinor condensate

trapped by a harmonic potential, the local critical value qlocal
C

in the trap center with Vext = 0 is smaller than that of the outer
region with Vext > 0. This implies that the core structure of a
vortex can change when it moves away from the center of the
trap. It is not difficult to take into account the effect due to a
magnetic trap. For example, the potential Vm depends on m,
and the local Zeeman shift induced by a spatial gradient of the

magnetic field can be included as the local shift of p and/or q,
as the centrifugal potential is given by Eqs. (25) and (26).

VIII. SUMMARY AND DISCUSSION

The phase diagram of vortices in the P phase of spin-1
BECs is theoretically obtained by revealing the parameter
dependence of the vortex core structure in a singly quantized
vortex. We found three types of vortices depending on the
dimensionless parameters q

μ
and cs

cn
, the F-core, AF-core, and

N-core vortices, as the lowest-energy state of a singly quan-
tized vortex. The N-core vortex is identical to the conventional
vortex in scalar BECs and is the lowest-energy vortex when
the quadratic Zeeman coefficient q exceeds a critical value qC,
as given by Eq. (48). The perturbation theory of bosonic quasi-
particles reveals that the continuous vortex-core transition of
an N-core vortex is induced by the Landau (thermodynamic)
instability. The vortex solution with the lowest energy below
qC is the axisymmetric F-core vortex with a BA skin for
ferromagnetic interaction (cs < 0), whereas it is the elliptic
AF-core vortex with BA edges for cs > 0. The AF- and F-
core vortices are energetically degenerate at the critical point
cs = 0 of the discontinuous phase transition, and the former
and the latter can be metastable states for cs < 0 and cs > 0,
respectively. In fact, in the later stage of the quench dynamics
[6,19], a few vortices were found to possess longitudinal spin
density in the vortex core, corresponding to the metastable
F-core vortices.

The hydrostatic approximation based on the vortex wind-
ing rule is useful for qualitatively describing the vortex core
structure and explains the localized ferromagnetic-spin tex-
ture in the F-core vortex, whose size is characterized by the
Zeeman length ξq. The influence of the trapping potential is
also discussed, and becomes more important in the experi-
ments with smaller q

μ
because the core size of the vortices

diverges as ξq ∝ q−1/2 for q → 0. These predictions can be
examined experimentally, because the considered parameter
regimes cover those of typical experiments, such as spin-
1 condensates of 23Na with small positive cs

cn
and those of

87Rb and 41K with small negative cs
cn

, whereas the parameter
q
μ

is well controlled experimentally [30,31]. The hydrostatic
approximation would be useful for understanding the vortex-
core structure in the F and BA phases and the impact of the
finite-size effect in the recent experiment [32] as was analyzed
in Sec. VII.

The dynamics of topological defects in multicomponent
superfluids is a challenging problem to provide a rich vari-
ety of physical phenomena because of the multiple degrees
of freedom. It is important to understand the local ordered
states and their distribution in the core of topological defects,
because the dynamics may depend on them not only quanti-
tatively but also qualitatively. The core transition of solitons
in spinor BECs is a timely topic. For example, solitons in
the P phase of spin-1 BECs are classified as AF-core, BA-
core, F-core, and N-core solitons according to Ref. [7]. Very
recently, it has been observed that the core transition occurs
in the collision of solitons in experiments of a spin-1 BEC
in the polar phase. They found that the two solitons after
the collision possess finite longitudinal spin density, whereas
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they do not before the collision [12]. The magnetized soli-
tons correspond to the F-core solitons in the phase diagram
of solitons predicted theoretically in Ref. [7]. Desirably, the
transverse spin density is observed in addition to the lon-
gitudinal one, because the initial solitons can be identified
as AF-core or BA-core solitons according to the nematic-
spin order and transverse spin density. Therefore, precise
measurement of the core structure of topological defects
is important for understanding the dynamics of topologi-
cal defects in multicomponent superfluids on a fundamental
level.

We clarify the difference between our study and the pre-
ceding one in Ref. [10] in order to avoid confusion. The vortex
state with localized texture in the right-hand panel of Fig. 2(b)
looks similar to those obtained in Fig. 4 (left) of Ref. [10] (see
also Fig. 1 (top left) of Ref. [33]). The latter was realized in a
parameter regime called the “polar regime” (cs > 0), whereas
the former is realized for − q

2μ
< cs

cn
< 0 and q > 0 with p =

0. Although they did not specify the values of p and q in the
numerical simulations based on an unusual thermodynamic
treatment, it seems to be realized for q < 0 under the effective
“bias” of nonzero p caused by the numerical renormalization
of the longitudinal magnetization [34]. The spin distribution
in the right-hand panel of Fig. 2(a) is similar to that in the
vortex state obtained in Fig. 8 of the same paper, where the
values of p and q were not specified again (see also Fig. 1 (top
left) in Ref. [35]). As was pointed out in Ref. [5], they did not

consider the impact of the domain wall (the AF-core soliton)
jointing the two spin spots regardless of the values of p and
q, and could not distinguish essentially the vortex state in the
P phase from a pair of half quantum vortices in the AF phase
under external rotation [36].

It is also fruitful to connect the theory and formulation
with the bound state in the core of topological defects in other
superfluids, including fermionic superfluids and superconduc-
tors beyond the GP and Bardeen-Cooper-Schrieffer (BCS)
models. The condensates of the bound state of boson pairs
or multiple fermions can occur in a quantized vortex [37], and
even lead to the nonaxisymmetric vortex in scalar superfluids
[38]. The vortex winding rule can be connected with the
symmetry of such exotic condensates, and then to explore the
possibility of nonaxisymmetric vortices as a result of the local
condensation would be an interesting future prospect of this
work.
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