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Wigner function for noninteracting fermions in hard-wall potentials

Benjamin De Bruyne ,1 David S. Dean,2 Pierre Le Doussal,3 Satya N. Majumdar,1 and Grégory Schehr4

1LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
2Laboratoire Ondes et Matière d’Aquitaine, UMR No. 5798, Université Bordeaux and CNRS, 33400 Talence, France

3Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Universités,
24 Rue Lhomond, 75231 Paris, France

4Laboratoire de Physique Théorique et Hautes Energies, UMR No. 7589, CNRS, Sorbonne Université, 4 Place Jussieu,
75252 Paris Cedex 05, France

(Received 30 April 2021; accepted 29 June 2021; published 21 July 2021)

The Wigner function WN (x, p) is a useful quantity to characterize the quantum fluctuations of an N-body
system in its phase space. Here we study WN (x, p) for N noninteracting spinless fermions in a d-dimensional
spherical hard box of radius R at temperature T = 0. In the large-N limit, the local-density approximation
predicts that WN (x, p) ≈ 1/(2π h̄)d inside a finite region of the (x, p) plane, namely, for |x| < R and |p| < kF ,
where kF is the Fermi momentum, while WN (x, p) vanishes outside this region, or droplet, on a scale determined
by quantum fluctuations. In this paper we investigate systematically, in this quantum region, the structure of
the Wigner function along the edge of this droplet, called the Fermi surf. In one dimension, we find that
there are three distinct edge regions along the Fermi surf and we compute exactly the associated nontrivial
scaling functions in each regime. We also study the momentum distribution ρ̂N (p) and find a striking algebraic
tail for very large momenta ρ̂N (p) ∝ 1/p4, well beyond kF , reminiscent of a similar tail found in interacting
quantum systems (discussed in the context of Tan’s relation). We then generalize these results to higher d and
find, remarkably, that the scaling function close to the edge of the box is universal, i.e., independent of the
dimension d .

DOI: 10.1103/PhysRevA.104.013314

I. INTRODUCTION AND MAIN RESULTS

A. Overview of the Wigner function

The Wigner function, introduced in quantum mechanics
[1] and subsequently in the context of signal processing [2],
has found a wide variety of applications [3,4], ranging from
quantum optics [5,6], trapped atoms and ions [7–12], and
electrons in quantum Hall systems [13] all the way to time and
frequency analysis [14]. It was initially introduced to provide
a description of quantum mechanics in phase space, i.e., in
position and momentum space (x, p), aiming in particular at
a better understanding of the classical limit h̄ → 0 [15–18].
For a single particle in one dimension, described by the wave
function ψ (x), the probability density function (PDF) in po-
sition space is given by |ψ (x)|2 and in momentum space
by |ψ̂ (p)|2, where ψ̂ (p) is the Fourier transform of ψ (x).
However, because of the Heisenberg uncertainty principle,
it is not possible to simultaneously measure x and p with
infinite imprecision. Consequently, one cannot define, strictly
speaking, a joint PDF of x and p, but the closest object to such
a joint PDF is the so-called Wigner function W1(x, p), defined
as [1]

W1(x, p) = 1

2π h̄

∫ ∞

−∞
dy eipy/h̄ψ∗

(
x + y

2

)
ψ

(
x − y

2

)
,

(1)

where the subscript 1 refers to a single particle. By integrat-
ing W1(x, p) over p (resp. over x), one can check that one

recovers |ψ (x)|2 (resp. |ψ̂ (p)|2). However, as we will see
below, W1(x, p) is not necessarily positive and for this reason
it is sometimes called a pseudo-PDF and in some cases the
negativity of the Wigner function has been interpreted as an
indicator of nonclassi-cality [19].

The Wigner function can also be defined for many-body
systems, either bosons or fermions. In particular, it has been
shown that the Wigner function for N fermions trapped in
a confining potential, even in the absence of interactions,
which will be our main focus here, displays a rich behavior
in the limit of a large number of fermions N � 1. This was
shown in d = 1 and at temperature T = 0 in [20,21] and more
recently in any dimension d � 1 and finite T [22] for a large
class of smooth confining potentials, such as the harmonic
potential. In particular, the behavior of the Wigner function
for N particles exhibits, for large N , a superuniversal scaling
behavior in the (x, p) plane near the Fermi edge where the
Wigner function vanishes. Here the superuniversality refers
to the fact that the scaling behavior of the Wigner function is
independent of dimension d as well as the shape of the confin-
ing potential so long as the potential is smooth [22]. However,
much less is known about the large-N behavior of the Wigner
function in the case of nonsmooth or singular potentials,
such as the hard-box potential (see however [17,18,23–25]
mainly in the nuclear physics literature). In this paper we
show that this case also displays very rich behaviors, which
are however markedly different from the one found for smooth
potentials.
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Let us consider N noninteracting fermions in d dimen-
sions and in the presence of a trapping potential V (x̂). The
many-body Hamiltonian is HN = ∑N

i=1 Ĥ (x̂i, p̂i ) expressed
in terms of the single-particle Hamiltonian

Ĥ (x̂, p̂) = p̂2

2m
+ V (x̂), (2)

where m is the mass of the fermions. During the past few
years, trapped Fermi gases have generated tremendous
interest, both theoretically [26–38] and experimentally in
cold-atom systems [39–43]. From the theoretical point of
view, the case of d = 1 is particularly interesting since, for
some specific potentials V (x), the positions of the fermions
in the ground state of HN can be mapped to the eigenvalues
of certain ensembles of random matrices (for a recent review
see [44]). For instance, the case of the harmonic potential
V (x) = mω2x2/2 corresponds to the Gaussian unitary
ensemble [28,29], while the hard-box potential, i.e., V (x) = 0
for |x| � R and V (x) = +∞ otherwise, corresponds to the
Jacobi unitary ensemble of random matrices [34,36]. These
ensembles are well known in random matrix theory (RMT)
to display rather different behaviors [45,46]. In both cases,
the spatial density of fermions, for large N , has a finite
support, i.e., the density vanishes beyond a certain value,
for |x| > xedge, which defines an edge in the x space. Of
course for the hard box xedge = R (this is called a hard edge
in RMT), while for the harmonic oscillator xedge = √

2N/α,
where α = √

mω/h̄ is the inverse oscillator length (this is
referred to as a soft edge in RMT). Similarly, one expects
that the density in momentum space also exhibits an edge at
some value pedge. In the case of the harmonic potential the
positions and momenta have the same statistics, in particular
at the edge. The more general case of a smooth potential
V (x) ∼ x2n with n � 1 and an integer was studied in [47]
and it was shown that there exist several different universality
classes indexed by n, which have also generated some interest
in the mathematical physics literature [48–50]. However,
here we study the case of hard-box potentials (which would
formally correspond to the limit n → ∞). Nevertheless, it is
natural to expect that they behave differently from the case
of a smooth potential. This strongly suggests that the Wigner
function of a hard-box potential, not only in d = 1 but also in
higher dimensions d > 1, will display a large-N behavior in
phase space (x, p), where x = (x1, x2, . . . , xd ) and similarly
p = (p1, p2, . . . , pd ), that will be different from the behavior
found for smooth potentials [22].

We focus on the zero-temperature limit where the system
is described by the many-body ground-state wave function
�0(x1, x2, . . . , xN ). The many-body Wigner function, i.e., the
generalization of the formula (1) to any N and d , is given by
[1]

WN (x, p) = N

(2π h̄)d

∫ ∞

−∞
dy dx2 · · · dxN eip·y

×�∗
0

(
x + y

2
, x2, . . ., xN

)
�0

(
x − y

2
, x2, . . ., xN

)
.

(3)

One can easily check that WN (x, p) in (3) satisfies the relations∫ ∞

−∞
dpWN (x, p) = ρN (x),

∫ ∞

−∞
dx WN (x, p) = ρ̂N (p),

∫ ∞

−∞
dx dpWN (x, p) = N, (4)

where ρN (x) and ρ̂N (p) denote the density in real and momen-
tum space, respectively, in the ground state, i.e.,

ρN (x) =
N∑

i=1

〈δ(x − xi )〉0, ρN (p) =
N∑

i=1

〈δ(p − pi )〉0, (5)

which are both normalized to N , i.e.,
∫ ∞
−∞ dx ρN (x) =∫ ∞

−∞ dp ρ̂N (p) = N . In (5) the notation 〈· · · 〉0 denotes an av-
erage computed in the many-body ground state �0.

The many-body Wigner function in Eq. (3) is seemingly
a complicated object for finite N as it depends on the details
of the trapping potential V (x). Remarkably, however, it turns
out that in the limit of large N the Wigner function WN (x, p)
reaches a rather simple limiting form which is universal. In-
deed, in the limit N → ∞, WN (x, p) � 0 outside a domain
	, which is just the region of the space phase (x, p) that is
allowed classically. Inside this region 	 the Wigner function is
a constant, i.e., WN (x, p) � 1/(2π h̄)d . One can indeed show
that, as N → ∞, the expression in (3) takes the very simple
form

WN (x, p) � 1

(2π h̄)d

(μ − E (x, p)), (6)

where μ is the Fermi energy and

E (x, p) = p2

2m
+ V (x) (7)

is the classical energy of a single particle. In Eq. (6), 
(z) is
the Heaviside step function such that 
(z) = 1 if z > 0 and 0
otherwise. While the result in (6) can be obtained via semi-
classical methods, such as the local-density approximation
[51], it was also derived in [22] via a controlled asymptotic
analysis of the exact formula in (3). It is clear from (6) that
WN (x, p) vanishes outside the domain 	 (sometimes called a
droplet) delimited by the surface (xe, pe), described by

p2
e

2m
+ V (xe) = μ, (8)

which, following Ref. [21], we will call the Fermi surf. In
Eq. (8) the subscript e refers to the edge region of the droplet
	, i.e., the vicinity of the Fermi surf, as opposed to the bulk
region, far from the Fermi surf.

In fact, the simple form in (6) holds only for x and p in
the bulk, i.e., for x and p far enough from the Fermi surf (8).
At the edge, i.e., close to (xe, pe), one expects that the sharp
step function will be smoothened over a certain energy scale
eN . It is then natural to ask how this scale eN together with the
precise form of the Wigner function close to the Fermi surf
(8) depends on the trapping potential V (x) and on the space
dimension d . In Ref. [22] this question was addressed for the
wide class of smooth confining potentials, i.e., for potentials
that behave for large |x| as V (x) ∝ |x|ν (for some real number
ν > 0). In this case, it was demonstrated that, in terms of the
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dimensionless variable a defined as

a = 1

eN
[E (x, p) − μ], (9)

where (x, p) is a point in the phase space close to the Fermi
surf and eN is an energy scale given by

eN = (h̄)2/3

(2m)1/3

(
1

m
(pe · ∇)2V (xe) + |∇V (xe)|2

)1/3

, (10)

the Wigner function WN (x, p) takes the scaling form

WN (x, p) � W (a)

(2π h̄)d
. (11)

Quite remarkably, it was shown in [22] that the scaling func-
tion W (a) is superuniversal, i.e., independent of both the
potential and the space dimension d , and is given by [22]

W (a) =
∫ +∞

22/3a
Ai(u)du, (12)

where Ai(u) is the Airy function. The function W (a) has the
asymptotic behaviors

W (a) ∼
{

1, a → −∞
(8π )−1/2a−3/4 exp

(− 4
3 a3/2

)
, a → +∞.

(13)

In particular, the limit lima→−∞ W (a) = 1 ensures a smooth
matching with the bulk result (6).

B. Model and main results

The goal of this paper is to investigate the case when
the potential V (x) is a nonsmooth function. In particular, we
consider the case where V (x) is a hard-box potential, i.e.,

V (x) =
{

0, |x| � R
∞, |x| > R.

(14)

It is useful to summarize our main results. For simplicity, in
the rest of this section we set m = h̄ = R = 1.

1. One dimension d = 1

a. Wigner function. In this case, the Wigner function
WN (x, p) for the hard box (14) can be computed exactly for
any value of N [see Eq. (38) and Fig. 2]. From the Wigner
function we also obtain the exact expression for the density
in position (40) and momentum (41) space (see also Fig. 5).
From Eq. (6), setting V (x) = 0, we immediately see that the
Fermi surf is very simple in this case and given by the rectan-
gle passing through the four corners (see Fig. 1)

(−1,−kF ), (1,−kF ), (1, kF ), (−1, kF )

with kF =
√

2μ in the (x, p) plane, (15)

where kF is the Fermi wave vector. Outside this rectangle and
far enough from the Fermi surf, WN (x, p) � 0 in the limit
N → ∞. We find that the rest of the (x, p) plane is divided
into four regions (see Fig. 1): one bulk region (I) well inside
the Fermi surf and three edge regions (II, III, and IV and
their symmetric counterparts) close to the Fermi surf where

kF

F−k

W(x,p)~0
p

x

III

II

O(1/N)

I

1+1−

O(N)

W(x,p)=0

IVO(1)

π)W(x,p)~1/(2

FIG. 1. Representation in phase space (x, p) of the various
regimes for the Wigner function for the one-dimensional hard box
in the limit of a large number of fermions. The thick black rectangle
is the Fermi surf (with kF = Nπ/2). The inside this rectangle is the
bulk region (I) where the Wigner function is approximately constant
and nonzero. Outside this region it is approximately zero (and strictly
zero for |x| > 1). The regions where the various crossovers studied in
the text take place, i.e., near the Fermi momentum (II), near the hard
wall (III), and near the corner (IV), are indicated. Region III extends
over a momentum scale of O(kF ) = O(N ), while region II extends
only to O(1) in momentum space. The blue dashed lines represent
schematically the lines of constant value of the Wigner function.

the Wigner function exhibits different scaling regimes in the
limit N → ∞.

Region I. For −1 < x < 1 and −kF < p < kF , the Wigner
function is constant, i.e.,

WN (x, p) � 1

2π
WI(x, p) with WI(x, p) = 1, N → ∞,

(16)

in agreement with the local-density approximation (LDA) pre-
diction (6).

Region II. For −1 < x < 1 and p close to the momentum
edge |p| − pe = O(1), the Wigner function takes the scaling
form for large N , say, for p close to pe = +kF ,

WN (x, p) � 1

2π
WII

(
x,

2

π
(p − kF )

)
,

WII(x, q) = 1

π

∞∑
m=0

sin((m + q)π (1 − x))

m + q
. (17)

A plot of the scaling function WII(x, q) is shown in Figs. 2(b)
and 3, while its asymptotic behaviors are given in Eqs. (51)
and (52).

Region III. For x close to the (right) wall 1 − x =
O(1/kF ) = O(1/N ) and p = O(kF ) = O(N ), we find that
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FIG. 2. (a) Exact Wigner function WN (x, p) for N = 20 fermions (39). In the large-N limit, the Wigner function exhibits scaling regimes
in different regions of the border of the Fermi surf (see Fig. 1). The locations of the scaling regimes are labeled by the roman numerals II, III,
and IV and closer views of the scaling regimes are displayed in (b), (c), and (d), respectively, using rescaled coordinates. (b) Scaling function
WII(x, q) � WN (x, p = π

2 (N + q)) at the momentum edge of the Fermi surf (region II in Fig. 1). (c) Scaling function WIII(s̃, p̃) � WN (x =
1 − s̃/kF , p = p̃kF ) near the wall of the hard box (region III in Fig. 1). (d) Scaling function WIV((1 − x)(p − kF )) � WN (x, p) in the corner
of the Fermi surf (region IV in Fig. 1). The scaling function WIV(z) depends on only one variable, but for illustrative purposes, we use the
rescaled coordinates x = 1 − r̃

kα
F

and p = kF + qkα
F with α < 1.

WN (x, p) takes the scaling form for large N ,

WN (x, p) � 1

2π
WIII(kF (1 − x), p/kF ),

WIII(s̃, p̃) = Si[2(1+ p̃)s̃] + Si[2(1− p̃)s̃]

π

− sin 2s̃ sin 2 p̃s̃

π p̃s̃
, (18)

FIG. 3. Exact and large-N description of a slice of the Wigner
function WN (x, p) at the momentum edge p = kF + π

2 q with q =
O(1) along the line x = 1

2 (see region II in Figs. 1 and 2). As
N increases, the Wigner function approaches the scaling function
WII (x, q) (blue dashed line) given by (17).

where Si is the sine integral function Si(x) = ∫ x
0 sin(t )/t dt .

A plot of the function WIII(s̃, p̃) is shown in Figs. 2(c) and
4, while its asymptotic behaviors are given in Eqs. (55), (57),
and (60).

Region IV. Finally, for x and p near the top right corner
region, we identify a scaling region of mesoscopic size with
k−1

F  1 − x  1 and 1  |p − kF |  kF but keeping the

FIG. 4. Exact and large-N description of a slice of the Wigner
function WN (x, p) near the wall x = 1 − s̃

kF
with s̃ = O(1) along

the line p = p̃kF with p̃ = 1
3 (see region III in Figs. 1 and 2). As

N increases, the Wigner function approaches the scaling function
WIII (s̃, p̃) (blue dashed line) given by (18).
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FIG. 5. Density (a) in position space ρN (x) in Eq. (40) and (b) in
momentum space ρ̂N (p) in Eq. (41) for N = 20 fermions.

product (1 − x)(p − kF ) = z fixed (of course, a similar scal-
ing holds near the other three corners of the Fermi surf). In
this regime one finds that WN (x, p) takes the scaling form

WN (x, p) � 1

2π
WIV((1 − x)(p − kF )),

WIV(z) = 1

2
− Si(2z)

π
.

(19)

As discussed below, this regime smoothly interpolates be-
tween the regime II [where p − kF = O(1)] and the regime
III [where 1 − x = O(k−1

F )]. A plot of WIV(z) is shown
in Fig. 2(d), while its asymptotic behaviors are given in
Eq. (68).

b. Mean density in real space and momentum space. It is
also interesting to analyze separately the large-N behavior of
the densities, both ρN (x) in x space and ρ̂N (p) in p space. The
analysis of ρN (x) was recently carried out in Refs. [34,36]. In
the bulk, for −1 < x < 1, the density ρN (x) can be easily ob-
tained by integrating the Wigner function WN (x, p) in region I
in Eq. (16) [see Eq. (4)],

ρN (x) =
∫

WN (x, p)d p � 1

2π

∫ kF

−kF

d p = kF

π
, (20)

i.e., the density is, as expected, uniform in the bulk, i.e., far
from the wall [see Fig. 5(a)]. On the other hand, close to wall,

FIG. 6. Sketch of the momentum density ρ̂N (p) vs p for the one-
dimensional hard box in the limit of a large number of fermions. In
region 1, for |p| < kF the density is approximately constant ρ̂N (p) �
1/π . Outside this bulk region, we find that there are two distinct edge
regimes: Regime 2, i.e., near the Fermi surf with p − kF = O(1), cor-
responds to fermions which are inside the box, i.e., far from the wall,
and regime 3, a far-tail regime where p = O(kF ), which corresponds
to fermions which are close to the wall. In the latter regime (3) the
density has an algebraic tail ρ̂N (p) ∝ p−4 for |p| � kF .

the density vanishes over a scale 1/kF and is described by the
scaling form [36]

ρN (x) � kF

π
F1(kF (1 − x)), F1(s̃) = 1 − sin 2s̃

2s̃
. (21)

There are thus two regimes for the density: (i) the bulk for
−1 < x < 1 [see Eq. (20)] and (ii) the edge of the box, near
the wall for 1 − x = O(1/kF ) [see Eq. (21)]. We show here
that the density in p space exhibits three different regimes (see
Fig. 6).

Regime 1. For −kF < p < kF , the density ρ̂N (p) can be
obtained by integrating the Wigner function WN (x, p) given,
in region I, in Eq. (16) [see Eq. (4)],

ρ̂N (p) =
∫

WN (x, p)dx � 1

2π

∫ 1

−1
dx = 1

π
, (22)

i.e., the momentum density is also uniform, as in position
space in the bulk (20) [see also Fig. 5(b)].

Regime 2. For p close to kF , with p − kF = O(1), the
density takes a nontrivial limiting form

ρ̂N (p) � 1

π
F̂1

(
2

π
(p − kF )

)
, F̂1(q) = 1

4π2

{
4ψ (1)(q) + cos(πq)

[
ψ (1)

(
q + 1

2

)
− ψ (1)

(q

2

)]}
, (23)

where ψ (1)(z) = ∑∞
k=0 1/(k + z)2 is the trigamma function. The asymptotic behaviors of this function are given in Eq. (76),

while a plot of F̂1(q) is shown in Fig. 9.
Regime 3. For p = p̃kF with p̃ > 1, we find yet another nontrivial regime where the density ρ̂N (p) takes the scaling form

ρ̂N (p) � 1

kF
F̂1

(
p̃ = p

kF

)
, F̂1( p̃) = p̃ + (1 − p̃2) coth−1 p̃

π2 p̃( p̃2 − 1)
, p̃ > 1. (24)

The asymptotic behaviors of this function are given in Eq. (79) and a schematic plot of the various regimes for F̂1( p̃) is presented
in Fig. 10. Note in particular that, for large p̃, the momentum density has an algebraic tail F̂1( p̃) ∼ 1/p̃4. In fact, we obtain a
more precise formula, valid for any finite N for this momentum tail distribution,

ρ̂N (p) � π

96p4
N (N + 1)(2N + 1) � EN

2π

1

p4
�

N→∞
2

3π2

k3
F

p4
, (25)
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where kF = Nπ/2 and EN is the ground-state energy. Interest-
ingly, the same algebraic tail ∼1/p̃4 also appears for particles
(bosons or fermions) interacting via a contact repulsion, where
it is known under the name of Tan’s relations [52–56]. Re-
markably, we also find a 1/p̃4 decay even for noninteracting
fermions but in the presence of a hard-box potential. This
can be interpreted as a consequence of the effective repulsion
between a fermion and its image across the hard wall.

In summary, we find that the structure of the momentum
distribution is quite rich. Indeed, we note that the tail behavior
of the momentum distribution in the case of a hard-box poten-
tial has a markedly different behavior from that of a smooth
confining potential. In the hard-box case, we have two distinct
edge regimes in the momentum space (see Fig. 6): Regime 2,
i.e., near the Fermi surf with p − kF = O(1), corresponds to
fermions which are inside the box, i.e., far from the wall, and
regime 3, a far-tail regime where p = O(kF ), corresponds to
fermions which are close to the wall. We also note that when
ρ̂N (p) is integrated over these two tail regions (2 and 3) it
contributes to O(1), indicating that this corresponds to a single
outlier with an extremely high momentum. Finally, we note
that the 1/p4 tail for the momentum distribution, found here
in the presence of a hard wall, is very different from the far-tail
behavior of the momentum distribution in a smooth confining
potential such as the harmonic well where ρ̂N (p) decays faster
than an exponential [47].

c. Kernel. To quantify the quantum correlations beyond
the density and the Wigner function, it is useful to calculate
higher-order correlation functions of the fermion positions xi

and momenta pi. In the ground state the positions xi form
a determinantal point process (DPP) and similarly for the
momenta pi. A central building block for DPPs is the so-
called kernel KN (x, x′) (in position space) or K̂N (p, p′) (in
momentum space). Any n-point correlation function, either in
position or in momentum space, can be expressed as an n × n
determinant whose entries are given by the kernel. Indeed,
the Wigner function WN (x, p) discussed so far can also be
expressed in terms of the kernel by the relation [22]

WN (x, p) = 1

2π

∫
dy eipyKN

(
x − y

2
, x + y

2

)
. (26)

For the hard-wall potential, the kernel in real space KN (x, x′)
was studied in detail in Ref. [36]. Here we compute the ker-
nel in momentum space K̂N (p, p′) for the hard-wall case. In
region 1 we show that for large N it is given by the sine kernel
[see Eq. (87)], which is well known in random matrix theory.
In regions 2 and 3 we show that it takes different nontrivial
scaling forms which we compute explicitly [see Eqs. (91) and
(94), respectively].

2. Higher dimensions d > 1

In this case, the Fermi surf is the product of two d-
dimensional spheres defined by |x| = 1 and |p| = kF in
position and momentum space, respectively. Inside the Fermi
surf, i.e., for |x| < 1 and |p| < kF , the Wigner function is

given, in the large-N limit, by the LDA prediction [see
Eq. (6)], i.e.,

WN (x, p) ≈ 1

(2π )d
. (27)

Here we analyze the behavior of the Wigner function near the
hard wall in space at a point close to xw with |xw| = 1, i.e., the
analog of region III in the one-dimensional case (see Fig. 2).
The result in the large-N limit is given by the formula (105)
where the geometry in momentum space is depicted in Fig. 12.
Remarkably, the large-N scaling form of the Wigner function
is independent of the spatial dimension. Note that a similar d
independence holds also for the Wigner function in the case
of a smooth potential [22], although in this case the Wigner
function is given by a completely different formula.

The paper is organized as follows. In Sec. II we compute
exactly the Wigner function for N fermions in a one-
dimensional hard box, which we then analyze in detail in the
large-N limit. In Sec. III we focus on the statistics of momenta
for N fermions in a one-dimensional hard box and obtain
explicit formulas for the density as well as the kernel in the
large-N limit. In Sec. IV we compute the Wigner function for
N fermions in a d-dimensional hard box, with a special focus
on its large-N limiting form near the wall. We summarize
in Sec. V. Further discussion is left to five Appendixes. In
Appendix A we recall the semiclassical interpretation of the
Wigner function for a single particle in a hard box, while
Appendix B is devoted to the asymptotic analysis of the scal-
ing function describing the Wigner function in region II. In
Appendixes C and D we present the exact computation of the
Wigner function in the presence a single hard wall in d = 1
and in higher dimensions, respectively. In Appendix E we give
some details about the Wigner function for the d-dimensional
spherical hard box.

II. WIGNER FUNCTION FOR FERMIONS
IN A HARD BOX IN d = 1

We start with the Wigner function WN (x, p) of N noninter-
acting spinless fermions in a one-dimensional hard box (14)
in their ground state. We first obtain an exact expression of
WN (x, p) for finite N in Sec. II A, which we then analyze in
the large-N limit in Sec. II B.

A. Exact results for finite N

1. Eigenstates

The single-particle Hamiltonian (2) in a hard-box potential
(14) reads, in d = 1, setting m = h̄ = 1,

Ĥ = − 1
2∂2

x + V (x), V (x) =
{

0, −R � x � R
+∞, |x| > R.

(28)

The single-particle eigenfunctions of Ĥ and the associated
eigenenergies read, in the position representation,

φn(x) =
√

1

R
sin

(nπ

2R
(x + R)

)
1[−R,R](x), εn = k2

n

2
= π2

8R2
n2, n ∈ N∗, (29)
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where 1[a,b](x) denotes the indicator function of the interval [a, b]. For later purposes, it is also useful to compute the
eigenfunctions in the momentum representation where they are given by

φ̂n(p) = 1√
2π

∫ R

−R
e−ipxφn(x)dx = 4

√
R

2π

nπ

n2π2 − 4(pR)2
sin

(
pR − n

π

2

)
ei(n+1)(π/2). (30)

Note that there is no divergence at pR = ±nπ/2. Furthermore, one can check the normalization condition
∫ ∞
−∞ |φ̂n(p)|2 d p = 1

using the identity

8n2π

∫ ∞

−∞

1

[(nπ )2 − 4x2]2
sin2

(
x − n

π

2

)
dx = 1, n ∈ N∗. (31)

2. Wigner function

In the following, for simplicity and without loss of generality, we set R = 1, which amounts to rescaling all the positions
by R and the momenta by 1/R. In the ground state, the N lowest energy levels εn in (29) are occupied, up to the Fermi energy
μ = k2

F /2, where kF = Nπ/2 is the Fermi wave vector. The N-body ground-state wave function �0(x1, . . . , xN ) is given by the
N × N Slater determinant built from the single-particle eigenstate

�0(x1, . . . , xN ) = 1√
N!

det
1�k,��N

φk (x�). (32)

Inserting this expression (32) in the definition of the N-particle Wigner function WN (x, p) in Eq. (3), one can show that it can be
written as (see, e.g., [22])

WN (x, p) = 1

2π

N∑
n=1

∫ ∞

−∞
φ∗

n

(
x + y

2

)
φn

(
x − y

2

)
eipydy. (33)

Note that, because of the indicator function in the eigenfunction in (29) with R = 1, the support of the integral over y in (33) is
actually −2 + 2|x| � y � 2 − 2|x|. The generic term of this sum over n, which corresponds to the Wigner function of a single
particle in the nth excited state (29), can be written as, using sin a sin b = [cos(a − b) − cos(a + b)]/2,

1

2π

∫ ∞

−∞
φ∗

n

(
x + y

2

)
φn

(
x − y

2

)
eipy dy = 1

4π

∫ 2−2|x|

−2+2|x|
eipy

(
cos

(
nπy

2

)
− cos(nπ (x + 1))

)
dy

= 1

4π

[ ∫ 2−2|x|

−2+2|x|
eipy cos

(
nπy

2

)
dy − 2 cos(nπ (x + 1))

sin(2p(1 − |x|))
p

]
. (34)

This form (34) will be useful in the following to analyze the large-N limit of WN (x, p) in Eq. (33). Note that the remaining
integral over y in (34) can be explicitly performed, yielding

1

2π

∫
φ∗

n

(
x + y

2

)
φn

(
x − y

2

)
eipydy = 1

4π

{
1

p − nπ
2

sin

[(
p − nπ

2

)
(2 − 2|x|)

]
+ 1

p + nπ
2

sin

[(
p + nπ

2

)
(2 − 2|x|)

]

− 2 cos(nπ (x + 1))
sin(p(2 − 2|x|))

p

}
. (35)

As discussed in Refs. [18,24] (see also Appendix A), one can interpret the first two contributions in (35) in terms of a classical
phase-space picture, while the last term in (35) comes from interferences and has a purely quantum mechanical origin.

Inserting Eq. (34) into Eq. (33) and permuting the integral with the sum leads to

WN (x, p) = 1

4π

∫ 2−2|x|

−2+2|x|
eipy

(
N∑

n=1

cos

(
nπy

2

))
dy −

(
N∑

n=1

cos(nπ (x + 1))

)
sin(p(2 − 2|x|))

2π p
. (36)

Performing the sums over n using the identity

N∑
n=1

cos nπz = πDN (πz) − 1

2
, where DN (z) = sin((N + 1/2)z)

2π sin
(

z
2

) (37)

is the Dirichlet kernel,1 one obtains [note that the contributions due to the term − 1
2 in the first identity in (37) cancel between

the two sums over n in Eq. (36)]

WN (x, p) = 1

π

∫ π (1−|x|)

0
cos

(
2p

π
u

)
DN (u)du − DN (π (1 + x))

sin(2p(1 − |x|))
2p

. (38)

1Note that the Dirichlet kernel (37) corresponds to the kernel for 2N + 1 fermions on the unit circle in their (nondegenerate) ground state.
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An alternative expression for WN (x, p), which will also be useful in the following, can be obtained by performing first the integral
over y in Eq. (36) before the sum over n. This yields

WN (x, p) = 1

2π2

N∑
k=−N

sin
((

k + 2p
π

)
π (1 − |x|))

k + 2p
π

− DN (π (1 + x))
sin(2p(1 − |x|))

2p
. (39)

A three-dimensional plot of the Wigner function WN (x, p)
given in (38) is shown in Fig. 2 for N = 20 fermions. This
figure shows striking peaks close to p = 0 and they were
the main subject of studies of previous works on the Wigner
function for fermions in the presence of hard-wall potentials
[17,18] (see also Ref. [15] for a discussion in a more general
context). These Friedel-type oscillations [17] near p = 0 aris-
ing from the second term in Eq. (38) are further discussed in
Appendix A. Apart from these peaks, the Wigner function is
roughly constant inside the rectangle delimited by the Fermi
surf (15) (see also Fig. 1), which is consistent with the LDA
prediction (6). It also shows nontrivial oscillating behaviors
at the edge of the Fermi surf, which we will analyze below
in detail in the large-N limit. It is somewhat easier to visu-
alize these edge behaviors for the densities ρN (x) and ρ̂N (p).
Indeed, by integrating WN (x, p) over p [for this purpose it is
convenient to use the expression (36)], one obtains

ρN (x) = 2N + 1

4
− (−1)N cos

((
N + 1

2

)
πx

)
4 cos

(
πx
2

) , (40)

recovering the result of [36]. On the other hand, by integrating
over x one finds

ρ̂N (p) =
N∑

k=1

4πk2[(−1)k+1 cos(2p) + 1]

(π2k2 − 4p2)2
. (41)

It is interesting to note that, for finite N and large p � N , the
momentum density has a 1/p4 algebraic tail

ρ̂N (p) = π

96p4
N (N + 1)[2N + 1 − 3(−1)N cos 2p]

+ O(1/p6), (42)

which, neglecting the oscillating term, gives the formula (25)
given in the Introduction. As discussed earlier, this tail also
appears in quantum particle systems with contact repulsion.
Here, for noninteracting fermions in the presence of an infinite
wall, the eigenfunctions vanish near the wall as |y|θ (y), where
y denotes the distance from the wall [see Eq. (29)]. Hence, in
Fourier space, they behave as 1/p2 at large p [see Eq. (30)],
leading to the 1/p4 tail in the momentum density. In Figs. 5(a)
and 5(b) we show a plot of ρN (x) in (40) and ρ̂N (p) in (41) for
N = 20 fermions. In both cases, the densities are uniform over
a finite support, displaying oscillations which are enhanced
close to the edges. Note also that the shape of these oscilla-
tions, in the position and the momentum space, are seemingly
rather different, which will be confirmed by our computations
below.

B. Asymptotic results for large N

We now analyze the Wigner function WN (x, p) given in
(38) in the large-N limit and analyze separately the four re-
gions I, II, III, and IV discussed above (see Fig. 1) in four

different sections. Without loss of generality, we will restrict
the analysis to the first quadrant of the (x, p) plane as the
Wigner function is symmetric with respect to both x and p.

1. Region I: Bulk (−1 < x < 1 and −kF < p < kF )

We first consider the bulk region I, i.e., −1 < x < 1 and
−kF < p < kF , with kF = Nπ/2. We thus set p = p̃ kF =
p̃Nπ/2 and study WN (x, p = p̃Nπ/2) for large N . It is easy
to see that the second term in Eq. (38) goes to zero, while the
first one, as we will see, gives a finite contribution. Hence one
has

WN

(
x, p = p̃

Nπ

2

)

� 1

4π

∫ 2(1−|x|)

0
dy cos

(
p̃yN

π

2

) sin
((

N + 1
2

)
πy
2

)
sin

(
πy
4

) . (43)

Performing the change of variable y = 2v/πN , we get

WN

(
x, p = p̃

Nπ

2

)

� 1

π2

∫ ∞

0

dv

v
cos p̃v sin v = 1

2π

(1 − | p̃|). (44)

Note that the integral over v in (44) has been simply evaluated
by writing cos p̃v sin v = [sin( p̃ + 1)v − sin( p̃ − 1)v]/2 and
using

∫ ∞
0 sin(av)/v dv = π

2 sgn(a). This result (44) leads to
the behavior stated in Eq. (16), which coincides with the
prediction of the LDA (6).

With a bit more work it is possible to obtain the 1/N
correction to this constant value 1/2π [Eq. (44)] in the bulk.
It reads, up to terms of O(1/N ),

WN

(
x, p = p̃

Nπ

2

)

� 1

2π

(1 − | p̃|) + 1

N4π2

1

cos πx
2

1

p̃( p̃2 − 1)

×
[

(1 + p̃) cos

(
π

2
(1 − |x|)[2N ( p̃ − 1) − 1]

)

+ ( p̃ − 1) cos

(
π

2
(1 − |x|)[2N ( p̃ + 1) + 1]

)]
. (45)

We have checked numerically that this formula (45) provides
a very good approximation of the exact Wigner function (38)
or (39) for all values of x and p, provided x is not too close to
the hard wall, for N � 10 (see Fig. 7).

2. Region II: Momentum edge [−1 < x < 1 and p = kF + O(1)]

In region II, x is in the bulk, −1 < x < 1 (i.e., far from the
wall) but p is close to kF = Nπ/2 and we thus set p = kF +
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W

N
(x

,p
)

×10−1

N = 10

Large N

FIG. 7. Plot of the Wigner function WN (x, p) vs −1 < x < 1
(i.e., in the bulk of the box) for fixed p = 0.1 × Nπ

2 (see region I
in Figs. 1 and 2). The red dashed line corresponds to the exact value
of WN (x, p) for N = 10, while the blue dashed line corresponds to
the formula (45) which includes the first 1/N corrections to the LDA
prediction WN (x, p) ≈ 1/2π . As N increases, the Wigner function
approaches this constant value 1/2π , while exhibiting oscillations
which, as we see, are accurately described by the 1/N corrections
in (45).

qπ/2 = (π/2)(N + q), with q = O(1). In this regime and in
the limit of large N , the second term in (38) vanishes as N →
∞, while the first term remains finite in the limit N → ∞.
Hence the Wigner function in (38) reads, in regime II,

WN

(
x, p = π

2
(N + q)

)

� 1

π

∫ π (1−|x|)

0
cos((N + q)u)DN (u)du. (46)

Using the explicit expression of the Dirichlet kernel
DN (u) from Eq. (37) together with the trigonometric iden-
tity 2 cos(a) sin(b) = sin(a + b) − sin(a − b), the expression
(46) becomes

WN

(
x, p = π

2
(N + q)

)

� 1

2π

∫ π (1−|x|)

0
[D2N+q(u) − Dq−1(u)]du. (47)

Note that the Dirichlet kernel DN (z) in (37), while originally
defined for integer values N , can be straightforwardly contin-
ued analytically to real values of N [see the second equality
in (37)]. In addition, in the limit N → ∞ one can easily show
that

lim
N→∞

∫ a

0
DN (x) f (x)dx = f (0)

2
(48)

for any smooth function f (x).2 Using this identity (48), we
see that the expression in (47) has a good large-N limit,

2This can be shown by substituting the expression for DN (z) in
Eq. (37) in the integral on the left-hand side of Eq. (48), followed
by a change of variable (N + 1

2 )x = y and taking the limit N → ∞.
We also use the identity

∫ ∞
0 sin(y)/y dy = π/2.

namely,

lim
N→∞

WN

(
x, p = π

2
(N + q)

)
= 1

2π
WII(x, q),

WII(x, q) = 1

2
−

∫ π (1−|x|)

0
Dq−1(u)du.

(49)

An alternative expression for the Wigner function in this
regime, and thus of the scaling function WII(x, q), can be
obtained by starting from the expression for WN (x, p) given
in Eq. (39), where we recall that in this regime II the last term
can be neglected compared to the sum over k. Setting p =
(π/2)(N + q), performing the change of variable m = k + N
in the sum, and taking the limit N → ∞, one finds

lim
N→∞

WN

(
x, p = π

2
(N + q)

)
= 1

2π
WII(x, q),

WII(x, q) = 1

π

∞∑
m=0

sin[(m + q)π (1 − |x|)]
m + q

,

(50)

as stated in the Introduction (17). A plot of the scaling func-
tion WII(x, q) is shown in Figs. 2(b) and 3.

Although the two formulas (49) and (50) may look differ-
ent, one can check that they indeed coincide. It is interesting
to analyze the large-|q| behavior of this scaling function
WII(x, q). As shown in Appendix B, this is conveniently done
starting from the expression (49) and we get

WII(x, q) = 
(−q) + 1

q

sin
[
πq(1 − |x|) + π

2 |x|]
2π cos πx

2

+ O

(
1

q2

)
, |q| → +∞. (51)

Note that on both sides, i.e., for q → −∞ and q → +∞, the
Wigner function shows oscillations (around its constant value)
whose amplitude decays quite slowly, i.e., ∼1/q, as q � 1. In
addition, we see from (51) that the Wigner function, namely,
for q → +∞, can actually be negative in this region II. These
features are in marked contrast with the behavior found for
smooth potentials where the Wigner function is described by
Eq. (12). Indeed, in this case the decay is typically faster than
exponential and the Wigner function remains positive.

Finally, although our analysis in this regime holds for
−1 < x < 1, i.e., sufficiently far from the wall, it is interesting
to study the limiting behavior of WII(x, q) as x → 1, which
amounts to studying the Wigner function near the top right
corner of the Fermi surf in Fig. 1. Indeed, from the represen-
tation in Eq. (49) one immediately obtains that

WII(x, q) ∼ 1
2 , x → 1, (52)

which is thus half the value of the Wigner function in the bulk
[see Eq. (16)].

3. Region III: Near the wall [1 − x = O(1/kF ) and p = O(kF )]

We now analyze the Wigner function in region III, i.e.,
close to the hard wall (see Fig. 1). In this regime, it is conve-
nient to start from Eq. (38) and set x = 1 − s̃/kF , with s̃ > 0,
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and p = p̃ kF , with kF = Nπ/2, to obtain

WN

(
x = 1 − s̃

kF
, p = p̃kF

)
= 1

π

∫ 2s̃/N

0
cos(N p̃u)DN (u)du

− DN

(
2s̃

N

)
sin 2 p̃s̃

πN p̃
. (53)

Performing the change of variable u → u/N and using
DN (x/N ) ∼ N sin(x)/πx as N → ∞, one obtains straightfor-
wardly from Eq. (53) that WN (x = 1 − s̃/kF , p = p̃ kF ) reads,
in the limit N → ∞, keeping s̃ and p̃ fixed,

lim
N→∞

WN

(
x = 1 − s̃

kF
, p = p̃kF

)
= 1

2π
WIII(s̃, p̃), (54)

with the scaling function WIII(s̃, p̃) given in Eq. (18). A plot
of this function is shown in Figs. 2(c) and 4.

It is interesting to study the asymptotic behaviors of this
scaling function WIII(s̃, p̃) in various limits. Let us first con-
sider the small-s̃ behavior, i.e., very near the wall. In this limit,
it is easy to obtain from the expression (18) that

WIII(s̃, p̃) = 16

9π
s̃3 + O(s̃5), s̃ → 0, (55)

independently of p̃. The large-s̃ behavior, i.e., in a region
towards the bulk, of WIII(s̃, p̃) is a bit more subtle. Indeed,
focusing on the case p̃ > 0, we see in Eq. (18) that WIII(s̃, p̃)
exhibits different behaviors depending on p̃ > 1 or p̃ < 1,
since the sine integral function Si(x), being an odd function,
behaves differently for x → +∞ and x → −∞. Namely, one
has

Si(x) = sgn(x)
π

2
− cos x

x
+ O(1/x2), x → ±∞. (56)

Hence one finds

WIII(s̃, p̃) =
{

1
s̃

( p̃+1) cos[2( p̃−1)s̃]+( p̃−1) cos[2( p̃+1)s̃]
2π p̃( p̃2−1) + O

(
1
s̃2

)
, s̃ → ∞ for p̃ > 1

1 + 1
s̃

( p̃+1) cos[2( p̃−1)s̃]+( p̃−1) cos[2( p̃+1)s̃]
2π p̃( p̃2−1) + O

(
1
s̃2

)
, s̃ → ∞ for 0 < p̃ < 1.

(57)

Such different behaviors for p̃ < 1 (i.e., p < kF ) and p̃ > 1
(i.e., p > kF ) as s → ∞, i.e., far from the wall, are of course
expected given the behavior of the Wigner function in the
bulk, i.e., in region I [see Eq. (16) and Fig. 1]. For p̃ � 1, there
is an interesting crossover region, which is discussed below.

In the limit of vanishing momentum p̃ = 0, the Wigner
function in this regime takes the simple form

WIII(s̃, p̃ = 0) = 2

π
[Si(2s̃) − sin 2s̃]. (58)

In particular, in the limit of large s̃ one has

WIII(s̃, p̃ = 0) = 1 − 2

π
sin(2s̃) + O

(
1

s̃

)
, s̃ → +∞,

(59)

which shows that, in this case, the spatial oscillations are not
damped, contrary to the case 0 < p̃ < 1 [see the second line
in Eq. (57)], where the oscillating term is multiplied by 1/s̃
and thus decays as s̃ → +∞. Finally, it is also interesting to
study the behavior of WIII(s̃, p̃) for large p̃. From the explicit
expression (18) and using the asymptotic behavior in Eq. (56),
it is straightforward to obtain

WIII(s̃, p̃) = 1

p̃2

cos(2 p̃s̃)(2s̃ cos 2s̃ − sin 2s̃)

2π s̃2
+ O

(
1

p̃3

)
,

p̃ → +∞, (60)

which again decays algebraically with p̃ (modulated by a
periodic function), i.e., much slower than the faster than ex-
ponential decay found for smooth potentials [see Eq. (13)].
However, this 1/p̃2 behavior is integrable, as it should since
the total integral of WN (x, p) over p yields the spatial density
[see the first relation in Eq. (4)]. In fact, this implies, using the
scaling for the spatial density near the wall in Eq. (21), that

WIII(s̃, p̃) obeys the relation

∫ ∞

−∞
WIII(s̃, p̃)d p̃ = 4

N
ρN (x) � 2F1(s̃),

F1(s̃) = 1 − sin 2s̃

2s̃
. (61)

We have checked, using the explicit expressions for WIII(s̃, p̃)
in Eq. (18) and F1(s̃) in Eq. (21), that this identity (61) is
indeed satisfied.

It turns out that the scaling function WIII(s̃, p̃) can be
obtained directly by using the result for the limiting form
of the kernel near the wall at x = 1, obtained in Ref. [36].
Indeed, in general, WN (x, p) can be written in terms of the
kernel as [22] as given in (26). For the present box potential
(14) in d = 1 with R = 1, setting x = 1 − s̃/kF and p = p̃kF

and performing the change of variable z = kF y in (26), one
has

WN

(
x = 1 − s̃

kF
, p = p̃kF

)

= 1

2π

∫ 2s̃

−2s̃
dz eip̃z 1

kF
KN

(
1− 1

kF

(̃
s+ z

2

)
, 1− 1

kF

(̃
s− z

2

))
.

(62)

In the limit of large N , one can then use that the kernel near
the wall in (62) takes the scaling form (see Ref. [36]) of a
reflected sine kernel (see also [57])

1

kF
KN

(
1 − 1

kF

(
s̃ + z

2

)
, 1 − 1

kF

(
s̃ − z

2

))

−→
N→∞

1

π

(
sin z

z
− sin 2s̃

2s̃

)
. (63)
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FIG. 8. Contour plot of the large-N limit of the Wigner func-
tion WN (x, p) in the corner of the Fermi surf k−1

F  1 − x  1 and
1  |p − kF |  kF , keeping the product (1 − x)(p − kF ) = z fixed
(see region IV in Figs. 1 and 2). For illustrative purposes, we used
the rescaled coordinates x = 1 − r̃

kα
F

and p = kF + qkα
F with α < 1.

The hyperbolic curves (1 − x)(p − kF ) = r̃ q = z appear clearly in
the contour plot. The scaling function in the corner region is given in
(19).

Inserting this scaling form (63) into (62) and performing the
integral over z, one obtains immediately

WN

(
x = 1 − s̃

kF
, p = p̃kF

)
−→
N→∞

1

2π
WIII(s̃, p̃), (64)

where WIII(s̃, p̃) is given in (18). This provides an alter-
native derivation of this scaling function, which can be

extended to higher dimensions d > 1, as we will see later in
Sec. IV.

We end this section by mentioning that the
Wigner function WIII(s̃, p̃) in this regime III turns
out to coincide exactly with the Wigner function
for noninteracting fermions on the half-line x � 0 in
the presence of a hard-wall potential at x = 0 (see
Appendix C 1 for details). Furthermore, in Appendix C 2 we
show how this Wigner function gets modified in the presence
of an inverse-square repulsive potential near the origin.

4. Region IV: Corner [x → 1 and p − kF → ∞ with the product
(1 − x)(p − kF ) fixed]

In this regime, in which x and p are close to the top
right corner (see Fig. 1), we consider the mesoscopic scal-
ing limit where k−1

F  1 − x  1 and 1  |kF − p|  kF

but (1 − x)(p − kF ) = z is kept fixed. To study this scaling
region, it is is useful to set 1 − x = r̃

kα
F

and q = kF + qkα
F , with

0 < α < 1 and we recall that kF = Nπ/2 � 1. In this limit,
it is more convenient to start from the expression for WN (x, p)
given in Eq. (38). In this limit, again, it is easy to see that the
second term in (38) is subdominant compared to the first one,
i.e.,

WN

(
x = 1 − r̃

kα
F

, p = kF + qkα
F

)

� 1

π

∫ (2α/πα−1 )(r̃/Nα )

0
cos

[(
N + πα−1

2α−1
Nαq

)
u

]
DN (u)du.

(65)

Using the trigonometric identity 2 cos(a) sin(b) = sin(a +
b) − sin(a − b), we find that (65) can be written as

WN

(
x = 1 − r̃

kα
F

, p = kF + qkα
F

)
� 1

2π

∫ (2α/πα−1 )(r̃/Nα )

0
D2N+(πα−1/2α−1 )qNα (u) − D(πα−1/2α−1 )qNα−1(u)du. (66)

Finally, performing the change of variable v = uNα 2α−1

πα−1 and taking the limit N → ∞, we find

lim
N→∞

WN

(
x = 1 − r̃

kα
F

, p = kF + qkα
F

)
= 1

2π
WIV(r̃q), (67)

where the scaling function WIV(z) is given in Eq. (19). Note that this scaling function is independent of α in the range 0 < α < 1.
Its asymptotic behaviors are given by

WIV(z) ∼
{

1 + 1
2πz cos(2z) + O

(
1
z2

)
, z → −∞

1
2πz cos(2z) + O

(
1
z2

)
, z → +∞.

(68)

A plot of WIV(z) is shown in Fig. 8.
By looking at Fig. 1 together with the scaling forms in Eqs. (17) and (18), we see that this region IV can be reached either

(i) coming from regime II by letting 1 − x → 0 and q = (2/π )(p − kF ) → ∞, keeping q(1 − x) = 2
π

z fixed [where we recall
that z = (1 − x)(p − kF )], or (ii) coming from regime III by letting s̃ = (1 − x)kF → ∞ and p̃ = p/kF → 1 with s̃( p̃ − 1) = z
fixed. In the first case (i), it is convenient to start from the expression for WII(x, q) given in Eq. (17). Indeed, in this case, as
x → 1, the discrete sum over m can be replaced by an integral and one obtains

WII(x, q) � 1

π

∫ ∞

0

sin[mπ (1 − x) + πq(1 − x)]

m + q
dm = 1

2
− Si[2(1 − x)q]

π
= 1

2
− Si[2(1 − x)(p − kF )]

π
, (69)
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which matches perfectly with the expression for WIV(z =
(1 − x)(p − kF )) in (19). Similarly, in the second case (ii), one
immediately sees in the expression of WIII(s̃, p̃) in Eq. (18)
that in the limit s̃ = (1 − x)kF → ∞ and p̃ = p/kF → 1 with
s̃( p̃ − 1) = z, the last term is subleading compared to the first
two ones, which eventually gives

WIII(s̃, p̃) � 1

2
− Si[2s̃( p̃ − 1)]

π

= 1

2
− Si[2(1 − x)(p − kF )]

π
, (70)

where we have used the first term of the asymptotic behavior
of Si(x) given in (56) together with the fact that Si(−z) =
−Si(z). Therefore, this expression (70) also matches with the
expression for WIV(z) in (19). Hence we see that this regime
IV connects smoothly regime II and regime III (see Fig. 1).

III. MOMENTUM STATISTICS FOR FERMIONS
IN A HARD BOX IN d = 1

In this section we focus on the statistics of momenta for
noninteracting fermions in a one-dimensional hard box. We
present first the density and then the kernel in momentum
space.

A. Density in momentum space

We start with the exact expression for the density in mo-
mentum space, given in Eq. (41), which we analyze in the
large-N limit. We identify three different regimes which we
analyze separately.

Regime 1. In this regime, for −kF < p < kF , the leading
term of the density ρ̂N (p) is easily obtained by integrating the
Wigner function, as given in Eq. (22) in the Introduction. In
this regime, at leading order for large N , the density is thus
uniform, ρ̂N (p) � 1/π . From the exact expression for ρ̂N (p)
in Eq. (41), it is however possible to go beyond the leading
order and obtain the first terms in the 1/N expansion, which
show an intriguing dependence on the parity of N . Skipping
some details, one obtains

ρ̂N (p) � 1

π
− 4

π3 N

+
{

4
π3N2 sin2(p) + O

(
1

N3

)
if N is even

4
π3N2 cos2(p) + O

(
1

N3

)
if N is odd.

(71)

Regime 2. In this regime, for p close to kF , with p − kF =
O(1), we start from the exact formula for the density in
Eq. (41) and set p = (π/2)(N + q). We get

ρ̂N

(
p = π

2
(N + q)

)
= 1

π3

N∑
k=1

4k2[(−1)k+1+N cos(πq) + 1]

[k2 − (N + q)2]2
,

(72)

where we have used cos(Nπ + πq) = (−1)N cos(πq). In the
limit of large N , the sum over k in (72) is dominated by large
k, with k = O(N ), and we thus perform the change of variable
m = N − k in the sum and expand the summand to leading

order for large N . This yields

ρ̂N

(
p = π

2
(N + q)

)
� 1

π3

N−1∑
m=0

(−1)m+1 cos(πq) + 1

(m + q)2

� 1

π3

∞∑
m=0

(−1)m+1 cos(πq) + 1

(m + q)2

as N → ∞. (73)

Note that, using the identity (−1)m+1 cos(πq) + 1 =
− cos(πq + πm) + 1 = 2 sin2[π/2(m + q)] for integer
m, the last sum in (73) can also be written as

ρ̂N

(
p = π

2
(N + q)

)
� 2

π3

∞∑
m=0

sin2
(

π
2 (m + q)

)
(m + q)2

, (74)

whose structure is rather familiar in the theory of determi-
nantal point processes (discussed below). The last sum can
eventually be expressed in terms of the trigamma function,
yielding the result given in Eq. (23). The asymptotic behaviors
of the scaling function F̂1(q) for q → ±∞ can be obtained
from the ones for the trigamma function

ψ (1)(z) =
{

π2(1+ cot2 z)+ 1
z + 1

2z2 +O
(

1
z3

)
, z → −∞

1
z + 1

2z2 + O
(

1
z3

)
, z → +∞.

(75)

This yields, by injecting these asymptotic behaviors (75) in
(23),

F̂1(q) =
{

1+ 1
π2q + 1

π2q2 sin2
(

πq
2

)+O(1/q3), q → −∞
1

π2q + 1
π2q2 sin2

(
πq
2

) + O(1/q3), q → +∞.

(76)

In the limit q → −∞, the behavior in the first line in Eq. (76)
indicates that F̂1(q) smoothly matches with the uniform den-
sity profile in the bulk, i.e., with the first term in Eq. (71),
albeit with a slow algebraic decaying correction. A similar
slow algebraic decay is observed in the limit q → ∞ [see the
second line in Eq. (76)]. On both sides, i.e., for q → ±∞, the
oscillations are only visible in the next-to-leading corrections,
namely, O(1/q2). Finally, a plot of this function F̂1(q) given
in (23) is shown in Fig. 9.

Regime 3. In this regime, for p = p̃kF , with p̃ > 1, we start
from the exact formula given in Eq. (41) with p = p̃kF =
p̃Nπ/2. Since p̃ > 1, the denominator of the summand, i.e.,
(π2k2 − 4p2)2 = [π2(k2 − p̃2N2)]2, does not vanish, since
k � N , and therefore the sum over k can be safely split into
two terms

ρ̂N

(
p = p̃

Nπ

2

)
=

N∑
k=1

4πk2[(−1)k+1 cos( p̃Nπ ) + 1]

(π2k2 − N2π2 p̃2)2

=
N∑

k=1

4πk2

(π2k2 − N2π2 p̃2)2
+ cos( p̃Nπ )

×
N∑

k=1

4πk2 (−1)k+1

(π2k2 − N2π2 p̃2)2
. (77)
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In the limit N → ∞, keeping p̃ > 1 fixed, one can show that
the second term in (77) is subleading compared to the first
one, because of the alternating factor (−1)k+1, and so

ρ̂N

(
p = p̃

Nπ

2

)
�

N∑
k=1

4πk2

(π2k2 − N2π2 p̃2)2
. (78)

In the large-N limit, the discrete sum over k can be replaced
by an integral, which can be performed explicitly, yielding
the result given in Eq. (24). Note that the associated scaling
function F1( p̃) does not exhibit any oscillatory behavior at all.
Its asymptotic behaviors are straightforwardly obtained from
the explicit expression (24) as

F̂1( p̃) =
{

1
2π2( p̃−1) + 1

π2 ln( p̃ − 1) + O(1), p̃ → 1
2

3π2 p̃4 + 4
5π2 p̃6 + O

(
1
p̃8

)
, p̃ → ∞.

(79)

Note that the leading term in the first line in Eq. (79),
i.e., ρ̂N (p) � k−1

F F̂1( p̃) � 1/2π2( p̃ − 1) = 1/2π2(p − kF ) as
p̃ → 1, i.e., p → kF , matches with the large-q asymptotic
behavior in the second line of (76), i.e., ρ̂N (p) � F̂1(q =
(2/π )(p − kF )) � 1/π3q = 1/2π2(p − kF ). Note also the in-
teresting logarithmic subleading correction in the first line
in (79). Finally, one can check that the large-p̃ asymptotic
behavior in the second line in Eq. (79) matches with the
large-p asymptotic behavior of the exact finite-N expression
of ρ̂N (p) in Eq. (42). In Fig. 10 we show a plot of this scaling
function F1( p̃).

Finally, note that the scaling function F̂1( p̃) can also be
obtained by integrating the Wigner function WIII(s̃, p̃) given
in Eq. (18), i.e.,

F̂1( p̃) = 1

π

∫ +∞

0
ds̃WIII(s̃, p̃). (80)

The factor 1/π = 2 × 1/2π comes from the fact that one
needs to integrate the Wigner function close to x = −1 and
x = +1 (both yielding the same contribution) to obtain the
full momentum density for p = O(kF ). There exists a similar

FIG. 9. (a) Exact and large-N description of the momentum den-
sity ρ̂N (p) (41) at the momentum edge p = kF + π

2 q with q = O(1).
As N increases (from the bottom to the top curve), the momentum
density approaches the scaling function F̂1(q) (upper blue line) given
in (23). (b) A log-log plot of the scaling function F̂1(q) (blue line)
along with its asymptotic tails (dashed lines) obtained in (76).

FIG. 10. (a) Exact and large-N description of the momentum
density ρ̂N (p) (41) for large momentum p = p̃kF with p̃ > 1. As
N increases, the momentum density approaches the scaling function

1
kF

F̂1( p̃) (lower blue line) given in (24). (b) Logarithmic plot of the

scaling function F̂1( p̃) (smooth blue line) along with its asymptotic
tails (dashed lines) obtained in (79).

sum rule that relates F̂1(q) to WII(x, q), i.e.,

F̂1(q) =
∫ 1

−1
dx WII(x, q), (81)

which can easily be checked by comparing the formulas (17)
[integrated over x ∈ (−1, 1)] and (74).

B. Kernel in momentum space in d = 1

As mentioned above, the momenta pi, with i =
1, 2, . . . , N , of the N fermions in the ground state of the
hard-box potential form a determinantal point process which
is fully characterized by the kernel which reads [47]

K̂N (p, p′) =
N∑

k=1

φ̂∗
k (p)φ̂k (p′), (82)

where φ̂k (p) are the eigenfunctions in momentum space given
in (30). For fixed N , it evaluates to

K̂N (p, p′) = 8

π

N∑
k=1

(kπ )2

[(kπ )2 − 4p2][(kπ )2 − 4p′2]

× sin

(
kπ

2
− p

)
sin

(
kπ

2
− p′

)
. (83)

In particular, the density in momentum space is given by
ρ̂N (p) = K̂N (p, p). Indeed, one can easily check that evaluat-
ing Eq. (83) at coinciding points p = p′ yields the expression
for the density in Eq. (41). In the following, we compute
the large-N limiting form of the kernel in the three different
regions 1, 2, and 3 that we have identified in the density.

Region 1. In this region, for −kF < p, p′ < kF , one
can show that the limiting kernel is given by the expres-
sion (83) setting N → ∞. Using the trigonometric identity
2 sin a sin b = cos a − b − cos a + b, we rewrite K̂N (p, p′) for
−kF < p, p′ < kF as

K̂N (p, p′) � 4

π

∞∑
k=1

(kπ )2

[(kπ )2 − 4p2][(kπ )2 − 4p′2]

× [cos(p′ − p) + (−1)k+1 cos(p′ + p)]. (84)
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This sum over k can be evaluated explicitly using the identities

1

π

∞∑
k=1

k2

(k2 − z2)(k2 − z′2)
= z′ cot(πz′) − z cot(πz)

2(z2 − z′2)
, (85)

1

π

∞∑
k=1

(−1)k+1 k2

(k2 − z2)(k2 − z′2)
= z csc(πz) − z′csc(πz′)

2(z2 − z′2)
(86)

to get

K̂N (p, p′) ∼ sin(p − p′)
π (p − p′)

, (87)

which is the celebrated sine kernel, well known in random matrix theory. Note that the typical scale momentum scale in this
regime is p = O(1/R) (with R set to R = 1 here), while the usual sine kernel in position space occurs on microscopic scales of
O(1/kF ).

Region 2. In this region, for p and p′ close to kF , with p − kF = O(1) and p′ − kF = O(1), setting p = kF + π
2 q = π

2 (N + q)
and p′ = kF + π

2 q′ = π
2 (N + q′) in (83), we get

K̂N

(
kF + π

2
q, kF + π

2
q′

)
= 8

π3

N∑
k=1

k2

[k2 − (N + q)2][k2 − (N + q′)2]
sin

(
π

2
(k − q − N )

)
sin

(
π

2
(k − q′ − N )

)
. (88)

By performing the change of variable m = N − k in the sum we obtain

K̂N

(
kF + π

2
q, kF + π

2
q′

)
= 8

π3

N−1∑
m=0

(N − m)2 sin
(

π
2 (m + q)

)
sin

(
π
2 (m + q′)

)
(m + q)(m + q′)(2N − m + q)(2N − m + q′)

. (89)

Finally, taking the large-N limit of the summand and sending the upper limit of the sum N → ∞ yields the large-N limit of the
kernel in this regime

lim
N→∞

K̂N

(
kF + π

2
q, kF + π

2
q′

)
= 2

π3

∞∑
m=0

sin
(

π
2 (m + q)

)
m + q

sin
(

π
2 (m + q′)

)
m + q′ . (90)

Note that this form (90) is reminiscent of the form of the kernels found for multicritical fermions in a potential V (x) ∼ x2n in the
limit n → ∞ with continuum integrals replaced by discrete sums [47]. This sum over m can be evaluated explicitly, leading to

lim
N→∞

K̂N

(
kF + π

2
q, kF + π

2
q′

)
= 1

π3

{
cos

(
π
2 (q − q′)

)
ζ (q, q′) + cos

(
π
2 (q + q′)

)
1
2

[
ζ

(
q+1

2 ,
q′+1

2

)
− ζ

(
q
2 ,

q′
2

)]}
, (91)

where ζ (x, x′) = [ψ (0)(x) − ψ (0)(x′)]/(x − x′). In particular, one has limx′→x ζ (x, x′) = ψ (1)(x). Note that if one sets q = q′ in
this expression (90), we recover the expression of the scaling function for the density in this regime (2) given in Eq. (74), as we
should.

Region 3. In this region, for p = p̃kF and p′ = p̃′kF with p̃ > 1, setting p = p̃kF = p̃( Nπ
2 ) and p′ = p̃′kF = p̃′( Nπ

2 ) in (83)
gives

K̂N

(
p = Nπ

2
p̃, p′ = Nπ

2
p̃′

)
= 4

N4π3

N∑
k=1

k2[(
k
N

)2 − p̃2
][(

k
N

)2 − p̃′2]
[
cos

(
( p̃′ − p̃)

Nπ

2

)
+ (−1)k+1 cos

(
( p̃′ + p̃)

Nπ

2

)]
.

(92)

In the limit of large N , one can show that the first term
in (92), i.e., proportional to cos( p̃′ − p̃) Nπ

2 , dominates the
second term proportional to (−1)k+1 cos( p̃′ + p̃) Nπ

2 because
of the alternating sign of the latter. Hence, as N → ∞ it is
natural to consider the scaling limit where

( p̃′ − p̃)
Nπ

2
= z (93)

is finite. Note that this corresponds to a limit where p̃′ − p̃ =
O(1/kF ) = O(1/N ). Therefore, from Eq. (89) one gets in this
scaling limit, keeping z fixed (and at leading order for large

kF ),

K̂N

(
p = Nπ

2
p̃, p′ = Nπ

2
p̃′

)
� 1

kF
F1( p̃) cos z, (94)

where the function F1( p̃) is given in Eq. (24). Here also, if we
set p = p′ in this expression (94), we recover the expression
for the density given in Eqs. (24) and (78).
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V= + 8

y

R

R
xV= 0

FIG. 11. Schematic representation of a d-dimensional spherical
box of radius R in d = 2 dimensions (14). The potential is zero
inside the box, V (x, y) = 0 for x2 + y2 < R2, and infinite outside it,
V (x, y) = +∞ for x2 + y2 � R2.

IV. WIGNER FUNCTION FOR d > 1

We now consider the case of N fermions in a d-
dimensional spherical hard-box potential (14) (see Fig. 11)
in their ground state. Here also we set the radius of the
box to unity, i.e., R = 1. In this case, as we did in the one-
dimensional case, it is convenient to write the Wigner function
in terms of the d-dimensional kernel KN (x, y) [22], as in
Eq. (26),

WN (x, p) = 1

(2π )d

∫
dy eip·yKN

(
x − y

2
, x + y

2

)
. (95)

Since the eigenfunctions vanish outside the box, as does the
kernel, the domain of integration over y in (95) is

∣∣∣x − y
2

∣∣∣ � 1,

∣∣∣x + y
2

∣∣∣ � 1. (96)

In this case, the kernel KN (x, y) can be explicitly computed
[see Eq. (96) of [36]], but the resulting expression is rather
complicated and this would lead, once inserted in Eq. (95), to
a quite cumbersome expression of the Wigner function, whose

p~

s~

~sn

p~

~p
~

t0
s

n

t
xw

FIG. 12. Schematic representation of the rescaled position vector
x = xw + k−1

F s̃ and momentum vector p = kF p̃ in a d-dimensional
box (105). The blue circle represents the edge of the hard box (as in
Fig. 11). The subscript n refers to the component of the vector that
is parallel to xw and the subscript t refers to the component that is
perpendicular to xw .

full asymptotic analysis for large N goes beyond the scope of
the present paper.

To study the large-N limit, let us instead start with the
LDA prediction in Eq. (6). This formula immediately tells us
that for the d-dimensional spherical hard-box potential (14)
the Fermi surf is the product of two d-dimensional spheres
defined by |x| = 1 and |p| = kF in position. Inside the Fermi
surf, the Wigner function is constant WN (x, p) ≈ 1

(2π )d [see
Eq. (27)]; in contrast, outside the Fermi surf, WN (x, p) van-
ishes. Note that this prediction from the LDA can be obtained
in a more controlled way by starting from the exact expression
for the Wigner function in (95) and using the large-N limiting
form of the kernel KN (x, y) in the bulk, i.e., far from the
wall. We refer the reader to Ref. [22] for more details on this
computation of the Wigner function far from the Fermi surf.

Instead, we restrict our study of the Wigner function
WN (x, p) to near the wall, i.e., the analog of the regime III in
the one-dimensional case (see Fig. 1). We thus set, adopting
the notation of Ref. [36] (see Fig. 12),

x = xw + k−1
F s̃, p = kF p̃, (97)

where xw labels a point exactly at the wall, hence such that
|xw| = 1. For large N and for |p| = O(kF ) the integral over
y in Eq. (95) is dominated by |y| = O(k−1

F ). Therefore, we
perform the change of variable ỹ = kF y, leading to

WN
(
xw + k−1

F s̃, kF p̃
) = 1

(2π )d

∫
d ỹ eip̃·ỹ 1

kd
F

KN

(
xw + 1

kF

(
s̃ − ỹ

2

)
, xw + 1

kF

(
s̃ + ỹ

2

))
. (98)

Following Ref. [36], we denote by ut and un, respectively, the transverse and the normal component of an arbitrary vector u (see
Fig. 12, where u can represent either s̃ or p̃). In the large-N limit, we can then use the limiting form of the kernel near the wall,
i.e., near the edge of the Fermi gas

1

kd
F

KN

(
xw + 1

kF

(
s̃ − ỹ

2

)
, xw + 1

kF

(
s̃ + ỹ

2

))
−→
N→∞

Ke
d

(
s̃ − ỹ

2
, s̃ + ỹ

2

)
, (99)

where the edge kernel Ke
d was computed in [36]. Note also that the domain of integration for y in (96) translates into the following

domain for ỹ (in the limit N → ∞, or equivalently kF → ∞):

−2s̃n � ỹn � 2s̃n, ỹt ∈ Rd−1. (100)
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In Ref. [36] different representations of the edge kernel were obtained. Here we present a computation of the Wigner function at
the edge, obtained by substituting the scaling form (99) in (98) and then using a radial representation of Ke

d . In Appendix E we
provide an alternative derivation using a representation of this kernel in terms of Bessel functions, yielding of course the same
result.

A useful representation of the hard-wall edge kernel is [see Eq. (128) in [36]]

Ke
d (u, v) =

∫
|l|<1

dd−1l
(2π )d−1

eil·(ut −vt )
√

1 − l2Ke
1 (un

√
1 − l2, vn

√
1 − l2), (101)

Ke
1 (x, y) = sin x − y

π (x − y)
− sin x + y

π (x + y)
. (102)

Inserting (101) and (102) in Eq. (98) and using (99), one finds

WN
(
xw + k−1

F s̃, kF p̃
) −→

N→∞
1

(2π )d

∫
dd−1ỹt

∫ 2s̃n

−2s̃n

dỹneip̃t ·ỹt +i p̃nỹn

∫
|l|<1

dd−1l
(2π )d−1

e−il·ỹt
√

1 − l2

× Ke
1

((
s̃n − ỹn

2

)√
1 − l2,

(
s̃n + ỹn

2

)√
1 − l2

)
. (103)

In this form (103), we see that the integral over ỹt can be performed straightforwardly, yielding simply (2π )d−1 δ(p̃t − l). Thus
one obtains

WN
(
xw + k−1

F s̃, kF p̃
) −→

N→∞

(1 − p̃2

t )

(2π )d

√
1 − p̃2

t

∫ 2s̃n

−2s̃n

dỹneip̃nỹn Ke
1

((
s̃n − ỹn

2

)√
1 − p̃2

t ,

(
s̃n + ỹn

2

)√
1 − p̃2

t

)
.

(104)

Finally, performing the integral over ỹn, we find that the Wigner function WN (x, p) for the spherical hard box takes at large N
the scaling form, which is our main result in dimension d ,

WN
(
xw + k−1

F s̃, kF p̃
) ≈ 1

(2π )d
WIII(s̃, p̃),

WIII(s̃, p̃) = 

(
1 − p̃t

2
)

π

(
Si

[
2s̃n

(√
1 − p̃2

t + p̃n
)] + Si

[
2s̃n

(√
1 − p̃2

t − p̃n
)] − sin

(
2s̃n

√
1 − p̃2

t

)
sin(2s̃n p̃n)

p̃ns̃n

)
,

(105)

where we recall that Si(x) = ∫ x
0 sin(t )/t dt and the variables

p̃t , s̃t , p̃n, and s̃n are defined in Fig. 12. Remarkably, the
form of the scaling function WIII(s̃, p̃) is independent of the
dimension d . In particular, in the case d = 1, one has p̃t = 0
and one can check that WIII(s̃, p̃) = WIII(s̃n, p̃n) given in (18),
as it should. The generic structure of this result for the Wigner
function in regime III has an interesting semiclassical inter-
pretation that we discuss in Appendix A.

As in the one-dimensional case, one can show (see
Appendix D) that the limiting Wigner function in (105) corre-
sponds to the Wigner function for noninteracting fermions on
a semi-infinite space xd > 0 [recall that we use the notation
x = (x1, x2, . . . , xd )] in the presence of a d-dimensional hard-
wall potential of the form

V (x) =
{+∞, xd < 0

0, xd > 0.
(106)

V. CONCLUSION

In this paper we have studied the Wigner function WN (x, p)
for N noninteracting fermions in a d-dimensional spherical
hard box of radius R at temperature T = 0, going far be-
yond the prediction of the LDA (6). In particular, we have
shown that, near the Fermi surf (see Fig. 1), the Wigner
function exhibits an edge behavior in the large-N limit which

is quite different from the one found previously for smooth
potentials [20–22]. For x close to the wall (regime III in
Fig. 1), we have computed explicitly the scaling function
describing WN (x, p) and found, rather remarkably, that it
is independent of the space dimension d . It is quite dif-
ferent from the scaling function (of the Airy type) which
describes the Wigner function at the edge for a smooth
potential.

Focusing on d = 1, we were able to derive a more com-
plete description of the Wigner function everywhere along
the Fermi surf as explained in Fig. 1. We have computed
explicitly three nontrivial scaling functions along the Fermi
surf. Finally, in d = 1 we were also able to compute explicitly
the momentum distribution ρ̂N (p) of the fermions for all p
and N . This momentum distribution, for large N , exhibits a
remarkable algebraic tail for p � kF , i.e., ρ̂N (p) ∝ 1/p4. This
is very different from the corresponding tail of the momentum
distribution for fermions in a smooth potential, where it has
typically a superexponential tail [47]. However, this 1/p4 tail
is also reminiscent of the similar tail found in interacting
quantum systems with contact repulsion.

A natural question is what happens if the infinite wall
is replaced by a continuous singular potential of the type
V (x) ∝ 1/xγ with γ > 0. In Ref. [36] it was shown that, for
1 � γ < 2, the kernel near the singularity is identical to that
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of a hard wall at x = 0. Hence we expect that, for 1 � γ < 2,
the Wigner function will also be described by the same scaling
function WIII(s̃, p̃) as the hard-wall case discussed in this
paper. The special case γ = 2 is discussed in Appendix C 2,
where the result is different from the hard-wall case, as ex-
pected. In view of recent works on finite square-well potential
[58], it would also be interesting to study the Wigner function
in this case.

Finally, in higher dimension d > 1, we have focused on the
behavior of the Wigner function when the position x is close
to the wall, while |p| = O(kF ). As in d = 1, it would be inter-
esting to investigate the behavior of the Wigner function close
to the momentum edge |p| − kF = O(1/R) and also the dis-
tribution of the momentum. Another question is what happens
at finite temperature. The finite-temperature Wigner function
near the Fermi surf is straightforward to compute using the
formula (84) in Ref. [22], which relates the finite-temperature
Wigner function to its zero-temperature counterpart.
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APPENDIX A: WIGNER FUNCTION FOR A SINGLE
PARTICLE IN HARD-WALL POTENTIALS AND

SEMICLASSICAL INTERPRETATION

In this Appendix we briefly recall the Wigner function
and its semiclassical interpretation for a single-particle in
hard-wall potentials (see, e.g., [18]). We start with a sin-
gle particle on the infinite line described by a single plane
wave, i.e.,

ϕPW(x) = 1√
2π

eikx, x ∈ R, (A1)

where the subscript PW refers to plane wave. In this case the
single-particle Wigner function defined in Eq. (1) is given by

WPW(x, p) = 1

2π
δ(p − h̄k). (A2)

In this simple case, interpreting the Wigner function as a qua-
sidistribution in the phase space (x, p), the result (A2) is what
one would expect from a classical analogy. Indeed, the state
described by ϕPW(x) in (A1) has a well-defined momentum h̄k
(since this is an eigenstate of the momentum operator p̂ with
eigenvalue p = h̄k) and therefore the corresponding Wigner
function is WPW(x, p) ∝ δ(p − h̄k).

Let us now consider a superposition of two counterpropa-
gating plane waves

ϕ2PW(x) = 1√
π

sin kx = 1

i
√

2

1√
2π

eikx − 1

i
√

2

1√
2π

e−ikx, x ∈ R, (A3)

such that now the state is a linear combination (with equal amplitude) of two states with momentum ±h̄k. By substituting this
expression (A3) in Eq. (1), it is straightforward to evaluate the Wigner function, which reads

W2PW(x, p) = 1

2π

[
1
2δ(p − h̄k) + 1

2δ(p + h̄k) − cos(2kx)δ(p)
]
. (A4)

The two first delta functions δ(p − h̄k) and δ(p + h̄k) can simply be understood, from the classical analogy, from the interpre-
tation of the wave function in (A3) mentioned above, being a simple extension of (A2). However, the third term proportional to
δ(p) does not have a classical analog and is the result of quantum interference between the two plane waves.

Let us now consider the case where the particle is constrained to stay on the semi-infinite line with x � 0 and in the presence
of a hard wall at the origin

V (x) =
{+∞, x < 0

0, x > 0.
(A5)

Let us now consider an eigenstate

ϕHW(x) =
√

2

π

(x) sin kx, k > 0, (A6)

where the subscript HW refers to hard wall. It is similar to the superposition of the two plane waves considered above (A3), but
now the particle is constrained to stay on the half-line x > 0. The Wigner function reads in this case

WHW(x, p) = 1

π

[
1
2 fD(x, p − h̄k) + 1

2 fD(x, p + h̄k) − cos(2kx) fD(x, p)
]
, fD(x, p) = 1

π

sin( 2x
h̄ p)

p
. (A7)

By comparing this result for the Wigner function in the presence of the wall (A7) with the one obtained without the wall in
Eq. (A4), we see that they have exactly the same structure except that the Dirac δ function of p in (A4) is broadened by the
presence of the wall and is replaced by an x-dependent function fD(x, p). In fact, fD(x, p) → δ(p) far from the wall, i.e., as
x → ∞.

Finally, we note that a similar structure (A7) also holds for the Wigner function corresponding to an eigenstate of a single
particle in a hard box x ∈ [−1, 1] [see Eq. (35)]. Indeed, the expression (35), where we have set h̄ = 1, can be written as in
Eq. (A7), up to a global prefactor, with the substitutions k → nπ/2 and x → 1 − |x|, which is actually the distance to the
nearest hard wall.
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APPENDIX B: ASYMPTOTIC ANALYSIS OF WII (x, q) FOR LARGE |q|
In this Appendix we provide some details about the asymptotic analysis of WII(x, q) for large |q|. Our starting point is the

formula in Eq. (49), which we write as

WII(x, q) = 1
2 − I (π (1 − x), q), (B1)

where

I (z, q) =
∫ z

0
Dq−1(u)du = 1

2π

∫ z

0

sin
[(

q − 1
2

)
u
]

sin
(

u
2

) du.

To analyze the function I (z, q) for large |q| and z > 0, it is convenient to write

1

sin u
2

= 2

u
+ g(u), g(u) = 1

sin u
2

− 2

u
. (B2)

As we will see, the advantage of this decomposition (B2) is that g(u) is a smooth function near u = 0. Inserting (B2) in the
definition of I (z, q) in (B1), we get

I (z, q) = 1

π
Si

[(
q − 1

2

)
z

]
+ 1

2π

∫ z

0
du sin

[(
q − 1

2

)
u

]
g(u), (B3)

where we recall that Si(x) is the sine integral function Si(x) = ∫ x
0 sin(t )/t dt . Using its asymptotic behavior given in (56), one

finds

1

π
Si

[(
q − 1

2

)
z

]
= 1

2
sgn(q) − 1

π

cos
[(

q − 1
2

)
z
]

qz
+ O

(
1

q2

)
, (B4)

where we have used that z > 0. To obtain the large-q behavior of the integral over u in (B3), we perform an integration by parts
[i.e., differentiating g(u) and integrating sin(q − 1

2 )u], and one gets

1

2π

∫ z

0
du sin

[(
q − 1

2

)
u

]
g(u) = 1

2π

(
− g(z)

q − 1
2

cos

[(
q − 1

2

)
z

]
+ 1

q − 1
2

∫ z

0
du g′(u) cos

[(
q − 1

2

)
u

])
, (B5)

where we have used g(0) = 0. Since g′(u) is a perfectly regular function near u = 0, one can again perform an integration by
parts, which shows that the remaining integral in (B5) is of O(1/q2). Hence, to leading order for large |q|, we get

1

2π

∫ z

0
du sin

[(
q − 1

2

)
u

]
g(u) = − g(z)

2πq
cos

[(
q − 1

2

)
z

]
+ O

(
1

q2

)
. (B6)

Finally, inserting the asymptotic behaviors (B4) and (B6) in Eq. (B3), we obtain

I (z, q) = 1

2
sgn(q) − cos

[(
q − 1

2

)
z
]

2πq

(
2

z
+ g(z)

)
+ O

(
1

q2

)
= 1

2
sgn(q) − 1

2πq

cos
[(

q − 1
2

)
z
]

sin z
2

+ O

(
1

q2

)
. (B7)

Finally, inserting this expansion (B7) with z = π (1 − |x|) in Eq. (B1), one obtains the asymptotic expansions given in Eq. (51).

APPENDIX C: WIGNER FUNCTION
FOR A SINGLE HARD WALL IN d = 1

1. Case of a flat potential

We first start with the case of N noninteracting spinless
fermions in a flat potential with a single hard wall at the origin

V (x) =
{+∞, x < 0

0, x > 0.
(C1)

We focus on zero temperature, where the energy levels are
filled up to the Fermi energy μ = k2

F /2. For such a potential
(C1), the prediction from the LDA (6) is simply (see Fig. 13)

Wμ(x, p) =
{

1
2π

, (x, p) ∈ S
0, (x, p) /∈ S (C2)

for S = {(x, p) | x > 0; −√
2μ < p < +√

2μ}.
It turns out that the structure of the Wigner function in this

case is much richer than the one predicted by the LDA, as can

be seen from an exact computation of Wμ(x, p). We start with
the exact single-particle eigenfunctions given by

φk (x) =
√

2

π

(x) sin kx, k > 0, (C3)

with corresponding energies εk = k2/2. The Wigner func-
tion is obtained by inserting the explicit expression for the
eigenfunctions (C3) in the general formula given in Eq. (33),
replacing the discrete sum over n by an integral over k since
we have a continuous spectrum of states in this case. This
yields the exact formula

Wμ(x, p) = 1

π2

∫ 2x

−2x
dy eipy

∫ kF

0
dk sin

[
k
(

x − y

2

)]

× sin
[
k
(

x + y

2

)]
. (C4)
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FIG. 13. Illustration of the LDA prediction (6) in the (x, p)
plane for the Wigner function of the ground state of noninteracting
fermions on the semi-infinite line with a hard wall at the origin
(C1). The corresponding Fermi energy is μ. Inside the half strip S
(blue striped area) the Wigner function is nonzero and constant, i.e.,
Wμ(x, p) = 1/2π , while it vanishes outside this half strip.

The integral over k is easily done, leading to

Wμ(x, p) = 1

π2

∫ 2x

−2x
dy eipy

[
sin(kF y)

2y
− sin(2kF x)

4x

]
. (C5)

Performing the integral over y, one finally obtains

Wμ(x, p) = Si[2x(kF + p)]

2π2
+ Si[2x(kF − p)]

2π2

− sin 2kF x sin 2px

2π2 px
. (C6)

Note that this result can also be obtained by integrating over k
from k = 0 to k = kF the expression for the Wigner function
of a single particle with a hard wall at the origin in Eq. (A7).
As discussed in Appendix A, the first two sine integral terms
in (C6) are reminiscent of the broadened δ functions, this
broadening being caused by the presence of the wall, while
the last term comes from quantum interference [see Eqs. (A4)
and (A7)]. An interesting consequence of this broadening is
that the Wigner function is nonzero even for p > kF = √

2μ,
a property which is not captured by the LDA prediction (C2).

Finally, in terms of the scaled variables s̃ = kF x [which
measures the scaled distance from the wall as in the text; see
Eq. (18)] and p̃ = p/kF , the Wigner function in (C6) reads

Wμ(x, p) = 1

2π
WIII

(
s̃ = kF x, p̃ = p

kF

)
, (C7)

where WIII(s̃, p̃) is the scaling function describing region III
of the hard box (see Fig. 1) and is given in Eq. (18). We
emphasize that the result in Eq. (C6) is actually exact for this
model (C1). Note finally that if one sets p = p̃kF in the exact
expression for WIII(x, p) in Eq. (C6) and then takes the limit
μ → ∞, or equivalently kF → ∞, one finds

lim
kF →∞

WIII(x, p = p̃kF ) = 
(1 − p̃), (C8)

which coincides with the LDA prediction (C2) in this limit, as
expected.

FIG. 14. Illustration of the LDA prediction (6) in the (x, p)
plane for the Wigner function of the ground state of noninteracting
fermions on the semi-infinite line with a hard wall at the origin and in
the presence of an inverse-square potential (C9). The corresponding
Fermi energy is μ. Inside the blue striped area the Wigner function is
nonzero and constant, i.e., Wμ(x, p) = 1/2π , while outside this half
strip it vanishes.

2. Case of an inverse-square potential

Here we consider the case of N noninteracting spinless
fermions in an inverse-square potential and a hard wall at the
origin

V (x) =
{+∞, x < 0

ν(ν−1)
2x2 , x > 0,

(C9)

with ν � 1. We focus on the ground state, where the energy
levels are filled up to the Fermi energy μ = k2

F /2. For such
a potential (C9), the prediction from the LDA (6) is simply
that Wμ(x, p) = 1/2π for (x, p) inside the blue striped area
shown in Fig. 14, while Wμ(x, p) = 0 outside this region. Note
that for μ → ∞, with ν fixed, this yields the Wigner function
obtained for the semi-infinite system in a flat potential and a
hard wall at the origin in Eq. (C2).

In this case, however, it is also possible to compute exactly
the Wigner function, which displays a much richer structure
than the LDA prediction. Indeed, for this potential (C9) the
single-particle eigenfunctions can be computed exactly. They
are given by

φk (x) =
√

kxJν−1/2(kx), k > 0, (C10)

where Jν (x) is the standard Bessel function of the first kind,
and their corresponding energies are εk = k2/2. Note that in
the case ν = 1, using J1/2(x) = √

2/πx sin x, one recovers the
case studied above [see Eq. (C3)]. In the ground state, the
Wigner function is given by inserting the explicit expression
for the eigenfunctions (C10) in Eq. (33) and by replacing the
discrete sum over n by an integral of k. This yields

Wμ(x, p) = 1

2π

∫ 2x

−2x
dy eipy

√
x2 − y2

4

∫ kF

0
dk k

× Jν−1/2

(
k
(

x − y

2

))
Jν−1/2

(
k
(

x + y

2

))
. (C11)
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The integral over k can be performed explicitly, yielding the result (performing also the change of variable z = y/2)

Wμ(x, p) = kF

4π

∫ x

−x

dz

xz
e2ipz

√
x2 − z2[(x + z)Jν−1/2(kF (x − z))Jν+1/2(kF (x + z))

− (x − z)Jν+1/2(kF (x − z))Jν−1/2(kF (x + z))]. (C12)

Performing the change of variable z = u/kF , one finds that Wμ(x, p) takes the scaling form

Wμ(x, p) = 1

2π
WIII,ν

(
s̃ = kF x, p̃ = p

kF

)
, (C13)

WIII,ν (s̃, p̃) = 1

2s̃

∫ s̃

−s̃

du

u
e2i p̃u

√
s̃2 − u2[(s̃ + u)Jν−1/2(s̃ − u)Jν+1/2(s̃ + u) − (s̃ − u)Jν+1/2(s̃ − u)Jν−1/2(s̃ + u)]. (C14)

Interestingly, we see that the Wigner function WIII,ν (s̃, p̃)
depends continuously on the parameter ν. In particular, setting
ν = 1 in (C14), one can check that WIII,ν=1(s̃, p̃) = WIII(s̃, p̃)
given in Eq. (18), as expected. Note that, for generic ν,
it seems difficult to evaluate the remaining integral over u,
although it seems possible (though cumbersome) for ν =
2, 3, . . .. One can however easily evaluate numerically the
integral in Eq. (C14) for different values of ν and generic
values of s̃ and p̃. Note also that this integral representation in
Eq. (C14) is in principle also amenable to a precise analysis
of the various asymptotic behaviors of WIII,ν (s̃, p̃), similar to
the one carried out for WIII,ν=1(s̃, p̃) = WIII(s̃, p̃) in the text
[see Eqs. (55)–(60)].

We conclude this Appendix by recalling that, close to the
origin, the quantum correlations of the fermions in the ground

state of the inverse-square potential in Eq. (C9) are described
by the so-called Bessel kernel [36], which is well known
in RMT [46]. This kernel depends continuously on ν and,
as ν → ∞, one can show (see, e.g., [36]) that the Bessel
kernel, properly centered and scaled, converges to the Airy
kernel, which describes the edge properties of the Fermi gas
in the presence of a smooth potential [33]. Therefore, one
expects that, in this limit ν → ∞, the limiting scaling function
WIII,ν (s̃, p̃) properly centered and scaled should converge to
the scaling function W (a) in Eq. (12) found for smooth po-
tentials [22]. This family of scaling function WIII,ν (s̃, p̃) thus
smoothly interpolates between the hard-wall scaling function
WIII(s̃, p̃) discussed in this paper in Eq. (18) as ν → 1 and the
one found previously for smooth potentials, i.e., W (a) in (12),
as ν → ∞. We have not tried, however, to study this crossover
in detail.

APPENDIX D: WIGNER FUNCTION NONINTERACTING FERMIONS IN THE PRESENCE
OF A SINGLE d-DIMENSIONAL HARD WALL

In this Appendix we compute exactly the Wigner functions for N noninteracting fermions in the presence of the d-dimensional
hard-wall potential given in Eq. (106). In this case, the exact eigenfunctions are indexed by a vector k = (k1, k2, . . . , kd ),

φk(x) =
√

2

π

1

(
√

2π )d−1

(xd ) sin(kd xd ) exp

(
i

d−1∑
j=1

k jx j

)
= 1

2(d−2)/2

1

π (d−1)/2

(xd ) sin(kd xd )eikt ·xt (D1)

for kd > 0, where we used the notation xt = (x1, x2, . . . , xd−1) and similarly kt = (k1, k2, . . . , kd−1). The Wigner function in the
ground state of fermions with Fermi energy μ = √

2kF is then given by the generalization of Eq. (C4) to d dimensions, i.e.,

Wμ(x, p) = 1

(2π )d

∫
dd−1kt

∫ ∞

0
dkd
(kF − |k|)

∫
dd y eip·yφ∗

k

(
x + y

2

)
φ∗

k

(
x − y

2

)
. (D2)

By inserting the expression for the eigenfunctions (D1) in Eq. (D2) we see that the integrals over y1, y2, . . . , yd−1 can be
performed yielding simply (2π )d−1δ(kt − pt ), where pt = (p1, p2, . . . , pd−1). Therefore, the integrals over kt become trivial
and we get

Wμ(x, p) = 

(
k2

F − p2
t

)
(2π )d

2

π

∫ ∞

0
dkd


(
kF −

√
k2

d + p2
t

) ∫ 2xd

−2xd

dyd eipd yd sin
(

xd + yd

2

)
sin

(
xd − yd

2

)
. (D3)

The remaining integrals over kd and xd are then exactly similar to the ones performed in the one-dimensional case in Eqs. (C4)–
(C6) with the substitutions x → xd , p → pd , and kF →

√
k2

F − p2
t . This yields

Wμ(x, p) = 

(
k2

F − p2
t

)
(2π )d

⎛
⎝Si

[
2xd

(√
k2

F − p2
t + pd

)]
π

+
Si

[
2xd

(√
k2

F − p2
t − pd

)]
π

−
sin(2xd

√
k2

F − p2
t ) sin(2pd xd )

π pd xd

⎞
⎠. (D4)

In the particular case d = 3, we recover the result of Ref. [17]. We also see that this result (D4) coincides exactly with the
expression found in Eq. (105) for the Wigner function for N � 1 fermions in a spherical box and near the hard wall in terms of
rescaled variables, i.e., with xd ≡ s̃n/kF , pd ≡ p̃nkF , and pt = p̃t kF .

013314-20



WIGNER FUNCTION FOR NONINTERACTING FERMIONS … PHYSICAL REVIEW A 104, 013314 (2021)

APPENDIX E: LIMITING WIGNER FUNCTION IN d DIMENSIONS USING A REPRESENTATION OF THE EDGE KERNEL
IN TERMS OF BESSEL FUNCTIONS

In this Appendix we provide an alternative derivation of the limiting d-dimensional Wigner function near a hard-wall starting
from the expression for WN (x, p) given in Eqs. (98) and (99) and using a representation of the edge kernel in terms of Bessel
functions obtained in Ref. [36] [see Eqs. (125)–(127)]. This reads

WN
(
xw + k−1

F s̃, kF p̃
) −→

N→∞
1

(2π )d

∫
dd−1ỹt

∫ 2s̃n

−2s̃n

dỹnei(p̃t ·ỹt +p̃nỹn )

(
Jd/2

(√
ỹ2

t + ỹ2
n

)
(
2π

√
ỹ2

t + ỹ2
n

)d/2 − Jd/2
(√

ỹ2
t + 4s̃2

n

)
(
2π

√
ỹ2

t + 4s̃2
n

)d/2

)
. (E1)

The (d − 1)-dimensional integral over yt can be explicitly computed as the Fourier transform of a radially symmetric function.
Namely, one can use the formula, for any smooth function g(z),

1

(2π )d

∫
dd−1ỹt eip̃t ·ỹt g(|ỹt |) = 1

(2π )(d+1)/2 p̃d/2−3/2
t

∫ ∞

0
dỹt ỹd/2−1/2

t J(d−3)/2( p̃t ỹt )g(ỹt ), p̃t = |p̃t |. (E2)

Using this relation (E2) in Eq. (E1), one obtains

WN
(
xw + k−1

F s̃, kF p̃
) −→

N→∞
1

(2π )(d+1)/2 p̃d/2−3/2
t

∫ 2s̃n

−2s̃n

dỹneip̃nỹn

∫ ∞

0
dỹt ỹ

d/2−1/2
t Jd/2−3/2( p̃t ỹt )

×
(

Jd/2
(√

ỹ2
t + ỹ2

n

)
(
2π

√
ỹ2

t + ỹ2
n

)d/2 − Jd/2
(√

ỹ2
t + 4s̃2

n

)
(
2π

√
ỹ2

t + 4s̃2
n

)d/2

)
. (E3)

Using the relation [59]∫ ∞

0
dx xν+1Jν (cx)

Jμ(b
√

x2 + z2)

(x2 + z2)μ/2
= 
(b − c)

cνz1+ν−μ

bμ
(b2 − c2)(μ−ν−1)/2Jμ−ν−1(z

√
b2 − c2) (E4)

specialized to ν = d/2 − 3/2, c = p̃t , μ = d/2, z = yn, and b = 1 and then to ν = d/2 − 3/2, c = p̃t , μ = d/2, z = 2 sn, and
b = 1 to evaluate the two integrals in (E3), one gets, using J1/2(z) = √

π/2z sin z,

WN
(
xw + k−1

F s̃, kF p̃
) −→

N→∞



(
1 − p2

t

)
2dπd+1

∫ 2s̃n

−2s̃n

dỹneip̃nỹn

(
sin(ỹn

√
1 − p2

t )

ỹn
− sin(2s̃n

√
1 − p2

t )

2s̃n

)
. (E5)

Finally, performing the integral over ỹn, one arrives at the expression given in Eq. (105), obtained in the main text by a different
method.
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