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Spontaneous quantum superradiant emission in atomic Bose-Einstein condensates
subject to a synthetic vector potential
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We theoretically investigate the spontaneous quantum emission of phonon pairs by superradiant processes in
an atomic Bose-Einstein condensate subject to a synthetic vector potential. Within the analog gravity perspective,
this effect corresponds to the spontaneous emission of radiation from the ergosurface of rotating black holes. A
general input-output formalism is built and used to characterize the spectral and correlation properties of the
emission. Experimentally accessible signatures of the emission are pointed out in the correlation functions of the
atomic gas.
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I. INTRODUCTION

Rotating black holes in general relativity are known to
allow superradiant scattering, namely the amplified reflection
of radiation that impinges on them [1]. This amplification can
be seen as a stimulated emission of radiation in response to
the incident field. The same works making the first qualita-
tive prediction of superradiant scattering [2,3] also pointed
out how at the quantum level the stimulated emission must
be associated to a spontaneous emission in the superradiant
modes. This anticipation was then formally confirmed using
a second quantized formalism for bosonic fields on the Kerr
spacetime [4,5]. As a first example of quantum spontaneous
emission from black holes, it served as an inspiration for the
discovery of Hawking radiation [6]. A historical perspective
on these fascinating developments can be found in [7].

While of high importance for theoretical understanding
of gravity, the weakness of the quantum emission from
astrophysical objects makes its experimental observation ex-
tremely challenging. A different route to investigate the
physics behind these phenomena was proposed by the analog
gravity program [8], which aims at realizing condensed matter
systems that reproduce the physics of curved spacetimes in
realizable and controllable laboratory setups.

This idea was proposed for the study of analog Hawk-
ing radiation [9], namely the spontaneous emission of sound
waves from an acoustic horizon separating regions of sub-
and supersonic flow in a nonuniformly flowing fluid. Such an
analog Hawking emission was recently observed in a Bose-
Einstein condensate (BEC) of ultracold atoms displaying such
a flow configuration [10,11]. This amazing success was made
possible by the extremely low temperature of the sample, at
which quantum features of sound become visible [12], and
by the possibility of performing measurements also in the
interior of the black hole: The key signature of Hawking
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emission consisted in fact of the correlations between density
fluctuations on opposite sides of the horizon as theoretically
anticipated in [13,14].

The same strategy can be applied to superradiance ef-
fects. The direct analog of a rotating black hole is the so
called draining bathtub vortex [8], combining a radial and
an azimuthal flow: Besides the acoustic horizon, this kind of
flow displays an acoustic ergoregion (delimited by the so-
called ergosurface), that supports the negative-energy modes
at the basis of amplified reflection. Such a configuration was
recently employed in the observation of classical superra-
diant scattering using surface gravity waves on water [15].
Of course, the high temperature of the system hinders any
exploration of quantum effects. Also from the theoretical
point of view, quantum features of superradiance in analogs
have received limited attention: Superradiance-induced fric-
tion effects on a rotating body immersed in a superfluid were
anticipated in [16]. Recently a second-quantized procedure
was applied to quantum superradiance for a dispersive field
in a draining bathtub configuration [17].

In spite of their remarkable success in pioneering investi-
gations of analog superradiant scattering, vortexlike rotating
configurations have a limited tunability in the flow parameters
that can be realistically obtained. Moreover, the cylindrical ge-
ometry restricts the available space making it difficult to detect
quantum emission from correlation functions. To solve these
issues, in the recent work [18], we proposed an alternative
kind of analog system for the investigation of superradiance.
Instead of a rotating fluid, we considered a local tuning of the
velocity by means of a synthetic vector potential [19]: This
trick removes the usual irrotationality constraint of superfluids
and allows us to realize arbitrary rotational flows. As a most
promising configuration, we considered a planar ergosurface
separating two regions of uniform flow parallel to the in-
terface but different velocities. Removing the irrotationality
constraint allows us to decouple the different elements at play
in superradiant scattering, in particular to realize ergoregions
without horizons and without dynamical instabilities. In this
way, we could develop an intuitive picture of superradiant
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scattering and of the associated instabilities at the classical
level [18].

In the present work, we make a further step towards the de-
velopment of a general theory of quantum superradiant effects
in such systems. In particular, we extend the input-output the-
ory of spontaneous quantum emission originally introduced
in [20] for Hawking radiation from analog black hole horizons
in one-dimensional flows to higher-dimensional geometries.
As a first application of our theory, we investigate the quantum
emission in the geometry with two regions of uniform and
parallel flows separated by a steplike planar interface. In its
simplicity, this configuration provides a useful toy model of
an ergosurface which correctly accounts for classical super-
radiant scattering, as we discussed in [18], and for quantum
pair production at the ergosurface, as we are going to show in
this work. Most importantly, the geometric simplicity of our
setup allows us to characterize the quantum emission in terms
of correlations between fluctuations on the two sides of the
ergosurface. Like for analog Hawking radiation, this turns out
to be a powerful tool to experimentally detect the spontaneous
production of phonon pairs by spontaneous superradiance
processes. In contrast to the celebrated moustache-shaped
feature of Hawking radiation, no dramatic feature appears in
the position-space density-density correlations but a nontriv-
ial pattern is predicted for the momentum-space two-particle
correlations.

The structure of the article is the following. In Sec. II
we introduce the physical system under investigation and we
describe how an acoustic spacetime displaying a half-plane
ergoregion can be obtained by means of a suitably designed
synthetic vector potential. In Sec. III we review the Bogoli-
ubov dispersion of the excitations and we summarize the
kinematics of superradiant scattering in our configuration. The
reader that is familiar with our previous work [18] can quickly
fly through these first sections and focus on the results that are
discussed in the following sections. In Sec. IV we construct
the scattering modes and we develop the high-dimensional
generalization of the input-output formalism for the quantum
emission. In Sec. V we numerically evaluate the scattering
coefficients for the simplest case of a steplike transition at
the ergosurface: This gives a further characterization of the
different regimes of classical superradiant scattering and pro-
vides a quantitative prediction for its amplitude. In Sec. VI, we
make use of the input-output theory at the quantum level: We
identify the different channels for spontaneous pair production
into the superradiant modes and we characterize the spectrum
of the emission. In Sec. VII we investigate the signatures of
the spontaneous superradiant emission in the correlation func-
tions and we propose strategies for experimental observation:
While the features in the density-density correlations are too
complex for a straightforward analysis, two-body correlation
functions in momentum space are predicted to display non-
trivial yet transparent features. Conclusions are finally drawn
in Sec. VIII.

II. PHYSICAL SYSTEM: A PLANAR ERGOSURFACE

As in our previous work [18], we consider an atomic BEC
tightly confined in one direction, so that one dimension is
frozen and the relevant dynamics takes place in two spatial

dimensions only. For weak enough interactions to be in the
dilute regime and assuming a vanishing initial temperature,
the condensate can be described at the mean-field level in
terms of a complex scalar scalar field �(x, y, t ) obeying the
two-dimensional Gross-Pitaevskii equation (GPE) [21],

ih̄∂t� =
[

(−ih̄∇ − A)2

2M
+ V + g|�|2 − μ

]
�, (1)

where M is the atomic mass, V is an external trapping po-
tential, g is the atom-atom interaction constant, and μ is the
chemical potential. Furthermore, the condensate is assumed
to be coupled to a (synthetic) vector potential A. As it is
reviewed in [22], vector potentials with a variety of different
spatiotemporal shapes can be obtained with suitable combina-
tions of optical and/or microwave and/or magnetostatic fields
that have the effect of shifting the position of the minimum
of the effective dispersion relation of the atoms. As a conse-
quence, the physical velocity

v = h̄ ∇� − A
M

= vcan − A
M

(2)

differs from the canonical velocity vcan given by the gradient
of the condensate phase and, in particular, is no longer con-
strained to be irrotational [23], as it instead happens in usual
superfluid hydrodynamics. Since analog gravity is based on a
geometric description of sound propagation in a moving fluid
in terms of a curved-spacetime metric and this latter depends
on the velocity field [8], the possibility of having a rotational
flow greatly expands the set of spacetimes that analog models
can realize.

In this article we focus our attention on the simplest con-
figuration introduced in [18] providing a minimal toy model
displaying superradiant scattering. Both the synthetic vector
field A and the external potential V are taken to only depend
on the y coordinate, so that the system is translationally in-
variant along x. In particular, we take the vector potential
A(y) to be everywhere directed along x and we include an
external potential V (y) = −A2

x (y)/2M, so that a condensate
in the plane-wave form

�0(x, y) = √
neiKx (3)

is a stationary state of the GPE. This state describes a BEC
of constant density n flowing along x with a y-dependent (and
thus rotational) velocity field vx(y) = [h̄K − Ax(y)]/M. The
speed of sound is instead constant and equal to cs = √

gn/M.
From the point of view of the acoustic spacetime, any

region of supersonic motion is an ergoregion [8] and any
interface separating a subsonic region from a supersonic one
is an ergosurface. An acoustic horizon corresponds instead
to an interface delimiting a region in which the component
of the velocity normal to the interface is supersonic, so that
sound cannot exit that region. This region then corresponds
to the interior of the acoustic black hole. In this work, we
focus on configurations in which the spatial variation of the
velocity only occurs in the direction perpendicular to the
velocity, which excludes the presence of acoustic horizons. In
particular, we consider configurations in which the physical
velocity approaches constant values far away from the y = 0
line and increases from a slow (s) subsonic value vs

x < cs for
y < 0 to a fast (f) supersonic value v

f
x > cs. Note that, while
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acoustic horizons are unambiguously defined, the ergoregion
is a frame-dependent concept in configurations, such as the
present one, that are spatially uniform in the direction of the
velocity. One has hence to choose a reference frame with
respect to which one measures velocities. In asymptotically
flat (analog) spacetimes one such frame is naturally given by
the asymptotic static fluid: in our geometry, this corresponds
to measuring velocities with respect to, e.g., the slow flow vs

x,
in which case an ergoregion is present for y > 0 if �vx =
v

f
x − vs

x > cs.
Ergoregions in rotating black holes are known to support

field excitations with a negative energy with respect to an
asymptotic observer. Such excitations are the basic ingredient
for superradiant scattering: A positive-energy wave coming
from infinity can in fact be transmitted into the ergoregion
as a negative-energy wave, with the consequence that, by
energy conservation, the reflected positive-energy wave will
have a larger amplitude than the incident wave. The situation
is slightly more complicated in our configuration. Since the
setup is invariant for Galilean boosts along x, if the velocity
difference between the two regions is such that �vx < 2cs, a
reference frame can be found where the flow is everywhere
subsonic and no negative-energy excitation is present. As a
result, superradiant scattering in this configuration is only
possible for �vx > 2cs, and not simply when an ergoregion
is present for �vx > cs. This is different from what one finds
in rotating configurations, in which the presence of an acoustic
ergoregion is generally sufficient to have superradiant scatter-
ing at small enough frequencies. As discussed in full detail
in [18], this difference can be understood in terms of the dis-
persion of modes in each region for given kx: while negative-
energy modes are available in the faster region for �vx > cs,
they do not resonantly match with positive-energy modes at
the same kx in the slower region until �vx > 2cs since, in
contrast to the rotating geometry, the effective mass gap in the
dispersion remains open at all distances. Of course, superra-
diant scattering could be expected to occur also for lower, yet
supersonic, velocity differences if the translational symmetry
was broken and the different kx were allowed to mix.

For simplicity, in what follows we restrict our attention to
the K = 0 case in which the condensate wave function �0

can be taken as a real constant: The condensate velocity is
then fixed by the external synthetic vector field. In particular,
we assume that the asymptotic slow region is at rest vs

x =
−As

x/M = 0, while the fast one has a speed v
f
x = −A f

x /M.
This configuration is sketched in Fig. 1.

Before proceeding, some comments on the stability of the
configuration under investigation are in order. From general
relativity, it is known that spherically symmetric spacetimes
displaying an ergoregion and no horizon are subject to er-
goregion instabilities. On the other hand, such instabilities
get quenched in the presence of a horizon: The horizon plays
the role of an open boundary condition for field fluctuations,
preventing the localization of the negative-energy waves in
the ergoregion and suppressing the possibility of a repeated
amplification. A similar mechanism underlies the stability
of the configuration under investigation here: The system is
assumed to be infinite along the y direction, so that open
boundary conditions are automatically enforced on both sides
of the ergoregion. This guarantees an efficient evacuation of

y

x0

FIG. 1. Sketch of the physical configuration under examination.
The condensate velocity is induced by the synthetic vector potential
only in the upper y > 0 part of the system, while the lower y < 0
part is at rest. The wiggly lines show the propagation direction of
the modes indicated by dots on the dispersion curves of Fig. 2 and
involved in the superradiant processes.

the field fluctuations, so that no ergoregion instabilities can
take place [18].

III. KINEMATICS OF SUPERRADIANT SCATTERING

In this section, we briefly review some basic concepts on
superradiant phenomena in the specific configuration under
examination here. The reader that is already familiar with our
previous work [18] can quickly skim this section and focus
the attention on the following ones.

As usual in analog models based on Bose-Einstein con-
densates, the quantum field living in the curved spacetime
physically corresponds to small amplitude fluctuations on top
of the BEC. These are described with the so-called Bogoli-
ubov theory [21], in which one considers a small perturbation
�0 + δψ of the GPE stationary state (3) and one focuses on a
linearized form of the GPE dynamics (1). The resulting linear
problem can be described in terms of the spinor (δψ, δψ∗)T ,
in which the fluctuation field δψ and its complex conjugate
δψ∗ are taken as independent variables [24].

Sufficiently far from the ergosurface, our setup is com-
posed by two regions where the condensate is uniform. Within
each of them, the linear perturbations can be decomposed in
eigenstates of the momentum k,(

δψ

δψ∗

)
(x, y) = eikxx+ikyy

(
Uk
Vk

)
:= eikxx+ikyy |k〉 . (4)

Within each region, the linear Bogoliubov eigenvalue problem
has the form h̄ω

s, f
k |k〉 = Ls, f |k〉, with

Ls, f =
[

Dk + h̄v
s, f
x kx gn

−gn −Dk + h̄v
s, f
x kx

]
(5)

and Dk := h̄2k2

2M + gn.
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The eigenvalues of this matrix give the dispersion relation
of fluctuations in each region,

h̄ω
s, f
k = h̄vs, f

x kx ± B(kx, ky), (6)

where the first term describes the Doppler shift of the excita-
tions by the moving condensate and

B(k) :=
√

h̄2k2

2M

(
h̄2k2

2M
+ 2gn

)
(7)

is the celebrated Bogoliubov dispersion relation for a uniform
condensate at rest [21]. The plus and minus signs in (6) refer to
the two positive and negative norm eigenmodes of (5), where
the Bogoliubov norm is given by |Uk|2 − |Vk|2. The energy
of an eigenmode is given by Ek = h̄ωk(|Uk|2 − |Vk|2), so that
negative-norm modes at positive frequencies have a negative
energy.

For momenta |k| � √
Mgn/h̄ =: 1/ξ , with ξ the so-called

healing length of the condensate, the Bogoliubov dispersion
relation (7) reduces to a sonic dispersion B(k) � h̄cs |k|. For
higher momenta |k| � 1/ξ the Bogoliubov eigenmodes have
a group velocity larger than the speed of sound and, in anal-
ogy with the speed of light, the dispersion relation is called
superluminal. The limit in which the Bogoliubov dispersion
relation can be accurately approximated with the sonic dis-
persion is called the hydrodynamic limit. Here, the Bogoliubov
linear problem reduces to a Klein-Gordon equation in a curved
spacetime. Even though this is the only regime in which
strictly speaking the gravitational analogy holds, in this work
we will consider superradiance in the fully dispersive case and
we will comment on the differences with the Klein-Gordon
case when needed.

Since our system is translationally invariant along x, kx is a
conserved quantity and we can treat the different kx channels
as separate one-dimensional problems along y. Note that the
Bogoliubov problem of the whole system has a particle-hole
symmetry expressed by the fact that the spectrum for −kx

is specular to the one for kx; that is, there are pairs i, j of
eigenmodes at ±kx that are related by(

U−kx, j

V−kx, j

)
=

(
Vkx,i

Ukx,i

)
; ω−kx, j = −ωkx,i. (8)

Based on this symmetry, we can restrict our following analysis
to positive values of kx.

Examples of cuts of the dispersion relations ω
s, f
k at fixed kx

in the two regions are shown in Fig. 2. The left plot refers to
the y < 0 region where the condensate is not moving: Here,
one can see that the effect of a transverse momentum is to
introduce a gap in the dispersion relation, so that we can think
of our field as having a mass. The right plot refers instead to
the fast region at y > 0: Here, the effect of the Doppler term
in (6) is to vertically shift the dispersion relation, so that some
negative-norm modes are pushed to positive frequencies and
thus acquire negative energies.

Within each uniform region the fluctuation field can be
written as a linear combination of plane-wave eigenmodes.
Since the Bogoliubov dispersion relation (6) is of fourth or-
der in the momenta ky, it will generally have four roots for
fixed values of the conserved frequency ω and kx momentum
component. For the real frequencies considered here, these

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5  0  0.5  1  1.5

ℏω
/μ

kyξ

s|out s|in

-1.5 -1 -0.5  0  0.5  1  1.5
kyξ

f|out f|in

FIG. 2. Dispersion relations of the Bogoliubov modes at a given
kxξ = 0.5 in the two regions. The left and right panels correspond to
the slow and fast regions, respectively with vs

x = 0 and v f
x = 2.5cs.

Black thin and red thick lines correspond to positive and negative
norm modes. The light gray regions indicate the frequency ranges
where ordinary scattering occurs, while the dark grey ones indicate
the superradiant scattering range. The white line indicates an exam-
ple of frequency in the superradiant range; the dots on the dispersion
curves indicate the modes involved in the superradiant scattering
process.

roots can either be divided in a pair of real roots and a pair of
complex conjugates ones or are all complex forming two pairs
of complex conjugate roots. In the configurations considered
in this work, it never happens to have four real roots. This
could occur if a supersonic y component of the velocity was
also present.

Since we are considering an infinite system along the y
direction, we need to impose that the modes are bounded
at infinity, which implies that the imaginary part of ky must
be non-negative in the upper region and nonpositive in the
lower region. As a result, if no root is real, there will be two
relevant (evanescent) modes; on the other hand, if two roots
are real, there will be one evanescent mode and two more
propagating modes, for a total of three physically relevant
modes. In general, as one can see in Fig. 2, there are no real
roots for frequencies ω in the mass gap

h̄vs, f
x kx − B(kx ) < h̄ω < h̄vs, f

x kx + B(kx ), (9)

while two real roots are present for ω above (below) the gap,
corresponding to positive (negative) norm modes.

In our study of superradiant physics, we are mostly inter-
ested in scattering configurations where a plane wave comes
from infinity in one of the two regions and is incident on
the transition region around y = 0, getting then reflected
and transmitted into other modes. The different kinds of
scattering that can occur can be graphically identified from
Fig. 2, simply by looking at the available modes at each fre-
quency. In analogy to superradiant scattering in black holes,
where the ingoing wave has a positive energy and comes
from outside the ergoregion, we focus here on the case of
positive-norm ingoing waves incident from the slow region.
As mentioned in [18], the situation in which the ingoing wave
comes from the fast region would however be completely
analogous.
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For frequencies above h̄v
f
x kx + B(kx ), positive-norm

modes are available in both regions and the incoming wave
will be partially transmitted and partially reflected. An analo-
gous behavior occurs for h̄ω < −B(kx ) where negative-norm
modes are available in both regions. In [18], we called this
kind of same-norm scattering ordinary scattering, since no
amplification can occur. These regions are indicated in Fig. 2
with a light gray shading. For frequencies in the mass gap
of the fast region there is no propagating mode available
for transmission, so the incident wave coming from the slow
region will only couple to the evanescent modes and will thus
be totally reflected.

The most interesting regime occurs for

B(kx ) < h̄ω < h̄v f
x kx − B(kx ) : (10)

In this range, the incoming positive-norm wave can be trans-
mitted into the fast region as a negative energy wave. Energy
conservation then implies a corresponding amplification of the
reflected wave. The frequency interval in which this superra-
diant scattering occurs is indicated in Fig. 2 with dark gray
shading.

Hence, superradiant scattering is only possible if (for posi-
tive kx) the maximum of the lower branch in the fast region is
at a higher frequency than the minimum of the upper branch
in the slow region; this requires that

h̄v f
x kx > 2B(kx ). (11)

In the hydrodynamic limit, this reduces to the v
f
x > 2cs con-

dition mentioned above. For the full superluminal Bogoliubov
dispersion, this condition depends instead on kx: This intro-
duces an upper bound on the transverse momentum, above
which no superradiant scattering is possible,

kx <
1

ξ

√√√√(
v

f
x
)2

c2
s

− 4 =: kmax
x . (12)

As expected, the explicit dependence on ξ of this expression
confirms that the upper bound is not present in the nondisper-
sive case.

IV. STRUCTURE OF THE SCATTERING SOLUTIONS

As it was done in [20,25] for the case of analog Hawking
radiation in one-dimensional condensates, a quantum theory
of the superradiant scattering problem can be developed in
terms of a scattering matrix connecting the operator-valued
amplitudes of ingoing and outgoing modes. As compared to
the Hawking case considered in the quoted works, our de-
velopment here will include the lateral degrees of freedom:
Assuming translational invariance along x, the transverse dy-
namics will be encapsulated in the conserved wave vector kx.

As indicated in Figs. 1 and 2, for each value of kx and
of the frequency ω, we can distinguish in each region I =
s, f among the nonevanescent modes the ingoing ones (I|in),
whose y component of the group velocity vI|in := ∂kyω

I
k|ky=kI|in

is directed towards the interface, and outgoing ones (I|out)
whose (analogously defined) group velocity is directed away
from it. Within each region, we can write the fluctuation field

at frequencies at which there are real roots as(
U (y)

V (y)

)
kx,ω,I

= AI|in

(
UkI|in

VkI|in

)
eikI|iny√
2π |vI|in|

+ AI|out

(
UkI|out

VkI|out

)
eikI|outy√

2π |vI|out|

+ AI|ev

(
UkI|ev

VkI|ev

)
eikI|evy

√
2π

, (13)

where I = s, f and the spinors on the right-hand side are nor-
malized to |Uk|2 − |Vk|2 = ±1. A spatiotemporal plane-wave
dependence as ei(kxx−ωt ) is implicitly assumed for all fields.
The chosen form of the normalization factors of nonevanes-
cent modes involves the y component of the group velocities
vI|in,out guarantees that the full mode wave function at fixed
frequency ω is normalized to δ(ω). If no propagating modes
are present at the frequency ω, one is left with the sum of two
evanescent waves.

If not all modes are evanescent, a scattering solution is ob-
tained by selecting one ingoing mode (s|in or f |in) and setting
all other ingoing amplitudes (if any) to zero. If propagating
modes are present on both sides there will be a linear input-
output relation connecting the outgoing modes amplitudes to
the ingoing ones [20,25](As|out

A f |out

)
= S(kx, ω)

(As|in
A f |in

)
. (14)

The square moduli of the scattering matrix elements
|SIJ (kx, ω)|2 give the reflection or transmission amplitudes
into the mode I|out for an incoming wave in mode J|in. The
chosen mode normalization guarantees that for each value of
the frequency ω and the transverse wave vector kx, the scatter-
ing matrix S(kx, ω) satisfies the pseudounitarity property

S†ηS = η, (15)

where η is a diagonal matrix having as elements +1 for each
positive-norm mode and −1 for each negative-norm one. This
condition expresses the conservation of the Bogoliubov norm
during the scattering and, thus, of the energy.

Focusing on an ingoing positive-norm mode from the slow
region, η = σ3 or η = 1 depending on the sign of the norm of
the modes in the fast region. In the former case, one readily
sees the occurrence of superradiance: The conservation of the
norm in the form

|Sss|2 − |S f s|2 = 1 (16)

allows for a reflection coefficient |Sss|2 greater than 1, pro-
vided it is compensated by a nonvanishing transmission |S f s|2:
In this case, superradiance is directly visible as the intensity
of the reflected wave exceeds the one of the incoming wave.

V. MATCHING SOLUTION FOR A STEPLIKE
ERGOSURFACE

The approach described in the previous section to build
the scattering matrix can be applied to every configuration
in which the system is translationally invariant along x and
the condensate flow speed approaches constant asymptotic
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values sufficiently far from the transition region. In analogy
with the step configuration introduced in [20] to describe
analog Hawking radiation, a particularly simple situation is
the one in which there is a steplike transition between two
values of the transverse velocity vx(y) = v

f
x �(y) [i.e., of the

synthetic vector potential Ax(y) = A f
x �(y)], where �(y) is the

Heaviside step function. In the following of the work we will
focus on this configuration.

In the Hawking case, one may be concerned that a step-
like transition corresponds to a formally infinite Hawking
temperature for which the gravitational analogy is no longer
valid. In spite of this, it was shown in [20] that this simple
model still provides an accurate description of the Hawking
radiation process. This difficulty is absent in the present case
of superradiant scattering, for which our earlier work [18] has
shown that a steplike transition does not have any dramatic
effect. A smoother transition only results in a quantitative
reduction of the superradiant scattering coefficients: Since the
mode conversion from the positive-norm branch in the slow
region (left panel of Fig. 2) to the negative branch in the fast
region (right panel) occurs by tunneling through a local mass
gap, a smoother transition implies a spatially wider mass gap
and, thus, smaller values of the transmission and amplification
coefficients. However, as these microscopic details do not
qualitatively alter the structure of the waves far away from the
transition region nor the mechanism of the emission process,
the results that we are going to present for the steplike model
are good representatives of a more general class of smooth
configurations, with the key advantage of maximizing the
strength of the superradiant process.

Another technical advantage of working with a steplike
interface is that a full scattering solution can be obtained by
simply requiring the continuous matching of the two plane-
wave decompositions (13) on either side of the ergosurface
y = 0 and of their first derivatives along y. This provides
a number of four conditions on the amplitudes, which ex-
actly equals the one of the four amplitudes involved in each
scattering solution, so the linear system is well determined
with a unique solution. Once an ingoing mode is chosen at a
given kx, solving the scattering problem involves in fact four
amplitudes, divided between outgoing and evanescent modes.
These latter do not enter in the scattering matrix since they are
not relevant in the asymptotic regions, still they are important
near the interface and are involved in the matching conditions.

The first step to solve the problem consists of numerically
finding the roots of the dispersion relations (6) in the two
regions for the chosen kx and ω and computing their group
velocities along y. Once we have selected the desired ingoing
channel, for each region we keep the two physically relevant
(outgoing or evanescent) roots and we numerically solve the
corresponding linear problem for the mode amplitudes AI|out

and AI|ev for I = s, f . The resulting values for the amplitudes
of the propagating outgoing modes give the coefficients of the
scattering matrix. The result of this procedure for an ingoing
wave from the slower region s|in in a regime where the condi-
tion (11) for superradiant scattering is satisfied is illustrated in
Fig. 3, where we plot the reflection |Sss|2 and the transmission
|S f s|2 coefficients.

These results can be understood in comparison with the
dispersion relation plotted in Fig. 2. Energies below h̄ω/μ �
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FIG. 3. Reflection |Sss|2 (black thin line) and transmission |Sf s|2
(red thick line) coefficients obtained with the matching of the modes
at a steplike interface with v f

x = 2.5 cs for an ingoing wave from
the lower region with for kx = 0.5ξ . The dark and light grey regions
correspond to the ones of Fig. 2: In particular, in the dark grey su-
perradiant range, one can see that the amplified reflection coefficient
goes well above 1.

0.5 correspond to the mass gap and no ingoing mode is
available for the scattering process. For 0.7 � h̄ω/μ � 1.75,
no traveling mode is available for transmission in the upper
region, so reflection is total [S(kx, ω) = [Sss] with |Sss|2 = 1].
For higher energies in the light gray region, positive-norm
traveling modes are available in the upper region, so one
has an ordinary scattering process with both reflection and
transmission coefficients below 1; for these frequencies the
scattering matrix is unitary, i.e., η = I .

The most interesting range lies between 0.5 � h̄ω/μ � 0.7
and is indicated with the dark grey shading. Here, negative-
norm outgoing modes are available in the upper region: The
scattering matrix is hence pseudounitary with η = σ3 and, as
expected, one has superradiant scattering with a reflection co-
efficient |Sss|2 going above 1. The extra energy is provided by
the negative energy that is transmitted into the negative-norm
mode in the upper region: As expected from pseudounitarity,
the difference |Sss|2 − |S f s|2 is constant and equal to 1.

Note that the solution of the scattering problem with the
ingoing (negative-norm) wave from the fast region gives the
same value of the reflection coefficient in the superradiant
interval, meaning that the magnitude of superradiant am-
plification does not depend on the direction in which the
ergosurface is crossed. This is a consequence of the pseu-
dounitarity of the scattering matrix that implies

|S f s|2 = |Ss f |2. (17)

The momentum dependence of superradiant scattering can
be investigated by solving the scattering problem at fixed
A f

x for different values of the transverse momentum kx. In
Fig. 4 one can see that the maximum of the transmission
coefficient decreases for increasing kx, while the width of
the superradiant region widens. For even higher values of kx,
the maxima continue to decrease but the superradiant region
shrinks again and eventually vanishes when the threshold (12)
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FIG. 4. Main plot: Incident-energy-dependent transmission co-
efficient for an ingoing wave from the lower region and a fixed
v f

x = 2.5cs. The different (thick red dashed, thin black dashed, thick
red solid, think black solid) curves correspond to different values of
the transverse incident wave vector kxξ = 0.3, 0.5, 0.75, 1. Inset:
Log-log plot of the kx dependence of the transmission maximum.
The solid red line shows the numerical data, the superimposed black
dashed line is a fit of the α

k2
x

− β form, which reproduces the data
very accurately.

of dispersive suppression is reached. The kx dependence of
the transmission maximum is plotted in the inset of Fig. 4. The
maximum transmission, and hence the maximum superradiant
amplification, is accurately reproduced by a α/k2

x − β law
with constant α, β > 0, the latter coefficient ensuring that the
transmission coefficient vanishes at the dispersive suppression
threshold, here approximately at kxξ = 1.5.

An intuitive illustration of the physics underlying this scat-
tering matrix can be obtained by performing a numerical
evolution in time of the Bogoliubov problem of the whole
configuration starting from a wave packet in the slow region
with group velocity directed towards the ergosurface. We
performed such a simulation with a third-order Runge-Kutta
algorithm for the same parameters used for Fig. 3 and starting
from a Gaussian wave packet localized within the dark grey
superradiant region and peaked around the frequency of the
maximum of the reflection coefficient. Snapshots of the evo-
lution of the two components u, v of the Bogoliubov spinor
at different times are shown in the upper and central plots of
Fig. 5.

The evolution of the norm of the packets is summarized
in the lower plot where we show the time dependence of
the Bogoliubov norm in the two regions, obtained with the
integral

Ns, f (t ) =
∫

s, f
dy (|U (t, y)|2 − |V (t, y)|2), (18)

where U (t, y) and V (t, y) are the time-dependent components
of the Bogoliubov spinor, the subscript s ( f ) on the integral
indicating that the integration is performed on the (−∞, 0)
interval [the (0,+∞) interval]. One can see that the initial
s|in packet has a positive norm, since the u component of the
spinor is larger than the v one, while the transmitted f |out
packet has a negative norm. As a result the reflected s|out

FIG. 5. Top and central panels: Snapshots at different times
tμ/h̄ = 0, 150, 200, 350 of the time evolution of a superradiant scat-
tering process on an steplike ergosurface separating regions with
vs

x = 0 and v f
x = 2.5cs. The incident wave packet is Gaussian with

a transverse momentum kxξ = 0.5 and a longitudinal momentum
centered around kin

y ξ = 0.32, that is h̄ω = 0.63Mc2
s . It is initially

located in space around y0 = −100 ξ with σ = 20ξ . The black thin
lines are the modulus of the first component |U | of the Bogoliubov
spinor, the red thick ones are the modulus of the second one, |V |. The
amplification can be measured by computing the total Bogoliubov
norm (18) in the two regions, whose time dependence is shown in
the lower panel, with the black thin line being the modulus of the
norm |Ns| in the slow region and the red thick line the one, |N f |, in
the fast region. The amplification coefficient is compatible with the
maximum value found in Fig. 3 and indicated here by the horizontal
dotted line.

packet has a norm approximately four times larger than the
ingoing one, in agreement with the maximum amplification
factor we had found in Fig. 3. We have checked (not shown)
that different choices of the incident wave vector kx and en-
ergy h̄ω lead to the other behaviors discussed above.

VI. QUANTUM DESCRIPTION AND SPONTANEOUS PAIR
PRODUCTION

In all our discussion so far, we treated the fluctuations
in the Bogoliubov field as a classical field, relying on the
fact that superradiant scattering is a classical field effect.
From both quantum optics [26] and gravitational physics,
it is in fact known that amplification generally comes in a
pair with spontaneous emission. A quantized theory of the
field undergoing amplified superradiant scattering in a rotating
black hole spacetime predicts the appearance of a spontaneous
quantum pair production in the modes responsible for super-
radiance [5]. These processes can be physically understood
as a superradiant amplified scattering of vacuum fluctuations,
that end up populating the opposite-normed outgoing modes
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as real quanta of radiation. Taking inspiration from the input-
output approach developed in [20] to describe the related
phenomenology of Hawking radiation, a general theory of
spontaneous superradiant emission can be obtained by extend-
ing the scattering matrix approach of the previous section to
the quantum context. This is the subject of the present section.

Fluctuations around a stationary state of a BEC can be
described by a bosonic quantum field �̂ = �0 + δ̂�, where
the order parameter �0 describing the condensate continues
to be treated as a classical field and the quantum behavior
is encoded in the fluctuations, namely in the noncondensed
fraction. This quantum field can be derived in a rigorous
way [24] by applying a second quantization procedure to the
classical field: After choosing a suitable basis for the field
modes to isolate the condensate one, annihilation operators
are associated to positive-norm modes and creation operators
to negative-norm ones. In our case, convenient bases are pro-
vided by the scattering modes: For each kx and ω, one can
construct a basis of the field by taking the scattering solutions
corresponding to a single nonvanishing ingoing wave, this is
called the basis of ingoing modes. Another equally good basis
is instead provided by the scattering solutions displaying only
one nonvanishing outgoing mode; this will be the basis of the
outgoing modes. Both these bases can be used to quantize the
field.

For the sake of brevity, we restrict our discussion here
to the most interesting frequency components located within
in the superradiant range and comment on the other regimes
when needed. In this regime, the quantum field δ̂�

SR
(y) can

be expressed in the basis of ingoing scattering modes and their
corresponding operators âs, f (kx, ω) as

δ̂�
SR

(y) =
∫ kmax

x

0
dkx

∫ ωmax

ωmin

dω [Us|in(y)âs + V ∗
s|in(y)â†

s

+ Uf |in(y)â†
f + V ∗

f |in(y)â f ]. (19)

Here, UI|in(y) and VI|in(y) are the Bogoliubov components of
the ingoing scattering modes, ωmin = B(kx )/h̄ and ωmax =
v

f
x kx − B(kx )/h̄ indicate the limits of the superradiant fre-

quency interval, and the dependence on kx and ω of the spinor
components and of the operators is kept implicit to improve
readability. Note in particular the exchange of creation and
annihilation operators in the second line, due to the negative
norm of the transmitted mode in the fast region. An analogous
expression of the quantum field can be written in terms of
outgoing scattering modes, whose annihilation operators we
instead indicate with b̂s, f (kx, ω).

A relation between the two sets of operators is given by the
input-output relation (14) that, for frequencies in the superra-
diant interval, takes here the following form:(

b̂s(kx, ω)

b̂†
f (kx, ω)

)
= S(kx, ω)

(
âs(kx, ω)

â†
f (kx, ω)

)
, (20)

where the modes in the fast region appear via their creation
operators as a consequence of their negative norm. A similar
scattering matrix mixing creation and destruction operators
underlies the theory of Hawking radiation developed in [20].
In contrast to the three modes involved in the Hawking emis-
sion [27], the structure of the present superradiant process is

simpler and only involves a pair of opposite-norm modes. This
will be beneficial in view of observing clean entanglement
features in the superradiant emission [12].

For incident frequencies in the ordinary scattering h̄ω >

−h̄v
f
x kx + B(kx ) range, the available modes in the fast region

also have a positive norm, so the expression of the field does
not show the exchange of creation and annihilation operators
of the second line of (19) and the input-output relation is given
by the (unitary) scattering matrix as(

b̂s(kx, ω)

b̂ f (kx, ω)

)
= S(kx, ω)

(
âs(kx, ω)

â f (kx, ω)

)
. (21)

The situation is further simplified in the case of total reflection
where the input-output relation reduces to a scalar equation

b̂I (kx, ω) = S(kx, ω)âI (kx, ω) (22)

with |S| = 1. In these two last cases, the representations in
terms of input and output modes of the quantum field are uni-
tarily equivalent. In the superradiant case of Eq. (20), instead,
the mixing of creation and annihilation operators indicates
the inequivalence of the two representations: As discussed
for example in [28], this is the basic mathematical origin of
particle creation effects in quantum field theories in curved
spacetimes, including Hawking radiation and our spontaneous
superradiant emission.

Let us focus on the flux of outgoing phonons spontaneously
emitted into the slow region. Using the input-output relation,
one obtains

〈b̂†
s b̂s〉 = |Sss|2 〈â†

s âs〉 + |Ss f |2(1 + 〈â†
f â f 〉), (23)

where the dependence of all the quantities on kx and ω is
understood and the 1 in the last term comes from the commu-
tation of the negative-norm operators. Because of this constant
term, the flux of the outgoing modes remains finite even
if the initial populations of the ingoing modes are zero (as
it happens, e.g., at zero temperature), and is given by the
|Ss f (kx, ω)|2 matrix element between opposite norm opera-
tors.

Because of the symmetry (17) of the scattering matrix,
the same conclusion holds for the outgoing mode in the fast
region, which also displays a flux

〈b̂†
f b̂ f 〉 = |S f f |2 〈â†

f â f 〉 + |S f s|2(1 + 〈â†
s âs〉), (24)

which is nonzero even for vanishing initial populations. On
the other hand, for an ordinary scattering the input-output
scattering matrix (21) and (22) do not involve any creation
operator, so there will be no spontaneous emission.

For each kx, the ω-dependent spectrum of the spontaneous
emission is hence given by the superradiant bump of the
transmission coefficient visible in the dark grey region of
Fig. 3. The overall emission spectrum can be obtained by re-
stricting to superradiant frequency ranges and integrating the
transmission coefficient |Ss f (kx, ω)|2 in kx. The result of such
a calculation using the prediction for the scattering matrix
elements obtained in Sec. V is shown in the main plot of Fig. 6
for two values of the vector potential A f

x in the fast region,
that is, the condensate speed. In both cases, the numerically
obtained spectrum shows a smooth decrease of the emission
with energy ω.
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FIG. 6. Main plot: Frequency-dependent spectrum of the spon-
taneous quantum superradiant emission after integration over trans-
verse momentum kx . Inset: Momentum-dependent spectrum after
integration over frequencies ω. The different curves correspond to
different values of the synthetic vector potential in the fast region,
such that v f

x = 2.5cs (lower solid red curves) and v f
x = 3cs (upper

solid blue curves). In all curves, the synthetic vector potential (and
hence the velocity) vanishes, As

x = 0, in the slow region. The black
dashed lines are fits of the numerical curves with a shifted expo-
nential law of the form f (ω) = α exp(−βω) − γ (and analogous
expression with kx instead of ω) with α, β, γ positive parameters.
Such fits are found to describe very accurately the numerical data.

Remarkably, for each value of A f
x , this dependence can

be fitted with great precision with a shifted decreasing ex-
ponential of the form f (ω) = α exp(−βω) − γ . The main
effect of the constant shift γ is to enforce the emission to
vanish above the dispersive threshold (12). The smooth and
regular shape of this spectrum is qualitatively different from
the one of the Hawking emission, whose spectrum was found
to diverge according to a ω−1 thermal law at small frequencies
for all values of the surface gravity [29,30]. Whereas this
low-ω divergence of the Hawking spectrum is preserved even
for the formally infinite surface gravity of a steplike acoustic
horizon [20], no thermal behavior is ever expected for the
superradiant emission and the spectrum maintains a regular
shape even for smoother transitions.

For the sake of completeness, the transverse momentum
distribution of the spontaneous emission after integrating
|Ss f (kx, ω)|2 in ω is shown in the inset of Fig. 6. Also in
this case, the spectrum shows an analogous shifted decreasing
exponential behavior, showing that the emission is larger in
the smaller transverse momenta.

VII. SIGNATURES OF THE EMISSION ON THE
CORRELATION FUNCTIONS

One of the key features of analog Hawking radiation is the
quantum correlations that exist between the Hawking particle
propagating away from the horizon in the outward direction
and its partner propagating in the inward direction inside the
black hole. Such correlations directly translate into a specific
feature in the correlation function of density fluctuations on
either side of the horizon [13,14] and provided the smoking
gun of Hawking emission in the recent experiments [10,11].

Given the close physical analogy of our scattering matrix
description (20) of superradiant emission to the one of analog
Hawking emission in [20], it is natural to expect that similar
correlations should appear in the superradiant emission. This
is formally captured by the nonvanishing anomalous correla-
tion,

〈b̂†
s (kx, ω)b̂†

f (kx, ω)〉 = S∗
s f S f f , (25)

between the opposite-norm modes propagating away from the
ergosurface in the two regions.

In the experimental observation of analog Hawking emis-
sion in a BEC [10,11], these correlations were extracted
from a measurement of density-density correlations in po-
sition space following the proposal in [13,14]. In the next
subsection, Sec. VII A, we will explore this same route in the
superradiant context. In the following subsection, Sec. VII B,
we will take inspiration from [31,32] to investigate an alterna-
tive scheme based on momentum-space correlations which is
expected to provide a neater signature of quantum superradi-
ant emission.

A. Density-density correlations in position space

As usual, the correlation function of position-space density
fluctuations is expressed as the normal ordered product

G(2)(r, r′) = 〈�̂†(r)�̂†(r′)�̂(r′)�̂(r)〉
− 〈�̂†(r)�̂(r)〉 〈�̂†(r′)�̂(r′)〉 . (26)

Expanding the quantum field in terms of the condensate frac-
tion plus small fluctuations, �̂ = �0 + δ̂�, and keeping only
the terms of the second order in the fluctuation field one
obtains

G(2)(r, r′) = 〈δ̂�(r′)δ̂�(r)〉 + 〈δ̂�†
(r′)δ̂�(r)〉

+ 〈δ̂�†
(r)δ̂�(r′)〉 + 〈δ̂�†

(r)δ̂�
†
(r′)〉 . (27)

Given the translational symmetry of our problem, the corre-
lation function only depends on (x − x′, y, y′). We can then
expand the one-time correlation function in its ω and kx com-
ponents as

G(2)(r, r′) =
∫ ∞

−∞

dkx

2π
eikx (x′−x)

∫ ∞

−∞
dω G(2)(kx, ω, y, y′)

(28)
and make use of the scattering matrix formalism developed
in the previous section to evaluate each kx, ω component
G(2)(kx, ω, y, y′).

To this purpose, we can make use of the expansion (19) of
the field in terms of outgoing modes and then use the input-
output relation (20). Focusing on the case in which y < 0
and y′ > 0 and considering points sufficiently far from the
interface so that one can neglect the evanescent modes, one
can write the field in each region as

δ̂�SR(kx, ω, y < 0) = Ũks|out e
iks|outy b̂s + Ṽ ∗

ks|out
e−iks|outy b̂†

s

+ Ũks|in eiks|iny âs + Ṽ ∗
ks|in e−iks|iny â†

s (29)

and
δ̂�SR(kx, ω, y′ > 0) = Ũk f |out e

ik f |outy′
b̂†

f + Ṽ ∗
k f |out

e−ik f |outy′
b̂ f

+ Ũk f |in eik f |iny′
â†

f + Ṽ ∗
k f |in e−ik f |iny′

â f .

(30)
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Here, for compactness, the Bogoliubov components with the
tildes also include the normalization factors appearing in
Eq. (13), and we omitted the kx and ω dependence in the
right-hand side.

Starting from these expressions one can compute the two-
point correlators on the vacuum of the ingoing modes by
substituting the b̂ operators via the input-output relation (20)
and keeping only the quantum fluctuations terms coming from
commutators. Only terms proportional to the product of two
outgoing Bogoliubov amplitudes or to the product of one
ingoing and one outgoing amplitude remain. The exponential
factors of the first kind of terms have a phase that can be
stationary for y < 0 and y′ > 0, while the the ones of the
second kind of term will be fast oscillating in this quadrant.
We can hence neglect these terms to compute the correlations
at sufficiently long distance from the interface.

With these considerations and using the pseudounitarity of
the scattering matrix, we obtain the expression

G(2)
SR (kx, ω, y < 0, y′ > 0)

=
Rks|out (kx, ω)R∗

k f |out
(kx, ω)

2π
√|vs|outv f |out|

× Ss f (kx, ω)S∗
f f (kx, ω) ei[ks|out (kx,ω)y−k f |out (kx,ω)y′] + c.c.

(31)

for the density correlation function due to the quantum su-
perradiant emission. Here, RkI|out := UkI|out + VkI|out (with I =
s, f ) are shorthand for suitable combinations of the Bogoli-
ubov components of the plane wave expansion (13). Since
this equation does not include the evanescent mode and we
neglected the fast oscillating terms, the result will be quan-
titatively reliable only sufficiently far from the interface.
Expression (31) is formally analogous to the one obtained
for Hawking radiation in [20], with the key addition of the
transverse degrees of freedom encoded in the kx dependence.
This seemingly innocuous addition actually introduces serious
complications in the real-space correlation pattern, as we are
going to see in the following. This was noted in [33], while
studying the effect of a finite transverse momentum of the ex-
citations on the density correlations due to Hawking emission.

Since we saw that quantum pair production in our setup
only occurs for frequencies in the superradiant window, this
frequency range is the only source of correlations between the
slow and fast regions. An analogous calculation for the ordi-
nary scattering regime of (21) shows in fact that in this case
all contributions to correlation between opposite sides of the
ergosurface vanish because of the unitarity of the scattering
matrix.

The full spatial dependence of density correlations on
opposite sides of the ergosurface can be evaluated by insert-
ing in (31) the scattering matrix elements obtained in the
previous section and then performing the integrals over kx

and ω. Notice that, because of the dispersive threshold (12),
the kx integration domain in (28) is actually restricted to
the finite interval [−kmax

x , kmax
x ]. An example of the result

of such a calculation is shown in Fig. 7. Since the position
space correlation function G(2) depends on the three variables
x − x′, y, y′, a full three-dimensional plot is impractical and
suitable cuts need to be chosen for the plots.

FIG. 7. Color plots of the position space correlation function
G(2) of density fluctuations for a pair of points (x, y) and (x′, y′)
located respectively in the slower (y < 0) and faster (y′ > 0) re-
gions. Because of the translational invariance along x, the correlation
function only depends on |x − x′|. The upper plot shows the y, y′

dependence of G(2) for x − x′ = 0, while the lower one shows its
dependence on x − x′ and y for symmetrically located y′ = −y. The
black dashed line in the lower plot has a slope [(v f

x /cs )2 − 4]−1/2

and well reproduces the boundary of the main contributions to the
correlation function. The value of the synthetic vector potential in
the faster region is taken so that v f

x = 2.5cs, while in the slower
region vs

x = 0. The numerical calculation was performed using the
scattering matrix approach for a system initially in the ground state.

The upper panel shows G(2) as a function of the y, y′ coordi-
nates for x − x′ = 0. The plot displays an oscillating behavior
that extends throughout the y, y′ plane, with an amplitude that
is maximal along the diagonal y = y′ = 0 and decreases while
approaching the y = 0 and y′ = 0 axis. The complexity of
this plot is to be contrasted with the simple structure of the
correlation features found for one-dimensional black holes
configurations. In [20] the different features of this case were
explained in terms of the group velocities of the involved
modes; in particular, strongest correlations were found at
points for which y′ = (v f |out/vs|out )y, where the two group
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velocities are the ones of the partner modes in the emission.
For the (approximately) linear dispersion relation involved in
the Hawking processes, the (approximately) constant group
velocity results in the correlations being peaked along straight
lines. In contrast, in the present two-dimensional superradiant
case, one can see from the dispersion relations of Fig. 2 that
for any given kx, increasing the frequency ω across the super-
radiant region makes the y component of the group velocity
vs|out in the slow region grow from zero to some maximum
value, while the one v f |out of the fast region decreases from
the same maximum value to zero. Hence the slope v f |out/vs|out

of the lines on which one expects correlation extrema at
the different frequencies varies from −∞ to 0. This means
that the correlation signal will span the whole (y < 0, y′ > 0)
quadrant, as we indeed observe in the figure. The oscillating
pattern can instead be ascribed to the difference between the
outgoing momenta on the two sides [34]. In agreement with
this interpretation, the characteristic wavelength of this pattern
is found (not shown) to decrease for an increasing strength of
the synthetic vector potential |A f

x |, and thus of the relative flow
speed.

The complexity of the position space correlation function is
confirmed in the lower panel of Fig. 7, where we show another
cut of the density correlations to highlight the dependence on
the x direction; in particular correlations at equal distances
from the ergosurface y = −y′ are shown. Also in this case,
correlations extend for a large area of the y = −y′, x − x′
plane, the only remarkable feature being the boundary on
the largest distance |x − x′| that the main contributions to the
correlation function can reach for each value of y. Also the
slope of this boundary can be understood in terms of the
group velocities of the partner outgoing modes on the two
sides of the interface. Since we are considering symmetrically
located points y = −y′, the main contributions to G(2) come
from couples of modes that have the same modulus |vg,y| :=
|vs|out| = |v f |out| of the group velocity along y; this happens,
at fixed kx, for ω = vxkx/2, as can be understood by looking
at Fig. 2.

Analogously to the other cut of G(2) we just discussed,
extrema of the correlations can be expected to lay on lines y =
m(kx )|x − x′| of slopes m(kx ) := |vg,y|/|v f

g,x − vs
g,x|, where in

the denominator the group velocities along x of the involved
modes appear. This ratio can be analytically computed starting
from the dispersion relations (6), and the slope of the main
contributions to G(2) at each kx turns out to be

m(kx ) =
∣∣∣∣∣∣q(kx )

h̄kx

√
Mq(kx ) − h̄2k2

x − 2M2c2
s

M
(
v

f
x
)2 − 2q(kx )

∣∣∣∣∣∣, (32)

where q(kx ) :=
√

h̄2(v f
x )2k2

x + 4M2c4
s . This quantity reduces,

for small kx, to the nondispersive result m(kx → 0) =
[(v f

x /cs)2 − 4]−1/2, corresponding to the black dashed line in
the lower panel of Fig. 7. For growing kx, the slope increases
starting from this value and diverges for some kx < kmax

x ,
consistently with the nontrivial correlations we observe every-
where above the dashed line. For higher transverse momenta
m(kx ) decreases instead from infinity to zero, while approach-
ing kmax

x ; the much smaller correlations below the dashed line

stem hence from the fact that superradiant emission is domi-
nated by the lower transverse momenta, as can be seen from
the inset of Fig. 6. Also in this case, the oscillating pattern
is related to the difference between the outgoing momenta
on the two sides. In addition to the stripes visible in upper
panel, the lower panel shows a checkerboardlike pattern due
to the simultaneous presence of two emission channels with
the same slope in the y, |x − x′| plane.

Even though theoretically intriguing, these features of the
correlation function do not appear to be experimentally as
easy to detect as were the Hawking signatures in the one
dimensional flows studied in [10,11]. For this reason, the
next subsection is devoted to the investigation of an alterna-
tive signature of spontaneous superradiant emission based on
momentum-space correlations.

B. Two-body correlations in momentum space

As it was proposed in [31,32] for analog Hawking radiation
and experimentally adopted in [35] for a related Hanbury
Brown and Twiss physics, two-body correlations in momen-
tum space offer a promising different insight in the quantum
fluctuations of many-body systems. This physics is formally
encoded in the correlation function

G(2)(kx, ky, k′
y) = 〈δ̂�†

(ky)δ̂�
†
(k′

y)δ̂�(k′
y)δ̂�(ky)〉, (33)

involving noncondensate atoms; here the dependence on kx

of the field operators in the right hand side is understood.
As it was discussed in [36], the condensate lives in the zero-
momentum state, so that its contribution can be filtered out
with standard tools [35].

In our geometry, a semianalytical insight on momentum
correlations can be obtained again using the scattering ap-
proach. For each value of the transverse momentum kx and the
frequency ω, the dispersion relations in the two regions fix the
values of the outgoing momenta ks|out(kx, ω) and k f |out(kx, ω)
so that momentum correlations are only nonzero for these
value of the momenta. Indicating with ky (k′

y) the momentum
in the slow (fast) region, we can formally write

G(2)(kx, ω, ky, k′
y) ∝ δ[ky − ks|out(kx, ω)]

× δ[k′
y − k f |out(kx, ω)]. (34)

Integrating over the frequency ω, for each transverse momen-
tum kx the points of nonzero correlations will describe a line
in the (ky, k′

y) space. Joining all lines for different kx, a surface
in the (ky, k′

y, kx ) space is found with specific geometric fea-
tures. We expect that this surface will be a most recognizable
signature of the quantum superradiant emission.

Along the lines of [36], the quartic correlator (33) can be
expressed through a Wick expansion in terms of products of
second order correlators,

G(2)(ky, k′
y) = ∣∣G(1)(ky, k′

y)
∣∣2 + G(1)(ky, ky)G(1)(k′

y, k′
y)

+ ∣∣A(1)(ky, k′
y)

∣∣2
, (35)

where the dependencies on kx and ω are implicit and the
functions

G(1)(ky, k′
y) = 〈δ̂�†

(ky)δ̂�(k′
y)〉 (36)
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FIG. 8. Plot of the normalized two body correlation function in
momentum space for v f

x = 3cs. For each value of kx , nontrivial cor-
relations are localized on a line indicating the momenta ky, k′

y of the
modes involved in the superradiant emission. The union of all these
lines describes the surface that is visible in the plot. The coloring
of the surface indicates the strength of the normalized correlation
function (39).

and

A(1)(ky, k′
y) = 〈δ̂�(ky)δ̂�(k′

y)〉 (37)

are the usual normal and anomalous correlators.
In our planar superradiant configuration, expressions of

these correlators at fixed kx and ω for momentum values sat-
isfying (34) can be obtained following a procedure analogous
to the one used for the position-space correlations. Assuming
again the system to be initially in the ground state, we only
keep the terms due to commutators, which, for each pair of
ky, k′

y modes on the s, f sides of the ergosurface, results in

|A(1)(ky, k′
y )|2 = 2Re(U ∗

s V ∗
s Uf Vf (S∗

s f S f f )2)

+ (|Us|2|Vf |2 + |Vs|2|Uf |2)|Ss f |2|S f f |2
(38a)

|G(1)(ky, k′
y )|2 = 2Re(U ∗

s V ∗
s Uf Vf (S∗

s f S f f )2)

+ (|Us|2|Uf |2 + |Vs|2|Vf |2)|Ss f |2|S f f |2
(38b)

G(1)(ky, ky)G(1)(k′
y, k′

y) = (∣∣Us

∣∣2∣∣S2
s f

∣∣ + |Vs|2
∣∣S2

f f

∣∣)
×(|Uf |2

∣∣S2
f f

∣∣ + |Vf |2
∣∣S2

s f

∣∣). (38c)

Here UI (ky) = δ(ky − kI|out)UkI|out , with I = s, f , and analo-
gously for VI (ky).

Both the locus of momentum space points satisfying (34)
and the magnitude of two-body momentum correlations on
these modes can be numerically computed within our scat-
tering matrix formalism. The result is shown in Fig. 8: The
effect of the constraint (34) is to give nontrivial correlations
only on a surface in the (ky, k′

y, kx ) space. The fact that this
surface folds above itself for higher transverse momenta is
due to the superluminal behavior of the Bogoliubov disper-
sion, which imposes the upper bound (12) on the transverse
momenta kx for which superradiant scattering and, hence,
spontaneous emission can occur. The peculiar shape of this
correlation surface provides an ideal signature to be looked
after in experimental investigations.

From a quantitative point of view, the magnitude of the
correlation function in (33) is largest at small kx where the
emission intensity is strongest. However, as it typically occurs
in two-mode parametric emitters [26], the normalized corre-
lation function

g(2)(ky, k′
y) = G(2)(ky, k′

y)

G(1)(ky, ky)G(1)(k′
y, k′

y)
, (39)

that is considered in the color plot, gives a maximum signal
on the highest available values of kx for which the emission is
the weakest in intensity but maintains equally strong quantum
correlations. As compared to the three-particle nature of the
Hawking emission process [27], the fact that the superradiant
emission involves a single pair of opposite-norm modes is a
favorable feature in view of detecting quantum entanglement
between the emitted phonons [12].

VIII. CONCLUSIONS

In this article we have reported a theoretical study of the
quantum superradiant emission from ergosurfaces in curved
spacetimes. Such a phenomenon had originally been predicted
for rotating black holes in a gravitational context but so far has
escaped experimental verification. Here we investigate this
effect in the context of analog models of gravity based on
Bose-Einstein condensates.

In contrast to the draining bathtub vortex geometry consid-
ered in most earlier works on this subject, we focus here on the
configuration originally proposed in [18], where a rotational
velocity field is obtained in a planar geometry by applying a
synthetic vector potential to the atomic gas. This is a minimal
toy model that allows us to disentangle superradiant scattering
from other effects such as superradiant instabilities and black
hole horizons and focus on its basic physics.

Our theoretical framework is based on a high-dimensional
generalization of the input-output techniques originally de-
veloped in [20] for the study of analog Hawking radiation
in one-dimensional condensates. This approach is based on
the scattering matrix connecting the amplitudes of outgoing
waves to the ones of the ingoing waves, which is directly
obtained from the scattering solutions of the classical wave
equation. Spontaneous emission of pairs of phonons then nat-
urally arises as the superradiant scattering of the zero-point
quantum fluctuations in the ingoing modes and its spectral
distribution can be extracted from the reflection and transmis-
sion coefficients relating the different ingoing and outgoing
modes.

A crucial advantage of our proposal is the simplicity of
the geometry that, differently from rotating configurations,
allows us to efficiently track both components of the spon-
taneously emitted phonon pair. This was a key feature of
the recent experimental reports of analog Hawking emission,
whose main signature consisted in specific correlation fea-
tures between opposite sides of the horizon [10,11]. Here,
different kinds of correlation functions are considered: While
the signature of superradiant emission in the position-space
density correlations may be geometrically too complex to be
of effective use in experiments, an interesting and easily rec-
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ognizable pattern is anticipated for the momentum-space two-
particle correlation, another quantity of direct experimental
access.

Even though our discussion focused on most celebrated
case of analog models based on atomic Bose-Einstein conden-
sates, our discussion can be straightforwardly applied also to
analog models based on quantum fluids of light [37], in which
both analog gravity [38–40] and synthetic gauge fields [41,42]
are under very active consideration.

From a broader perspective of quantum field theories, the
interest of our study goes well beyond superradiance. As it
was discussed in [18], the planar quantum field configuration
considered in our work can be exactly mapped onto a charged
massive scalar field in one dimension coupled to an elec-
trostatic potential. Our spontaneous emission processes can
then be seen as an analog model of the spontaneous quantum
emission associated to the bosonic Klein paradox [43]. As
such, they can be qualitatively related to the superradiance
of charged nonrotating black holes [1] and their associated
quantum emission [44]. The correlation features anticipated in
our work then constitute a promising way to shine light on this
broad class of phenomena of astrophysical and gravitational
interest.

From a more speculative perspective, the advances re-
ported in this work lay the ground for further investigations
of more subtle superradiant effects. These include studies of
quantum aspects of superradiant instabilities [45] and of the
interplay of superradiant emission with Hawking radiation
when both an ergosurface and a horizon are present, as well
as more speculative explorations of the nontrivial interactions
between spontaneous quantum emission, the quantum fluc-
tuations of quasinormal modes, and the backreaction of the
quantum fluctuations on the underlying background space-
time. As we have shown in this work, the flexibility of analog
models based on quantum fluids and the additional possibili-
ties offered by synthetic gauge fields are very promising assets
in view of using analog model experiments to conceptually
unravel the different physical effects that are at play in com-
plex configurations of gravitational and cosmological interest.
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