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Coherently delocalized states in dipole interacting Rydberg ensembles: The
role of internal degeneracies
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We investigate the effect of degenerate atomic states on the exciton delocalization of dipole-dipole interacting
Rydberg assemblies. Using a frozen gas and regular one-, two-, and three-dimensional lattice arrangements as
examples, we see that degeneracies can enhance the delocalization compared to the situation when there is
no degeneracy. This enhancement is particularly large in the case of the three-dimensional (3D) random gas,
but is absent for 1D arrangements. Using the Zeeman splitting provided by a magnetic field, we controllably
lift the degeneracy to study in detail the transition between degenerate and nondegenerate regimes. These
observations, although specific to the experimentally clean Rydberg gas, have generic implications for various
dipole-interacting systems.
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I. INTRODUCTION

The formation of states where an electronic excitation is
coherently delocalized over several particles plays an impor-
tant role in many systems. Examples include light harvesting
in photosynthesis [1], molecular aggregates [2,3], quantum
dot arrays [4,5], metallic nanoparticles [6], and Rydberg
atoms [7–10]. These coherent collective states are formed by
the interaction of transition dipoles of the individual parti-
cles. The relevant transition dipoles connect two eigenstates
of a particle with different energy, and they are obtained by
evaluating the dipole-operator between the respective states.
Typically, delocalized states strongly modify the optical prop-
erties [3,11] and allow an initially localized excitation to
be transferred along the assembly of particles [6,12]. There-
fore, many studies of the delocalization properties have been
conducted on various ordered or disordered arrangements of
interacting particles [13–25].

Although in the majority of cases the involved transi-
tions are nondegenerate, for all of the systems mentioned
above there are cases in which transitions within a single
particle become degenerate. In the molecular case, such de-
generate transition energies can be due to an underlying
symmetry [26–30]; similar symmetry-induced degeneracies
are present in quantum dots and metal nanoparticles. The
spherical symmetry of atoms results in degenerate angular
momentum eigenstates. As a result, the dipole-dipole inter-
action can lead to strong mixing of all degenerate or nearly
degenerate many-body states.
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In this paper, we investigate the effect of such degeneracies
on the eigenstate delocalization properties of an assembly of
N particles. As a paradigmatic system, we take an assembly
of Rydberg atoms. These interact over micron-scale distances
due to their large dipole moments, and furthermore these
interactions can be tuned across several orders of magnitude
by changing the principal quantum number. The relevant in-
teraction between the Rydberg atoms has the same functional
form as in molecular systems. Nearly arbitrary arrangements
of atoms with relative distances on the order of a few micro-
meters are possible. The high degree of controllability makes
the Rydberg assemblies perfect systems to investigate delocal-
ized excitonic states [7,20,31–36]. The goal of this paper is to
examine the effect of energy level degeneracies in a variety of
experimentally relevant situations involving Rydberg atoms.
This analysis will help to show which of the properties already
known from studies of nondegenerate large assemblies cross
over when degeneracy is included, reveal ways that the system
can be exploited or manipulated due to its inherent degeneracy
of states, and give an intuition for how dipolar-interacting
systems such as the molecular aggregates or quantum dots
mentioned previously are affected by level degeneracy.

For the Rydberg case, the crossover from the degenerate to
the nondegenerate system can be studied in a controlled way
by applying a static magnetic field B. In the strong field limit,
the magnetic sublevels are separated by Zeeman splittings
exceeding the interaction strengths, which results in energet-
ically well-separated subspaces. Previous studies focused on
this situation, finding that many eigenstates are delocalized
over a considerable fraction of the Rydberg atoms [35,36]. In
addition to breaking the energetic degeneracy, application of
a strong magnetic field also leads to a typically nonisotropic
interaction with a specific angular dependence, which resem-
bles that of aligned dipoles in the direction of the magnetic
field. It was found that this nonisotropic interaction leads
to very different delocalization properties compared to an
isotropic interaction [35]. In particular, the delocalization is
much larger in the anisotropic case than in the isotropic one,

2469-9926/2021/104(1)/013311(9) 013311-1 Published by the American Physical Society

https://orcid.org/0000-0002-3149-9823
https://orcid.org/0000-0002-0441-138X
https://orcid.org/0000-0002-0569-7551
https://orcid.org/0000-0001-9645-440X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.013311&domain=pdf&date_stamp=2021-07-12
https://doi.org/10.1103/PhysRevA.104.013311
https://creativecommons.org/licenses/by/4.0/


ABUMWIS, WÄCHTLER, EILES, AND EISFELD PHYSICAL REVIEW A 104, 013311 (2021)

raising the question of how delocalization occurs in the field-
free case where the atoms no longer have a preferred direction.

We find that the delocalization is enhanced by the degen-
eracies at zero field, resulting in even larger delocalization
lengths. Surprisingly, these grow even further at small but
nonzero magnetic fields, before reducing to the B → ∞ limit
studied in Refs. [35,36] at higher fields. To better under-
stand the origin of these observations, we use one-, two-, and
three-dimensional lattice arrangements of the atoms [37–41]
to systematically probe delocalization in systems ranging
from the case we previously studied—corresponding to a
disordered three-dimensional lattice with fractional filling of
atoms—to fully structured or low-dimensional systems. By
applying also a magnetic field as we transition from regular to
irregular atomic positions, we can obtain further insight into
the delocalization properties of this system. These findings
can help to design and interpret Rydberg experiments where
large delocalization is desired, and they have implications for
the behavior of the general class of dipole-dipole interacting
systems mentioned above.

II. INTERACTING RYDBERG ATOMS

The role of atomic degeneracies in delocalization can be
clearly studied using the spin-independent Rydberg states
|ν, l, m〉, where ν denotes the principal quantum number, l
is the orbital angular momentum, and m is the correspond-
ing magnetic quantum number. The simplest case involves
interacting s- and p-states, i.e., l = 0 and 1, with the same
ν. Without loss of generality, we choose the m quantization
axis to be the same for all atoms. There are two manifolds of
states for each atom:

| ↑, m〉 ↔ |p, m〉 with m = 0, ±1, (1)

| ↓, m〉 ↔ |s, m〉 with m = 0. (2)

We set the energy of the s-state, which does not depend on
magnetic field strength, to be the reference (zero) energy. The
p-state energies depend linearly on an applied magnetic field
via the Zeeman shift,

εm(B) = ε + μBmB, (3)

where ε is the energy difference between the field-free p- and
s-states. The level structure of our effectively two-level system
is shown in Figs. 1(a) and 1(b).

We consider an interacting system of N of these two-level
atoms, described by the Hamiltonian

H =
N∑

α=1

H (α) +
N∑

α=1

∑
β<α

V (α,β ), (4)

where H (α) denotes the Hamiltonian of particle α, and V (α,β )

is the dipole-dipole interaction between the atoms,

V (α,β ) = �μα · �μβ

R3
α,β

− 3
(�μα · �Rα,β )(�μβ · �Rα,β )

R5
α,β

. (5)

Here, �Rα,β is the distance vector between the two particles,
and Rα,β denotes its magnitude. The dipole operator of atom
α is denoted by �μα .

FIG. 1. (a) Energy structure of a single Rydberg atom in the
relevant subspace without (left) and with (right) an applied magnetic
field. The l = 0, m = 0 levels are set to be at zero energy while
the l = 1, m = 0 state sits at energy ε. (b) Definition of the angles
that enter the interaction matrix elements. The angle θi j is defined
with respect to the quantization axis, while the angle φi j is given
with respect to an arbitrarily chosen x-axis. When a magnetic field
is present, we choose the quantization axis �z|| �B. (c) We structure
our study around four generic arrangements: a three-dimensional
random gas, and one-, two-, and three-dimensional regular lattice
arrangements.

We are interested in the situation when there is one excita-
tion in the system. Consequently, we choose basis states with
one atom excited to the p-state and the remaining atoms still
in the s-state. We denote these states as

| j, mj〉 ≡ |s, 0〉 · · · |p, mj〉 · · · |s, 0〉, (6)

where j identifies the atom that is excited to the p-state. The
matrix elements of the Hamiltonian (4) in this basis are then
given by

〈 j, mj |H |i, mi〉 =δ jiδmj miεmj (B) + μ2
sp

R3
ji

M
mj ,mi

j,i . (7)

Here we have introduced the transition dipole moment μsp =
〈ν, l = 0|r|ν, l = 1〉 and a matrix element encoding the rela-
tive orientation of the atoms with respect to one another and
with respect to the quantization axis,

M0,0
i, j = 1 − 3 cos2 θi j

3
, (8)

M+1,+1
i, j = M−1,−1

i, j = −M0,0
i, j

2
, (9)

M−1,0
i, j = e−iφi j

√
2

cos θi j sin θi j, (10)

M+1,0
i, j = −M−1,0

i, j , (11)

M−1,+1
i, j = e−2iφi j sin2 θi j

2
. (12)
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FIG. 2. The frozen Rydberg gas. All plots are for N = 1000 Rydberg atoms averaged over ∼103 realizations. (a) Probability densities
for the PTM measure, displayed for several magnetic field strengths. The black curve gives the B → ∞ reference value, obtained by setting
the coupling between m-levels to zero. (b) Probability densities to find a certain PTM value for an eigenstate with a certain energy, for the
same magnetic fields as in panel (a). (c) Comparison between the B = 0 and 50 case. Although we use m as a label to distinguish the three
distributions, we note that they are calculated in the same way for each magnetic field value, and these labels are only approximate, since
the Zeeman splitting allows these distributions to be characterized by m to a very good approximation. Below the m = 0 distribution, we
show the distribution in the asymptotic limit B → ∞ (flipped to better see the close agreement with the m = 0 distribution for B = 50) . The
energies are given in units of Eref = μ2

sp/3a3
ref , where aref = (3/4πN )1/3L is the Wigner-Seitz radius. The zero of energy is at the energy ε of

the noninteracting atoms, which is introduced in Eq. (3).

Interchanging indices results in complex conjugation. The
angle between the quantization axis and the distance vector
�Ri j is θi j , and φi j is the azimuthal angle between the x-axis
and the projection of the distance vector onto the x-y plane
[see Fig. 1(b)].

In the limit where the magnetic field is much larger than the
coupling strength Mmm′

i j , with m �= m′, the Hamiltonian effec-
tively decomposes into three subspaces, one for each magnetic
quantum number m. In each subspace, the interaction between
atoms is given by Mmm

i j , whose angular dependence is given
by 1 − 3 cos2 θi j . This is the anisotropic interaction studied
in [35,36]. This function can evaluate to both positive and
negative values and becomes zero at the so-called “magic an-
gle.” We note that the coupling between the different m-levels
has a completely different angular dependence. In particular,
at the magic angle there is now a strong coupling between
different m-levels, so that reducing the magnetic field from the
strong-field limit reduces the relevance of the magic angle.

III. EIGENSTATES AND DELOCALIZATION MEASURE

The eigenstates |ψ�〉 and eigenenergies E� follow from the
time-independent Schrödinger equation

H |ψ�〉 = E�|ψ�〉. (13)

In the basis (6), the eigenstates can be written as

|ψ�〉 =
∑

j

∑
mj

c(�)
j,mj

| j, mj〉. (14)

The absolute square of the coefficients c(�)
j,mj

is the probability
to find the excitation on particle j in the specific state | ↑, mj〉.
We obtain the eigenenergies E� and the eigenstate coefficients
c(�)

j,mj
[cf. Eqs. (14) and (6)] by diagonalization of a matrix with

matrix elements given by 〈 j, mj |H |i, mi〉 of Eq. (7).
We are interested in the overall delocalization of the

excitation, roughly corresponding to the number of atoms
that participate in a given eigenstate. This is given by the
probability that a particle is in the ↑-manifold. Since the de-
composition into individual m levels is irrelevant to the overall
excitation delocalization, we sum over these levels to obtain
the probability that the excitation is on particle j,

P(�)
j =

∑
mj

|c(�)
j,mj

|2. (15)

A convenient measure of delocalization can be obtained by
counting the number of atoms involved in a state � that have
an excitation probability larger than a chosen threshold Pthresh.
We will refer to this as the “population threshold measure”
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(PTM),

N (�)
PTM =

∑
j

�
(
P(�)

j − Pthresh
)
, (16)

where � denotes the Heaviside step function, i.e., �(P) =
1 for P � 0 and �(P) = 0 for P < 0. We use Pthresh = 1/N ;
this gives a PTM limit of N in a fully delocalized, equally
distributed state, and 1 for a state localized on a given atom.

In our previous works [35,36] we used the so-called
“coherence” measure to quantify the delocalization of the
excitation. Since the PTM measure works directly with the
populations, it is more suitable for the present situation
where we are not interested in the coherence properties of
the reduced density matrix. In the supplemental material of
Ref. [36] we compared these measures for the case without m-
levels, and we observed that they are essentially proportional.

IV. THE FROZEN RYDBERG GAS

In a frozen Rydberg gas, the atoms are randomly dis-
tributed within a certain volume and, due to the typical ul-
tracold laboratory conditions and relevant timescales, remain
motionless during the course of excitation and measurement
of delocalized states. For a representative study we consider
N = 1000 Rydberg atoms with random positions placed uni-
formly inside a cubic volume with length L; the results are
nearly independent of boundary conditions [35,36]. We have
also studied the system’s dependence on the number of atoms
N , finding that the PTM distribution is largely composed of a
peak at low PTM values which is independent of N and a peak
at large PTM values, whose position and width scale linearly
with N . This was previously observed for the large magnetic
field case [35]. It is convenient to use the Wigner-Seitz radius
aref = (3/4πN )1/3L as the unit of distance, and for the unit of
energy we use Eref = μ2

sp/3a3
ref . From Eq. (7) we see that the

density simply scales the strength of the interaction, which is
reflected by our choice of the energy unit. Therefore, a change
in density will not change the results presented below. We
average over 103 independent random gas realizations. For
each realization we obtain the eigenenergies E� and corre-
sponding PTM value N (�)

PTM for all 3 · N eigenstates. In the
following, we focus on the probability P(E ,NPTM) to obtain a
certain NPTM at the energy E . These distributions are obtained
by binning the E�, N (�)

PTM pairs to a regularly spaced grid.
By integrating over energy, we can also obtain the marginal
distribution P(NPTM).

In Fig. 2 the dependence of P(E ,NPTM) and P(NPTM)
on the magnetic field strength is shown. Figure 2(a) shows
the probability density P(NPTM) for several magnetic field
strengths. For all magnetic field strengths there is a large
fraction of states with PTM on the order of 150–200, i.e.,
the delocalization is spread over nearly 20% of the atoms
in the gas. The PTM distribution is shifted toward larger
values for all finite B-fields in comparison to the B → ∞
case, to which they converge. The peak at low PTM stems
from clusters—dimers, trimers, etc.—formed from strongly
interacting atoms in relatively close proximity. These cluster
states decouple from the system, leaving a residual gas with
more homogeneous interparticle interactions, which in turn
lead to large extended states [36].

FIG. 3. Same as Fig. 2(b), but for small magnetic fields. The
vertical bars indicate the positions of the Zeeman energies, ±mB.

This interpretation is supported by the energy-resolved
PTM distributions shown in Fig. 2(b). These reveal imme-
diately that the delocalized states cluster around zero energy
while the cluster states with low PTM are primarily found in
the wings of this distribution. One sees additional structure
in the PTM distributions: at B = 0 the distribution has an
asymmetric double-peak structure and is even broader than
in the B → ∞ case. For intermediate B the distribution splits
into three peaks whose centers follow the Zeeman energies
proportional to the magnetic field strength B. For B � 10 the
three well-separated peaks each have states with only a single
m value. These peaks have a similar shape, but different width
and “orientation.” While B = 10 is not quite sufficient to reach
the asymptotic B → ∞ distribution, B = 50, shown in panel
(c), is. One clearly sees that the m = ±1 peaks are mirror
images of the m = 0 peak with half the width, features that
result from the form of the interaction matrix. In the B → ∞
limit, the off-diagonal couplings in M can be ignored, and
thus the Hamiltonian separates into three blocks, with energies
mB on the diagonal and off-diagonal elements given by M0,0

i, j ,

M−1,−1
i, j , and M+1,+1

i, j . From Eqs. (8)–(12) one sees that M−1,−1
i, j

and M+1,+1
i, j have the same sign and magnitude, but a different

sign and half the magnitude of the M0,0
i, j interaction. It is clear

that the PTM distributions for all three blocks are identical up
to a scale factor, since the interactions are proportional. Mir-
rored below the m = 0 distribution, we show the asymptotic
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FIG. 4. Distribution of PTM for (a) a 1D chain, (b) a 2D, and (c) a 3D lattice. In all three cases we have roughly the same number of atoms
as in the frozen gas case [990 atoms in the 1D case (Nx = 990), 992 atoms in the 2D case (Nx = 32, Ny = 31), and 990 atoms in the 3D case
(Nx = 11, Ny = 10, Nz = 9)], and the quantization axis is set parallel to the magnetic field, pointing along the z-direction. The blue bars are
the case without magnetic field (B = 0), and the magenta (mirrored) bars are the infinite B-field limit. The bottom row shows the upper plots
on the same x-axis.

B → ∞ result [36]. It is identical to the middle peak of the
B = 50 distribution, confirming the validity of the results of
Ref. [36], since the nondegenerate regime is reached in the
limit of moderately high magnetic fields. We can therefore
identify the three distributions that appear at large magnetic
fields with m labels. Specifically, at typical Rydberg densities
the interaction strength is on the order of a few MHz, which
requires a magnetic field on the order of 10G to reach the
separated m-level regime.

To study in more detail the splitting of the asymmetric
B = 0 distribution into three peaks, in Fig. 3 we focus on
the region B � 1.1. Surprisingly, the apparently monotonic
decrease in delocalization extent with increasing B seen in
Fig. 2 does not hold all the way to B = 0, and in fact the
largest delocalized states are seen for small but nonzero fields
with partially lifted degeneracy. For B � 1 the magnetic field
is too weak to separate the three distributions fully, resulting
in a complicated distribution with several maxima culminat-
ing in a clearly emerging triple-peak structure as B grows
to ≈1. The peak centered at zero detuning has a similarly
asymmetric form as it does when B = 0, but with a smaller
width and reduced maximum value. The right peak (m =
+1) has a strongly asymmetric shape and exhibits a sim-
ilar double-peak structure as the m = 0 peak. In contrast,
the left peak (m = −1) has no double-peak structure and its
asymmetry is mirrored with respect to the m = +1 peak.
Recall that in the large B-field case, these two peaks are
identical.

From these calculations we see that the degenerate sub-
levels increase the extent of delocalization and add additional
structure to the random Rydberg gas. Turning on a magnetic
field leads to complicated behavior, even including an increase
in the delocalization length at small magnetic fields and hence
a small lifting of the degeneracy, which eventually converges
to the nondegenerate B → ∞ case studied in Refs. [35,36].

To better understand the effect of the degenerate atomic
transitions, we now consider different lattice arrangements.

V. ATOMS ARRANGED ON A LATTICE

A. One-dimensional chain

We consider N equidistant atoms placed in a one-
dimensional (1D) lattice. We first note that the angle between
the quantization axis and the vector �Ri j is the same for all
pairs of atoms, i.e., θi j ≡ θ and φi j ≡ φ for all i and j. The
Hamiltonian can therefore be simplified to

H =
∑
i, j

∑
m,m′

[
εm(B)δm,m′δi j + μ2

sp

R3
i j

Mm,m′

]
|i, m〉〈 j, m′|, (17)

where Mm,m′ = Mm,m′
i, j are independent of atom indices. This

has far-reaching consequences. As shown in Appendix A,
the PTM distribution is actually independent of the direction
and strength of the magnetic field, in pronounced contrast to
the three-dimensional gas, and even though the eigenvalues
depend on the magnetic field’s strength and direction. This
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holds even when the atoms are not placed equidistantly. The
PTM for N = 990 is shown in Fig. 4(a) for B = 0 and B → ∞
(mirrored below). The PTM distribution is centered around
N/2, in excellent agreement with the analytic estimates dis-
cussed in Appendix B.

B. Two-dimensional lattice

We now place the atoms in a two-dimensional (2D) rectan-
gular lattice in a plane perpendicular to the quantization axis
so that θi j = π/2 for all i, j. In this case M±1,0

i, j = M0,±1
i, j = 0,

and thus the m = 0 subspace decouples from the m = ±1
states. Within the m = 0 subspace the interaction μ2

sp/3R3
i j

is isotropic, and was previously studied without the lattice
arrangement in Ref. [35]. The m = 0 PTM distribution is
independent of B. In Fig. 4(b) we contrast the full PTM
distribution for the case B = 0 (top panel) with the B → ∞
case (bottom panel), with the magnetic field perpendicular
to the lattice. The two distributions are not equal due to the
m = ±1 states present only in the B = 0 case. By comparing
the differences between the two mirrored distributions, it is
apparent that these states both increase the number of highly
delocalized states and give rise to several somewhat more
localized states, which are completely absent in the B → ∞
case. We notice that the increase in the number of delocalized
states is rather small, and in particular the maximal value
of NPTM remains essentially unchanged. We found the same
behavior, which is in sharp contrast to the 3D case, also for
a random 2D gas. Unlike in the 1D case, in the 2D case with
B �= 0 both the eigenstates and the eigenenergies depend on
the magnetic field orientation. We note that the Hamiltonian
resulting from the B-field orientation discussed here has the
same general form as those discussed in the context of topo-
logical band structure in dipole-interacting systems [30,42].

C. Three-dimensional lattice

A three-dimensional (3D) lattice bears the closest resem-
blance to the frozen gas. Figure 4(c) shows that the coupling
between m levels still has only a small impact on the delo-
calization, which, as in the 1D and 2D cases, is characterized
by PTM values around N/2, although in 3D the distribution is
broader. In marked contrast to the 1D and 2D cases, there are
now states with larger PTM values than in the infinite B-field
limit. We therefore see that the main finding of the previous
section, namely that the degenerate sublevels at B = 0 lead to
larger delocalization than in the nondegenerate B → ∞ limit,
only occurs for the 3D arrangement.

There are several differences between the 3D-lattice and
the random gas PTM distributions. Most notably, the lattice
PTM distribution consists only of a single-peaked and rela-
tively narrow distribution centered at a high PTM value of
approximately N/3; in contrast, the random gas case exhibits
a very broad distribution with two major peaks at PTM values
around NPTM = 2 and at NPTM ≈ N/5 . These differences are
explained by the absence of strongly interacting clusters in the
lattice.

To study the transition from the 3D lattice case to the
frozen gas, we introduce now a lattice that is only partially
filled with atoms, characterized by the filling fraction f . For
a given f , we adjust the size of the lattice such that we

FIG. 5. Transition from lattice to gas. Comparison of a 3D lattice
with different filling fractions (legend provided in the upper panel) to
the frozen Rydberg gas (black) for different strengths of the magnetic
field (provided in the panels). For all cases we fix the number of
atoms at N = 990. For the lattice we apply 5% uniform fluctuations
around the perfect lattice positions.

always have the same total number of atoms in the system.
This introduces clustering effects into the arrangement of the
atoms. In Fig. 5 we show the PTM distribution for several
filling fractions and magnetic fields. To smoothen the dis-
tribution with a high filling fraction, we added a small (5%
of the lattice constant) disorder in the position of the atoms
around the lattice positions. As expected, the peak in the PTM
distribution starts to broaden and shifts to smaller values as f
decreases. For f = 0.09, a peak at small (<50) PTM values
develops, becoming more pronounced at higher B values. We
note that for B = 0 and for large magnetic field (B = 50), the
distribution at small filling fraction ( f = 0.01) agrees nearly
perfectly with the frozen gas distribution (shown as a black
line). Curiously, at intermediate magnetic field strengths the
distributions with small filling fractions have peaks at smaller
PTM values than the frozen gas case .

VI. DETERMINATION OF THE DELOCALIZATION

As discussed in Refs. [35,36], one way to access the
eigenstates |ψ�〉 is via microwave transitions from an initial
state with all atoms prepared in the s-state. By scanning
the microwave frequency, one can select states at differ-
ent eigenenergies E�. In the lattice case discussed above,
where the atoms are deterministically placed, one could
then also determine the p-population of each atom, as
done in Refs. [12,31]. From the definition of (15) we see
that the populations fully determine the PTM, thus di-
rectly giving access to the delocalization of the eigenstates.
The absorption strength for the transition from the initial
state |s · · · s〉 to the final state |ψ�〉, for a microwave with
polarization ε and resonant with the state’s transition
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frequency, is determined by |〈s · · · s|∑α �μα · �ε|ψ�〉|2 =
| ∑α

∑
mα

(�μsp · �ε) c(�)
α,mα

|2. In general, the eigenstates have
very different absorption strengths, and for many arrange-
ments there are several eigenstates that have vanishingly small
transition strengths.

Another possibility to probe the eigenstates in the lat-
tice case is via the excitation scheme employed in recent
experiments of the Ott group [43]. First, we prepare all
atoms but one in the s-state, and we denote the atom
which is still in the ground state g by α0. Via laser exci-
tation one can again address the eigenstate |ψ�〉, but now
with transition probability |〈s · · · gα0 · · · s| ∑α �μα · �ε|ψ�〉|2 =
| ∑mα0

(�μmα
gp · �ε) c(�)

α0,mα0
|2. The excitation probability in this

scenario is determined by the eigenstate coefficient c(�)
α0,mα0

that corresponds to the atom that was initially prepared in the
ground state. For both the microwave and the laser excitation
scheme, the transition probabilities depend on the polarization
ε of the microwave or laser, respectively. We believe that with
the laser excitation scheme one can indeed access most, if
not all, eigenstates. The p-population of each atom can be
determined for the case of the laser excitation in the same
way as described above for the case of microwave excitation.
Finally, we remark that one can also use transfer experiments
to obtain information about the eigenstates [20].

VII. CONCLUSIONS

In this paper, we have explored the influence of degenerate
sublevels on the extent of single exciton state delocalization
in a Rydberg atom assembly. For degenerate sublevels, we
find in the three-dimensional system larger delocalization than
for the separate (nondegenerate) m-level manifolds. In one
and two dimensions, the inclusion of m-level degeneracies
does not lead to much larger delocalization in comparison
with the nondegenerate case. By applying a homogeneous
magnetic field, one can not only split the m-levels of a single
atom, but also induce a preferred orientation and, with that,
the angular dependence of the interaction. In one dimension
we find that the magnetic field orientation does not influence
the delocalization properties of the system at all, and only
weakly in three dimensions. The situation in two dimensions
is very different. For large magnetic fields, the direction of
the field determines whether the interaction is predominately
isotropic or anisotropic. For magnetic fields perpendicular to
the plane, the interaction is isotropic, whereas the interaction
has the angle dependence of parallel aligned dipoles, where,
for example, the “magic angle” plays an important role, when
the fields are parallel to the plane. This situation mimics the
situation of regular 2D molecular arrangements on surfaces.
For example, for PTCDA-molecules on a KCl surface, all
molecular transition dipoles are oriented along the diagonal

of the lattice [44,45], an interesting situation that can be
simulated in the Rydberg assembly. In the present work, we
focused on the case of a magnetic field that is perpendicular to
the plane of the Rydberg atoms. For this situation, we did not
find a large variation of the delocalization as a function of the
magnetic field strength, but we do still see the general trend
that the delocalization decreases with increasing magnetic
field.

Our choice of s and p states to study exciton delocalization
was made in order to introduce a tractable level of degeneracy
to the system. If instead we had chosen p and d states as ↓
and ↑ states, respectively, then in addition to a small increase
in the degeneracy of ↑ states, we would introduce doubly
degenerate ↓ states, leading to an exponential growth in the
number of aggregate basis-states. Such a case is challenging
to treat numerically, but is the typical situation in molecular
systems. Inclusion of Rydberg fine structure also leads to such
a scenario for all possible states, since the spin degree of
freedom leads even to a doubly degenerate s state. Exploration
of this physics would be theoretically interesting along the
lines of choosing other degenerate states, but is also necessary
in order to treat realistic experimental conditions [43,46].
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APPENDIX A: EIGENSTATE STRUCTURE
IN THE 1D CHAIN

The Hamiltonian of a 1D chain, Eq. (17), can be written in
matrix form as

H (B) = ε(B) ⊗ I + M ⊗ V . (A1)

Here a single underbar denotes a 3 × 3 matrix, and a double
underbar denotes an N × N matrix. The symbol ⊗ denotes
the Kronecker product between matrices. These matrices are
given by

ε(B) =
⎛
⎝−μBB 0 0

0 0 0
0 0 +μBB

⎞
⎠ (A2)

and

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 cos2 θ − 1

6

e−iφ

√
2

cos θ sin θ
e−2iφ sin2 θ

2
eiφ

√
2

cos θ sin θ
1 − 3 cos2 θ

3
−e−iφ

√
2

cos θ sin θ

e2iφ sin2 θ

2
− eiφ

√
2

cos θ sin θ
3 cos2 θ − 1

6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)
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The matrix V contains the elements

Vi j = μ2
sp/R3

i j (A4)

and I is the N × N unit matrix.
In a first step, we can diagonalize the matrix V :

V �a(l ) = E (l )�a(l ), (A5)

where l labels the N eigenvectors. Then Eq. (A1) can be
written as

H (B)[I ⊗ �a(l )] = ε(B) ⊗ �a(l ) + E (l )M ⊗ �a(l ) (A6)

= [ε(B) + E (l )M] ⊗ �a(l ). (A7)

In the next step, we diagonalize for each l the 3 × 3 matrices
ε(B) + E (l )M:

[
ε(B) + E (l )M

]�b(l,κ )(B) = E (l,κ )(B) �b(l,κ )(B). (A8)

Here κ labels the three eigenvectors of each κ-block. With this
we finally can write

H (B)[�b(l,κ )(B) ⊗ �a(l )] = E (l,κ )(B)[�b(l,κ )(B) ⊗ �a(l )]. (A9)

We can combine the two labels l and κ into a single label �

and define as eigenfunctions

�c(�) = �b(l,κ ) ⊗ �a(l ). (A10)

From this we can make the identification

c(�)
j,m = b(l,κ )

m a(l )
j . (A11)

Since we are interested in the populations on each site [see
Eq. (15)], we find

P(l,κ )
j =

(∑
m

∣∣b(l,κ )
m

∣∣2

) ∣∣a(l )
j

∣∣2
. (A12)

Since (
∑

m |b(l,κ )
m |2) = 1, we can finally write

P(l,κ )
j = ∣∣a(l )

j

∣∣2
. (A13)

From this one sees that the populations are independent of
the magnetic field strength and direction. They are given by
the m-level independent Hamiltonian V , which corresponds
to isotropic interaction.

Alternative considerations using B = 0: With B = 0 it
is convenient to choose the quantization axis such that all
coupling elements (M0,±1

i, j , M±1,0
i, j , and M±1,∓1

i, j ) vanish. This
happens when the quantization axis is parallel to the chain
(θ = 0). That means that the m = −1, 0, and +1 states are
uncoupled and the Hamiltonian has a block-diagonal form,
where each block belongs to a specific m-state. Each block can
be diagonalized independently. From the definition of M

mi,mj

i, j
one sees that the three subblocks have the form

H (m) =
∑
i, j

[
εδi j + μ2

sp

R3

1

|i − j|3 M (m)

]
|i, m〉〈 j, m| (A14)

with M (0) = 1/3 and M (±1) = −1/6, and where R is the lat-
tice spacing. Since M (m) is independent of the atomic position
i and j, it simply scales the interaction strength. Therefore,
one has identical eigenstates for each sub-Hamiltonian.

APPENDIX B: PTM ESTIMATE FOR THE 1D CHAIN

The result (A13) can be used to analytically estimate the
extent of the delocalization in the case of a 1D linear chain.
To obtain a simple analytical expression, we take only the
interaction between nearest neighbor s into account. Then, the
squares of the eigenfunction coefficients are given by |a(l )

j |2 =
2/(N + 1) sin2 (π j�/(N + 1)). One sees that roughly half of
them are larger than the threshold Pthresh = 1/N . Therefore,
we expect the eigenstates to have a PTM value of approxi-
mately N/2. As we discuss in Sec. V A, this estimated value
agrees very well with the numerical result presented in Fig. 4.
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