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Loading ultracold atoms onto nonlinear Bloch states and soliton states in bichromatic lattices
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We simulate and analyze an experimental method of loading interacting ultracold atoms onto nontrivial
quantum states such as nonlinear Bloch wave and soliton solutions in a one-dimensional bichromatic lattice. Of
standard bands, inverted bands, and bands with Dirac-like points permitted by a bichromatic lattice, we consider
the case of an inverted band and examine the loading process in terms of nonlinear Bloch waves formed by an
aggregate of ultracold atoms described by the mean-field model. Specifically, we solved the Gross-Pitaevskii
equation numerically and found an appropriate standing wave-pulse sequence for the inverted band, which
sequence proved to be a suitable protocol for producing soliton solutions. In addition, we examined the effect
of an external potential and dynamical instabilities for the postloading process. We also provide an appropriate
data set for future experimental realization of our findings.
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I. INTRODUCTION

Recent advancements in experimental techniques with
ultracold atoms, nonlinear optics, and exciton-polariton dy-
namics provide an excellent platform for studying wide
varieties of nonlinear wave phenomena [1–3]. The Gross-
Pitaevskii equation (GPE) well describes these systems [4]
even though the GPE is based on the lowest-order mean-field
approximation. Therefore, solving this equation expectedly
allows us to draw analogies between different systems and
investigate nonlinear phenomena in a wide range of parameter
spaces. One of the most intriguing topics is the production
and application of soliton solutions, namely, nondispersive
localized wave packets [4,5]. An ultracold atomic system
is suitable for studying nonlinear dynamics due to its high
controllability and accessibility. One aspect is the dynamical
control of external potential by varying the parameters of
trapping lasers, magnetic coils, etc. Moreover, it is possible
to alter the strength of atom-atom interaction via Feshbach
resonance [6]. In the recent studies of ultracold atoms, dynam-
ics of solitons [7,8] and soliton trains [9] were experimentally
observed using an appropriate control of external potential to
Bose-Einstein condensation (BEC). These results may pave
the way, for instance, for constructing new types of soliton-
based high-precision interferometers [10].

Another intriguing topic is nonlinear phenomena in the
presence of a periodic potential [1]. The nonlinearity modi-
fies the energy-band structure, namely, a general consequence
of the periodic potential so that the now-well-known loop
structure appears at a band edge [4,5]. In addition to this,
the nonlinearity supports spatially localized solutions whose
chemical potential lies between two allowed bands. They are
referred to as “band-gap solitons” [11,12]. Some of these
solutions are known to be described in terms of nonlinear

Bloch waves (NBWs) [13]. Using periodic structures such as
polariton condensation in a one-dimensional array of buried
mesa traps [14], propagating light in a periodic Kerr nonlin-
ear medium [2], and so forth, the NBWs are experimentally
realized. In the nonlinear optics, time-periodic potentials are
applied, and the solitons were measured in the time domain
[15]. In the case of an ultracold atomic system, a spatially
periodic potential such as an optical lattice (OL) [1] is applied
by the interference of counterpropagating lasers. One of the
significant advantages of such a system is that the periodic
potential can be tuned in time with ease. This technique
allows variation of the band structure, enabling the loading
of atoms to a specific state. Indeed, in a recent experiment
with a two-dimensional checkerboard lattice controlled by an
acceleration of the atoms and staggered shift of the lattice,
atoms were loaded to an NBW state located at the top of the
loop in the ground band to observe its decay rate [16].

The ability to produce a specific target state coherently
and efficiently is a prerequisite for achieving further appli-
cations. From a theoretical point of view, several techniques
have been suggested, e.g., a fast-forward process [17], a
mode-matching technique [18], and so forth. However, these
techniques generally require some complex coherent control
so that it is exceedingly challenging for experimental imple-
mentation. One of the very promising techniques applicable
to the ultracold atomic lattice system is the “standing-wave
pulse sequence method” [19–21], also known as the bang-
bang (on-off) control [22]. Basically, it turns the optical lattice
on and off with appropriate time intervals, which is a se-
quence of square pulses until the residual BEC wave function
coincides with the targeted Bloch wave. An experimental
group in Beijing applied this technique to one-, two-, and
three-dimensional systems and demonstrated that the load-
ing process is very efficient. Interestingly, they demonstrated
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recently that the same technique goes beyond just preparing
the initial state, but it would be capable of state-to-state ma-
nipulation in the manner of the Ramsey interferometry [23].

In our previous paper [24], we theoretically extended
the experimental work of the standing-wave pulse method
[19–21] to the bichromatic lattice system [25] in the linear
regime. We also analyzed the selection rule and numer-
ically optimized the time sequence using experimentally
realizable parameters. Furthermore, we found that relatively
weak nonlinear interaction (much smaller than lattice height)
does not alter the selection rule and postloading dynamics
since the band dispersion is not dramatically altered un-
der the given nonlinearity condition. Effects of nonlinear
interaction thus remained to be investigated under stronger
conditions.

In this paper, we treat a straightforward procedure for
loading atoms onto excited NBWs and solitons via the
standing-wave pulse sequence in the bichromatic lattice. We
consider the region where the interaction term does not go
so far as to form the loop in the band structure. First, we
analyze selection rules for transitions in the nonlinear sys-
tem based on numerically obtained NBW bands. Since the
NBWs are not orthogonal to each other, we numerically solve
the time-dependent Gross-Pitaevskii equation (TD-GPE) to
examine the selection rules. We will find that it is pos-
sible to load atoms onto soliton solutions in the periodic
potential once appropriate parameters are obtained. Sub-
sequently, we examine postloading effects of the external
trapping harmonic potential and reveal that the dynamics re-
flect the nonlinear band dispersion. Finally, we discuss the
dynamical instability using the method of linear stability
analysis.

In passing, we note that the main observables in this paper
are density distributions in position and momentum space,
which are measurable in experiments. Besides fundamental
techniques, our procedure requires only the control of the
interaction strength that appears in the GPE. Furthermore,
experimentally necessary parameters are taken from the pa-
pers of the Beijing group [20,26]; thus, this paper contributes
to future experiments without any further complex coherent
control.

The paper is organized as follows. Section II outlines the
theoretical model system and shows nonlinear band disper-
sion. Section III discusses the selection rule of the loading
process in terms of nonlinear Bloch waves. Section IV
analyzes the numerical result of the loading process and post-
loading dynamics. Section V concludes the paper. Technical
details are supplemented in the Appendixes.

II. MATHEMATICAL DEFINITION AND BASIC FEATURES
OF THE SYSTEM

In the experimental papers of Refs. [19,20,26,27], the load-
ing process begins with BEC in a three-dimensional (3D)
harmonic trap. The dynamics is 3D and nonseparable since the
interatomic interaction is in effect. However, here we consider
the case where the harmonic confinement is much tighter
in the y and z directions than in the x direction so that the
system can be treated as quasi-one-dimensional (quasi-1D).
Optimally parametrized 1D OL pulses are applied, and the

momentum distributions of the postloading process are mea-
sured after the band mapping process.

Here, we solve the 1D TD-GPE [4] for interacting bosonic
atoms in the bichromatic OL. Some notations and techniques
used in this paper are available in our numerical studies pre-
sented in Refs. [24,28,29]. The TD-GPE reads

ih̄
d

dt
�(x′) =

[
− h̄2

2ma

∂2

∂x′2 + α(t ){V1 sin2(krx′)

+V2 sin2(2krx′)} + 1

2
maω

2
0x′2

+ g1DN |�(x′)|2
]
�(x′),

where V1 is the height of the optical lattice with the period
of λ/2, V2 is with the period of λ/4, α(t ) equals 1 during
an on-duty cycle, otherwise it is zero, ω0 is the frequency of
the harmonic trap, N is the number of total atoms, and g1D

parametrizes the effective atom-atom interaction obtained by
contracting the 3D trap to one dimension. We use recoil en-
ergy Er = h̄2k2

r /2ma as the unit of energy, recoil momentum
kr = 2π/λ as the unit of (quasi)momentum, lattice constant
λ/2 as the unit of length, and rescaled time t = Ert ′/h̄ as the
unit of time. Here h̄, λ, and ma correspond to the Planck con-
stant, the wavelength of the laser used for generating the OL,
and the atomic mass, respectively. Rescaling the TD-GPE, we
get

i
d

dt
�(x) =

[
− ∂2

∂x2
+ α(t ){s1 sin2(x) + s2 sin2(2x)} + νx2

+ g|�(x)|2
]
�(x), (1)

where x, s1, s2, and g denote x = krx′, s1 = V1/Er , s2 = V2/Er ,
and g = g1DN/Er , respectively. The atom treated here is 87Rb
and typically g ranges from 10−5 to 1 [24,30]. The other
parameters are the same as in Ref. [19]. We note that g could
be made to take on any value by exploiting the Feshbach
resonance [6]. We limit ourselves to the regime where g � 8
is comparable to the kinetic energy of the second excited band
in this paper.

The nonlinear Bloch waves {φNB(n, q, x)} formed by the
bichromatic OL alone satisfy the time-independent equation,
namely,

{
− ∂2

∂x2
+ s1 sin2(x) + s2 sin2(2x) + glat|φNB(n, q, x)|2

}

×φNB(n, q, x) = μφNB(n, q, x) (2)

subject to the normalization condition∫ π/2
−π/2 |φNB(n, q, x)|2dx = π . Here glat and μ correspond

to the nonlinear interaction strength for NBWs and the
chemical potential, respectively. The same as in the linear
case [31], the NBW can be expanded as

φNB(n, q, x) = eiqx
∑

K

CNB(n, q, K )e2iKx, (3)

where q is the quasimomentum, n ∈ N is the band index, and
K ∈ Z is the reciprocal vector index. From this, the coefficient
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FIG. 1. (a) The band structure as a function of quasimomentum q
for glat = 0 (linear, purple dashed), glat = 0.16 (green dash-dotted),
and glat = 1 (light blue solid) with s1 = 10, s2 = 8. Chemical po-
tential is shown up to the second excited band. (b) The chemical
potential μ of the nonlinear Bloch solutions as a function of in-
teraction strength glat at q = 0 in the range 4.6 < μ < 5.6. If the
interaction term is sufficiently small, only one eigenvalue appears
for a given value of glat in this range. The loop appears at a point
a little short of glat = 0.4. (c) Numerically estimated interaction
strength for the lattice system glat as a function of g. The green
circles are the numerically obtained result, and the purple solid line
is a fitted curve glat = 8.8 × 10−3 + 2.9 × 10−2g − 2.2 × 10−3g2 +
1.0 × 10−4g3. [(d), (e)] The first three Bloch coefficients as a function
of K at q = 0 for glat = 0 and 0.16, respectively. The odd excited and
the even excited bands are pairwise inverted. Thus the first excited
has even symmetry, and the seond has odd symmetry. In this region,
the nonlinear interaction slightly alters the coefficients but does not
modify the symmetry.

CNB(n, q, K ) can be obtained by solving the nonlinear recur-
rent formula under the condition of

∑
K |CNB(n, q, K )|2 = 1

[4,5,13]. Figure 1(a) shows the first three band dispersions
with s1 = 10, s2 = 8 with glat = 0 (linear), 0.16, and 1. The
trend of energy band dispersion is the same as a linear one if
glat = 0.16, except the interaction shifts the dispersion higher.
Normally, the odd-excited band’s coefficients have odd sym-
metry in K space and vice versa. However, the parity of the
wave function of the first and second excited bands is inverted.
Figures 1(d) and 1(e) show the coefficient CNB(n, q, K ) of the
first three bands at q = 0 with glat = 0 and 0.16, respectively.
In the linear limit, this parity inversion occurs with a change
in the band structure: as s2 increases, the gap between the first
and second excited bands becomes smaller, and at the critical
point s2 = (s1/4)2 = 6.25, the gap disappears. For bigger s2,
the gap becomes larger and the parity of the wave functions
of the first and second excited bands is inverted. See Ref. [24]
for more detailed discussion.

Because the NBWs are not mutually orthogonal, nonzero
overlap integrals occur between different momentum compo-
nents of the target and unwanted states. Therefore, it appears

to be worth examining the loading process numerically with
TD-GPE. Furthermore, the nonlinear term is known to give
rise to additional solutions other than usual Bloch solutions.
One is the solution in momentum space corresponding to
loop structures that appear at band edges. Figure 1(b) shows
interaction strength dependency of the first excited band struc-
ture at q = 0. The interaction strength gradually modifies
the structure, and the loop appears at around glat = 0.4. For
instance, we plotted a band structure with glat = 1, which has
a loop structure at q = 0 in the first excited band [Fig. 1(a)].
Typically, the top of the loop and the bottom of the second
excited band become flat (see Appendix C for details). In
addition to the NBWs, spatial soliton solutions having their
chemical potential lying in a linear band gap are also al-
lowed. These solutions are called the “gap soliton,” consisting
of NBWs with a hyperbolic-secant-type envelope typically.
Therefore, this paper mainly aims to investigate how the load-
ing process is affected by these additional solutions. See Refs.
[4,5,13,32] for further detail about the loop structures and the
solitons.

As seen in Eq. (2), glat corresponds to the nonlinear interac-
tion at a specified single site; thus, the theory works perfectly
if the wave function is thoroughly uniform (or perfectly peri-
odic) over the whole spatial region. However, in our case, the
simulation begins with the ground state of the harmonic sys-
tem; therefore, the wave function is nonuniform and localized
around the origin of the harmonic trap. Here we parametrize
the interaction strength of the lattice system glat = gn/π by
averaged peak site density n after the loading process, where
n = ∫ π/2

−π/2 |�(x, τtotal )|2dx and �(x, τtotal ) is the wave function
immediately after the loading. This argument is the same as
in the experimental paper done by Koller et al. [16]. Here,
we use an equation obtained by a fitting for the relationship
between g and glat under the condition of loading atoms onto
the first excited band with s1 = 10, s2 = 8 [Fig. 1(c)]. This
relationship is valid when 1 � g � 8. For instance, in our
numerical simulation, g = 8 corresponds to glat = 0.16.

III. LOADING PROCESS

In the previous paper [24], we numerically optimized the
loading process to the first and the second excited bands
with a two-step on-off procedure in the linear limit as fol-
lows. We assumed that the atoms are initially installed in
the ground state of the harmonic potential so that the initial
state is an even symmetric zero-momentum state. Under this
assumption, the time evolution during the on-duty cycle is
given by the superposition of linear Bloch waves at q = 0.
And the off-duty cycle changes the phase of the discretized
momentum state. Thus, the net result can be regarded as a
multipath interference effect in momentum space. With a grid
spacing of 0.1 μs grid, we obtained through brute force the
most appropriate time sequence (τ1, τ

′
1, τ2, τ

′
2) for q = 0 with

the total time τtotal = τ1 + τ ′
1 + τ2 + τ ′

2 shorter than 100 μs.
Here τn and τ ′

n are the nth time durations for on- and off-duty
cycles. According to the experimental paper of Ref. [19],
the total time τtotal is comparable to the scale of the recoil
energy, since the unit of time in our definition t = 1(h̄/Er)
corresponds to 50.4 μs. To verify the availability of the pro-
tocol, subsequently, we applied the pulse-sequence method
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TABLE I. Optimized loading protocols to the first and the second
excited bands with two-step on-off procedure by using a brute force
method with a period of 0.1 μs grid [24]. The lattice height is
s1 = 10, s2 = 8. In this paper we chose the relative phase φ11 =
φ21 = φ12 = φ22 = π/4 for antisymmetric loading for on-duty cy-
cles. F is the fidelity of the optimization protocol in the linear limit.
See Appendix A for more details.

Target τ1 τ ′
1 τ2 τ ′

2 F

First excited, even 13.0 22.9 2.5 30.4 0.995
Second excited, odd 33.8 34.7 14.8 4.5 0.939

to a weakly interacting system (g = 0 − 1) by solving TD-
GPE, starting with the ground state of the harmonic potential
as before. Finally, we confirmed the protocols which were
obtained in the linear limit were still valid for the weakly
interacting system by calculating the density distribution after
the band mapping process. In particular, in the previous paper
[24], we focused on three sets of parameters in the symmetric
(even-to-even) process, so that we had normal band structure
(s1 = 10, s2 = 5), band structure with the Dirac-like point
(s1 = 10, s2 = 6.25), and inverted band structure (s1 = 10,
s2 = 8). This paper focuses on the inverted band structure, as
shown in Fig. 1. Throughout this paper, we use the optimized
protocol in the linear limit (Table I), although the nonlinear
term takes place.

As seen in Eq. (1), a minimum of the OL term is set to
coincide with that of the harmonic oscillator; that is, the pulse
is symmetric under x → −x. When this pulse acts on the
zero-momentum initial state, which is symmetric, the solution
evolves in time, maintaining the initial symmetry. On the other
hand, loading atoms onto antisymmetric solutions requires an
additional phase term in the OL pulse to break the symmetry
of the initial state. Now consider that we apply the phase-
shifted OL pulse to the system, namely,

s1 sin2(x + φ11) + s2 sin2(2{x + φ21})

for the first on-duty cycle, and

s1 sin2(x + φ12) + s2 sin2(2{x + φ22})

for the second one. Indeed, the Fourier coefficients of the
OL other than the constant term s1+s2

2 are essential in the
discussion of symmetry. If, for example, φ11 = φ21 = π/4
and φ12 = φ22 = π/8, the OL becomes antisymmetric un-
der x → −x as can be seen by shifting the OL potential by
a constant s1+s2

2 . However, here we simply consider φ11 =
φ21 = φ12 = φ22 = π/4 for experimental implementation
although the pulse is only partially antisymmetric. See Ap-
pendix A for the details about the effect of relative phases.
Let us consider the reachable target state with the antisym-
metric loading process at q = 0 in the linear limit. When the
lattice height s2 is lower than the critical value (s1/4)2, the
linear Bloch wave at q = 0 of the first excited band has odd
symmetry in K space, and the second has even. Therefore,
the antisymmetric loading process fails to load atoms onto the
second excited band. Once s2 exceeds (s1/4)2, the parity of
the linear Bloch waves in K space is inverted [Fig. 1(d)], so

the atoms cannot be loaded onto the first excited band with the
antisymmetric loading process.

In K space, the first excited band solution with glat = 0.16
behaves almost the same as the linear one (see Fig. 1). There-
fore, even when the effect of the nonlinear term becomes a
little stronger in this case, we try loading the atoms using the
same time sequence as in the linear case shown in Table I. Let
us note that unlike the linear case, the time evolution cannot
be described by an expansion over eigenstates in the non-
linear case. Therefore, we applied the fourth-order split-step
Fourier method for time propagation [33]. When the interac-
tion strength is strong enough, a new NBW solution emerges,
which corresponds to the loop structure. In addition to this
interesting phenomenon, there appears another nontrivial set
of spatial solutions called “solitons.” The main focus of this
paper is to present a method to load atoms onto NBWs and
also onto soliton solutions. We then discuss the stability of the
solitons after the loading.

IV. DISCUSSIONS ON NUMERICAL RESULTS

This section discusses the numerical result of the load-
ing process with the inverted band structure (s1 = 10, s2 =
8) for the interaction strength g = 1-8. In the previous ex-
periments [20,21], the loading efficiency is estimated by
observing the postloading dynamics of the atoms by suddenly
freezing the OL in time. The Faraday imaging method can
directly observe the motion of atoms in position space with
sufficiently high resolution [34]. We note that, in our param-
eter regime, single-site resolved imaging is not necessary to
observe the dynamics of wave packets since the wave pack-
ets are spatially spread over several sites. Observing wave
packets with single-site resolved imaging would help under-
stand more detailed dynamics and structures of the solitons.
As for the experimental techniques of single-site resolved
imaging, refer to Refs. [35,36] and references therein. The
band mapping technique is one of the most promising ex-
perimental methods that maps the quasimomentum of the
loaded atoms onto the real momentum domain and reveals
the band indices [37–39]. Therefore, we analyze the den-
sity distribution in momentum space as well as in position
space, which is obtained by the band mapping procedure, in
order to study the postloading dynamics. For the numerical
implementation, we chose 1.0 ms for the whole band map-
ping process with a decay constant γ = 500 μs according to
Ref. [20].

First, we discuss the postloading dynamics with only the
OL on (case 1). We show that the loading process can load
atoms onto soliton solutions if the interaction strength is high
enough. Second, we study the case when the harmonic po-
tential is added, and discuss how the wave packet behaves
under the influence of the harmonic trap (case 2). Finally,
we study the postloading dynamics when the initial state is
not a clean ground state but affected by an artificial noise.
And we discuss the effect of dynamical instabilities (case
3). In all the cases listed above, the numerical simulation
begins with the ground state ψ (x) in the harmonic trap with
ν = 1.2 × 10−4 (corresponding to 2π × 70 Hz) at a certain
interaction strength g. And in case 3, we use the ground state
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FIG. 2. Time evolution of the wave packet in position space as
a function of holding time with s2 = 8 for (a) g = 1, (b) g = 2, (c)
g = 4 and (d) g = 8. In (a), the wave packet spreads out over time
due to the tunneling. When the interaction strength becomes g � 2,
the atoms are loaded to soliton states, and most of the wave packets
localize at the origin of the initial state over time. As the interaction
strength g becomes stronger, the frequency of the breathing mode in-
creases and the width of the soliton decreases. The visible expanding
components (faint blue line and black arrow) mainly consist of first
excited band component in (b). Similar components appear in (c) and
(d), although the density is lower.

ψ (x) with additional artificial Gaussian noise as the initial
state to simulate TD-GPE.

A. Case 1: Postloading dynamics with only OL

The mean momentum of the initial wave function is zero,
and its width in momentum space is around 0.1kr . The loading
process essentially preserves quasimomentum since the time
required for the loading is short enough. Therefore, the loaded
atoms can appear throughout many bands, but only around
q = 0. If there is no interaction and if there is no external
potential other than OL, the atoms loaded in a particular band
spread out on the time scale deriving from the tunneling term.
The dynamics is described by the superposition of various
Bloch states around q = 0 in a specific band, so that the inter-
ference of these closely located states leads to the appearance
of fringes. The interference pattern depends on the dispersion
of the loaded band. In other words, measuring the postloading
dynamics with OL allows us to analyze the band dispersion
around q = 0. Examination of this issue is interesting, partic-
ularly in the presence of the Dirac point [24,40,41], but we
present this case in a separate article.

In this section, we examine the effect of the interaction
term on the postloading dynamics. Here, we apply the two-
step duty cycle shown in Table I, and then turn on only the
OL and keep it on after the loading process. Figure 2 shows

FIG. 3. Time evolution of the wave packet in momentum space
after the band mapping process as a function of holding time with
s2 = 8 for (a) g = 1, (b) g = 2, (c) g = 4, and (d) g = 8. In all
cases, the wave packet is located at around p = 2. In (c) and (d),
the oscillation of the breathing mode can be seen clearly.

the dynamics of the loaded atoms in position space after the
loading to the symmetric solution of the first excited band
(even to even). And the corresponding momentum distribu-
tion after the band mapping process is shown for various
cases in Fig. 3. When the interaction strength is weak enough
[g = 1 in Fig. 3(a)], the postloading dynamics directly reflects
the local nonlinear band dispersion as shown in Fig. 1. In
position space, the wave packet spreads out over time cen-
tered at the origin of the initial state while the momentum
distribution [Fig. 3(a)] is localized at |p| = 2. Above g = 2,
the dynamics shows solitonic behavior. The wave packet is
localized around the origin of the initial state and shows a
breathing oscillation [12,42] in position space without sig-
nificant spreading [Figs. 2(b)–2(d)]. On the other hand, in
momentum space, it remains almost unchanged, and the atoms
are localized around |p| = 2 [Figs. 3(b)–3(d)]. In terms of
band dispersion, an immobile wave packet corresponds to
a flatlike dispersion. The loop top dispersion becomes flat-
like if the interaction strength is high enough (glat � 0.4).
However, even without such shape deformation of the band
dispersion, localized wave packets appear [see Fig. 2(b):
glat = 0.06]. The results suggest that the localization of the
wave packet is not merely due to the band dispersion but
to the appearance of soliton solutions. We also evaluate the
loading rate around p = |m|(m ∈ N ) by integrating the wave
function in the momentum space, Rm = (

∫ m+0.5
m−0.5 |ψ (p)|2d p +∫ −m+0.5

−m−0.5 |ψ (p)|2d p)/
∫ ∞
−∞ |ψ (p)|2d p. Here ψ (p) is obtained

by applying the band mapping procedure to the wave function
immediately after the loading, ψ (x, τtotal ). For m = 0, the
range of integration is simply p = −0.5 to 0.5. Table II shows
the results for g = 1, 2, 4, and 8. We note that the loading
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TABLE II. The loading rate Rm with g = 1, 2, 4, and 8. In all
cases, R1 and R3 are always smaller than 10−3. R2 is about 10%
smaller than the optimized fidelity F in the linear limit.

g = 1 g = 2 g = 4 g = 8

R0 0.031 0.062 0.037 0.037
R2 0.855 0.929 0.876 0.888
R4 0.058 0.004 0.042 0.032

rate is just the population around the mth band edge. In order
to estimate the band population more precisely, the wave
packet must be moved far enough away from the band edges.
Due to the nontrivial nonlinear interaction, the relationship
between the loading rate and the interaction strength cannot
be expressed by a monotonic function.

In order to show the solitons more clearly, we plotted the
density profile after the loading process in Fig. 4. Figures 4(a)
and 4(c) show density profiles immediately after the loading
for g = 2 and 8. A Gaussian shape approximately describes
the profile since the loading process is not long enough to
modify the envelope. After the 10-ms holding time, the non-
soliton component goes far enough away from the origin
of the initial state, and the immobile component remains at
x = 0. Then the envelope of the wave packet becomes hy-
perbolic secant [Figs. 4(b) and 4(d)], which is one of the
characteristic behaviors of solitons. In addition to that, in
a smaller structure, the wave functions have two nodes per
site [Figs. 4(c) and 4(f)]. This structure suggests that the
soliton solutions are attributed to the NBWs in the first ex-

TABLE III. Relationship between the interaction strength g and
the chemical potential of the solitons, 〈μ〉min. The chemical potential
μ(q = 0) of the first excited band at q = 0 is obtained by Figs. 1(b)
and 1(c). The wave function of the central site immediately after
the loading has a high density because of the extra components.
μ(q = 0) is always higher than 〈μ〉min. We numerically estimated
the soliton population Psol at t = 12 ms for future experiments. See
text for more detail.

g μ(q = 0) 〈μ〉min Psol

2 4.71 4.61 0.902
4 4.78 4.68 0.878
6 4.85 4.74 0.819
8 4.90 4.79 0.705

cited band. We estimated the averaged chemical potential as
〈μ(t )〉 = ∫ xu

xl
ψ (x, t )∗μψ (x, t )dx/

∫ xu

xl
ψ (x, t )∗ψ (x, t )dx. We

chose xl = −20π and xu = 20π for numerical convergence.
The chemical potential oscillates as a function of time since
the wave packet is in breathing mode. Therefore, we show the
minimum value of the averaged chemical potential between
8 and 12 ms, 〈μ〉min, in Table III. The averaged chemical
potential is slightly lower than the chemical potential, which
is estimated by the mean density immediately after the loading
process. However, the chemical potential lies between the first
and second excited linear band gap (4.58 � μ � 5.19), al-
though it is difficult to identify the soliton solution exactly. We
also showed Psol(t ) = ∫ xu

xl
|ψ (x, t )|2dx to estimate the popula-

tion of the soliton at t = 12 ms. As the interaction becomes

FIG. 4. The density profile immediately after the loading process for (a) g = 2 and (c) g = 8. Purple and green lines correspond to the
density profile and envelope function in position space, respectively. The envelopes are well fitted by the Gaussian function, reflecting the
initial state. (b) and (e) correspond to the density profile after 10 ms holding with g = 2 and g = 8, respectively. The nonsoliton component
goes away from the origin; thus, only the soliton solution remains around x = 0. The corresponding envelopes are hyperbolic secant in both
cases. (c) and (f) are enlarged views of the central site −0.5 � x � 0.5 of (b) and (e), respectively. Purple long-dashed, green dash-dotted, and
light blue solid curves correspond to the real part, imaginary part, and absolute value of the wave function, respectively. The black dashed lines
indicate the NBW φNB(1, 0, x) of the first excited band at q = 0 with (c) glat = 0.06 and (f) 0.16.
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FIG. 5. Time evolution of the wave packet in (a, b) position space
and (c, d) momentum space with the protocol for loading atoms onto
antisymmetric solutions. Here the target state is the bottom of the sec-
ond excited band. (a) and (c) corresponding to the weakly interacting
case with g = 1. (b) and (d) corresponding to the strongly interacting
case with g = 8. The interaction strength does not drastically alter the
trends. In both cases, fast-moving wave packets appear in position
space (black arrow). These wave packets consist of fourth excited
band components, unlike the symmetric loading case (Fig. 2).

stronger, the population of the soliton decreases. The details
of the soliton solution in the bichromatic OL system, such as
spectrum and the fundamental gap soliton, are interesting, but
the discussion is beyond the scope of this paper. In passing, we
note that it is difficult to generate specific solitons or to specify
soliton modes at this stage since the final state is sensitive to
the initial state, time sequence, and so on.

We also examined the loading process to the bottom of
the second excited band (even to odd) with s1 = 10, s2 = 8.
Figures 5(a) and 5(b) show the time evolution of the wave
packet with g = 1 and 8, respectively. In position space, the
loaded atoms spread out over time, the same as in Fig. 2(a). As
seen in Fig. 1(c), the second excited bands are not strongly de-
formed by the interaction, and the gap appears around |q| = 1.
Therefore, in contrast to the previous case, the postloading
dynamics behave as in the linear case (or weakly interact-
ing case) even when the interaction is strong (g = 8). The
momentum distribution shows that most of the atoms appear

TABLE IV. The loading rate Rm with g = 1 and 8 (same as
Table II). R1, R3 are always smaller than 10−3.

g = 1 g = 8

R0 0.050 0.050
R2 0.714 0.748
R4 0.179 0.152

FIG. 6. Typical isoenergetic surface of the first excited band
with the reduced zone representation. The surface is given by the
one-dimensional classical pendulum Hcl . The purple dashed line and
the blue circle correspond to a separatrix and a rough coordinate of
the atoms immediately after the loading. In our case, the atoms are
loaded onto the origin of the surface, then half of the wave packet
moves up along the separatrix lines (red arrow), and the rest moves
down (green arrow). Due to the Bragg reflection, the quasimomen-
tum of the wave packet is reversed when they reach the band edge.

around |p| = 2, which means the protocol successfully loaded
atoms onto the bottom of the second excited band. We note
that, as discussed in Ref. [21], the OL pulses with nonzero
relative phases φ11 = φ21 = φ12 = φ22 	= 0 reduce the load-
ing efficiency; small portions are loaded onto the ground and
the fourth excited band. Table IV shows the loading rate
Rm. In both cases, 15% of atoms are loaded onto the fourth
band edge. In order to achieve higher loading efficiency, an
optimization based on TD-GPE would be necessary.

In passing, we note that we have examined the loading
process with a standard band of s1 = 10, s2 = 5. In this case,
the atoms are loaded onto the soliton solution between the
first and second excited bands with the antisymmetric (even-
to-odd) loading protocol. Appendix B discusses more details
of the results with the normal band. We also note that our
procedure is valid in the limit of the monochromatic lattice,
e.g., s1 = 10, s2 = 0 (standard band). Although antisymmetric
loading is required for soliton generation, the experimental
implementation may be simpler than the bichromatic system.
The loading process with the Dirac-like point is of sufficient
interest that it will be studied separately elsewhere.

B. Case 2: Postexcitation dynamics with harmonic OL

In the ultracold atomic system, time modulation of the
optical lattice and time variation of the external potential can
be experimentally realized [43]. Band spectroscopy of the
atoms in OL is one of the essential applications. By combining
linear potentials with OL, a Stückelberg-type interferometer
can be constructed and measured by observing momen-
tum distributions [44]. Dispersions can also be measured by
modulating the height of the optical lattice in time to inducing
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FIG. 7. Time evolution of the wave packet in position space as a
function of holding time with s2 = 8 for (a) g = 2, (b) g = 4, (c)
g = 6, and (d) g = 8. Atoms are initially loaded to soliton solu-
tions and the soliton decays to the first excited band after a certain
holding time. The atoms follow the isoenergetic surface of the one-
dimensional classical pendulum given by Hcl (see Fig. 6).

interband transitions [45]. The Aarhus group experimentally
measured the spectrum formed by the combined potential
of the OL and the harmonic potential by using amplitude
modulation of the OL with the acceleration of atoms due to
the harmonic potential [46]. Thus, the observation of the dy-
namics of atoms in the combined potential of the OL and the
external potential is important for further applications. Here
we discuss the dynamics of loaded atoms with strong non-
linearity under the influence of the harmonic trap to identify
global band dispersion and stability. From the viewpoint of
the classical interpretation under the single-band approxima-
tion, the dynamics is simply given by Hcl (q, x) = μ(q) + νx2

[38]. Figure 6 shows a typical isoenergetic surface of the
first excited band in the linear limit (g = 0) with a reduced
zone representation. The dispersion can be treated as a cosine
function under the first-order tight-binding approximation in
the linear limit. Therefore, a trajectory of the loaded atoms
traces a classical pendulum [24,28,47]. If the atoms are loaded
on the origin of the surface, the atoms follow a line of the sepa-
ratrix. According to Hcl , we can easily estimate the maximum
position of the atoms, xmax. In the case of s1 = 10, s2 = 8,
and ν = 1.2 × 10−4, xmax 
 33 sites (see Refs. [24,28] for de-
tails). Since the small nonlinear interaction does not alter the
band dispersion drastically, the classical interpretation may
work even with the nonlinear term g � 8. Thus, measuring
postloading dynamics allows us to compute a general form of
the band where the atoms are loaded.

Figure 7 shows the postloading dynamics of the symmet-
ric process with harmonic trap for s1 = 10, s2 = 8 with ν =
1.2 × 10−4. Figure 8 shows corresponding momentum distri-

FIG. 8. Time evolution of the wave packet in momentum space
after the band mapping process as a function of holding time with
s2 = 8 for (a) g = 2, (b) g = 4, (c) g = 6, and (d) g = 8 correspond-
ing to Fig. 7.

butions after the band mapping process. As shown in Fig. 2,
the process loads atoms to the soliton solution in g = 2-8. The
acceleration force due to the harmonic potential lowers the
density of the soliton so that the loaded atoms decay to the first
excited band from the soliton solution after a certain holding
time. In terms of the tight-binding approach, the harmonic
potential modifies the spatially uniform tunneling constant
to nonuniform. Therefore, in the presence of the harmonic
trap, the soliton solution of the uniform lattice is not stable
anymore. As the interaction strength increases, the soliton
gets more stable up to g = 6 which corresponds to glat = 0.13
[see Fig. 1(b)]. When the interaction strength reaches g = 8,
the soliton decays immediately after the loading. To confirm
this effect more clearly, we also plot a scaled autocorrelation
function

A(t ) = | 〈�(t = τtotal )|�(t )〉 |2/| 〈�(t = τtotal )|
×�(t = τtotal )〉|2

as a function of the holding time in Figs. 9(a) and
9(b) with ν = 1.2 × 10−4 and ν = 2.5 × 10−4, respectively.
�(t = τtotal ) is a wave function immediately after the loading
process. In Fig. 9(a), the autocorrelation function is most
stable at g = 6. In the other cases, the autocorrelation func-
tions quickly become unstable, then show revival due to the
classical orbit given by Hcl . We note that this phenomenon
depends on the balance between the nonlinear term and the
strength of the harmonic trap. In the case with ν = 2.5 × 10−4

[Fig. 9(b)], the autocorrelation function shows higher stability
for g = 8 than for g = 6. The effects due to the external poten-
tials are interesting because they are related to manipulating
solitons in the coordinate space, but we leave it out of this
paper.
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FIG. 9. Autocorrelation function A(t ) as a function of holding
time with (a) ν = 1.2 × 10−4 and (b) ν = 2.5 × 10−4. Purple solid,
green dashed, light blue dash-dotted, and orange long-dashed curves
correspond to g = 2, 4, 6, and 8, respectively. (a) In the case of g = 6,
the autocorrelation shows a stable feature. In other cases, the soliton
decays within 4 ms; subsequently, it shows revivals due to the closed
classical trajectories given by Hcl . (b) In the case of ν = 2.5 × 10−4,
g = 8 is most stable. See text for more detail.

C. Case 3: Effect of instability

One of the unique features of the lattice BEC system is dy-
namical instability. This instability is considered a counterpart
of an energetic instability and causes NBWs (solitons) to be
unstable when additional perturbative modes exist. To explore
dynamical instability of NBWs, we follow the discussion in
Refs. [4,5]. We assume that NBWs experience a small pertur-
bation with momentum f as ψ = φNB(n, q, x) + δψ , where
δψ = eiqx{u f (x)ei f x + v∗

f (x)e−i f x}.
The perturbative part δψ obeys the time-dependent

equation

d

dt

(
u f

v f

)
= σ̂zB̂

(
u f

v f

)
= �l (q)

(
u f

v f

)
, (4)

where the operator

B̂ =
(

L+ glat�
2(n, q)

glat{�∗(n, q)}2 L−

)
(5)

and diagonal part

L± = −
[

d

dx
+ i(±q + f )

]2

+ s1 sin2(x) + s2 sin2(2x)

−μ + 2glat|φNB(n, q, x)|2 (6)

with Pauli matrix σ̂z = (1 0
0 −1) and �(n, q) =

e−iqxφNB(n, q, x). Here the operator σ̂zB̂ is non-Hermitian;
thus, eigenvalues �l (q) can be complex. Besides, complex
eigenvalues always appear in pairs: one has a positive
imaginary part, and the other has a negative. Therefore, if
the operator σ̂zB̂ has complex eigenvalues, the state grows
exponentially in time.

Figure 10 shows the maximum absolute values of the imag-
inary part of the eigenvalues Im�l (q) of the first excited band
at q = 0. A strongly unstable regime appears around q = 0.
The result implies that the soliton solutions containing NBWs
of the first excited band at q = 0 are unstable, according
to the composite relation [13]. While features of dynamical
instability cannot be clearly seen within 12 ms postloading

FIG. 10. The maximum absolute values of the imaginary part of
the eigenvalues Im�l (q) for the first excited band. The unit of the
color bar is Er . The vertical axis corresponds to interaction strength
glat and the horizontal to perturbative momentum f . Values become
higher toward red and lower toward white. White corresponds to
a dynamically stable regime. The unstable regime appears around
f = 0.

dynamics in the previous section, dynamical instability may
break the stable wave packet for long-term propagation.

In order to investigate dynamical instability more deeply,
we numerically solved the TD-GPE with an artificial
Gaussian-type noise in addition to the condensate initial func-
tion �(t = 0, x) = ψ (x) + �(x) (see Ref. [48]), namely,

�(x) = εψ (x = 0)r(x)e−x2/σ 2
, (7)

where ψ (x = 0) is the BEC in the harmonic potential and r(x)
is a random number uniformly distributed in [0,1]. We chose
ε = 0.1 and σ = 20π . Figure 11 shows the density profile
after the loading process as a function of holding time in
position space with s2 = 8. Only the OL is turned on while
the holding process. In Figs. 11(a) and 11(b), dynamical in-
stability does not strongly break the symmetry within 12 ms,
although the imaginary part appears around f = 0. The abso-
lute value of the imaginary part increases as it increases the
interaction strength to g = 6; the effect of dynamical instabil-
ity can be seen clearly in the density profile. We also plot the
scaled autocorrelation A(t ) as a function of holding time in
Fig. 12. In the case of g = 2, the noise makes the autocorre-
lation stable since it suppresses a coherence of the breathing
mode. We note that the random noise might correspond to ex-
perimental imperfections, e.g., an unspecifiable excited state;
however, this analysis is more of a numerical check. The shape
of the noise function may be spatially correlated, and the ran-
dom noise may be totally different from the real experimental
environment. It is required to know the sources of the noises
more precisely to investigate the environmental effect.

V. CONCLUSIONS

We discussed the standing-wave pulse sequence [19,21]
in the one-dimensional bichromatic system with atom-atom
interaction in terms of mean-field theory. In the previous paper
[24], we showed that the pulse sequence is essentially multi-
path interference in the momentum domain. And the parity
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FIG. 11. Postloading dynamics with a Gaussian noise for
s1 = 10, s2 = 8. For (a) g = 2 and (b) g = 4, the dynamics is stable
despite the noise is added. On the contrary, for (c) g = 6 and (d)
g = 8, the symmetry of the wave packet is broken due to the noise.

selection rule of the pulse sequence is specified by the or-
thonormal Bloch solutions in the linear case. We also verified
that the weak nonlinearity g < 1 does not alter the results dra-
matically. In this paper, we extended our theoretical work [24]
to the strongly nonlinear regime. Contrary to the linear case,
the NBWs are nonorthonormal, and additional loop structures
appear at the band edges in the time-independent spectrum.
In addition to that, the spatially localized soliton solutions
appear, which are connected to NBWs through a composite
relation [13]. Therefore, the loading process to NBWs is a
nontrivial issue.

FIG. 12. Autocorrelation function A(t ) as a function of holding
time. Green dashed (orange long-dashed) and purple solid (light blue
dash-dotted) curves correspond to g = 2 (g = 8) with and without
noise.

In order to examine the loading process to NBWs, we
numerically simulated the pulse sequence with the inverted
band. We found that the sequence can load atoms to the soliton
solution in the excited band with an appropriate time interval
of the pulses when the interaction strength is high enough.
And we numerically verified that the sequence is valid up
to g = 8. The postloading dynamics with only OL show that
the nonsoliton components quickly move away, leaving the
soliton solution at the initial position of the wave packet. In
the periodic potential, the soliton component stays in its initial
position and oscillates in the breathing mode according to the
interaction strength. Subsequently, we showed the postloading
dynamics with the addition of an external harmonic poten-
tial to check the solitons’ stability. The harmonic potential
modulates the tunneling constant; thus, the soliton decays
after a certain holding time. Finally, we discussed the effect
of the dynamical instability in terms of the linear stability
analysis [4,5]. The spectrum of the time propagation oper-
ator shows that the nonlinear Bloch solutions are unstable
at q = 0. In order to verify the dynamical instability, we
numerically simulated noise by solving the TD-GPE using
an artificial noise function mixed into the BEC’s initial state
and found that the process nevertheless succeeded in loading
atoms to the soliton solution. However, the noise suppresses
coherence of the breathing oscillation and leads to instability
while holding. Our theoretical analysis recommends the range
of interaction strength g = 2-6 for future experiments. This
paper showed how to load atoms onto soliton solutions with
the periodic potential. The obtained soliton solutions are in the
breathing mode with a hyperbolic-secant-type envelope. The
soliton solution has a complex spectrum that depends on many
parameters [12,13]. Therefore, the manipulation of the modes
and the envelopes of solitons are expected to be difficult in
the method of this paper. Reinforcement learning using the
nonlinear GPE will be more appropriate than the brute force
method with the linear Bloch equation.

Compared to the adiabatic process, the standing-wave
pulse method can load atoms in a shorter period of time
[19,21]. Moreover, compared to the other methods [49], it
only requires controlling time intervals of lattice pulse with
a precision of 0.1 μs. However, there is still much to be
explored from the theoretical point of view in the field of
ultracold atomic physics. For example, Ref. [16] reports that
there may be additional instability due to the beyond-mean-
field correlation. The theoretical paper in Ref. [50] considers
fouth-order interaction proportional to |�|4 in the case of a
strongly interacting limit. A recent paper [18] took into ac-
count additional terms corresponding to third-order correction
(∝ g3) and the three-body loss rate (∝ K3) given in the form of
g3|�|3 − iK3|�|4 which is called the Lee-Huang-Yang term.

As for future applications in ultracold atomic physics,
combinations of standing-wave pulse sequence and the other
experimental techniques would lead to a powerful strategy
for coherent manipulation of the nonlinear wave packets.
The amplitude modulation leads to coherent band couplings,
which allow us to produce modified band structures with vast
Hilbert space [51,52]. In this paper, we applied the exter-
nal harmonic potential for inducing intraband transition as a
very practical example. Indeed, there are many other meth-
ods to induce intraband transition. As an example, a phase
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modulation technique such as the topological pumping pro-
cess [53] would lead to unique coherent manipulations. In
addition to manipulations on the center-of-mass motion, ma-
nipulations on the internal degrees of freedom should be able
to open up insights into designing new quantum devices.
In particular, the multicomponent system would be a very
nice platform. The appropriate combinations of the coherent
control may produce gap solitons with spin-orbit coupling
[54], stabilized NBWs [55], and so forth. Much remains to
be studied.
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APPENDIX A: OPTIMIZED TIME INTERVAL
FOR PULSE SEQUENCE

The linear Bloch waves are given in the same formula
as φB(n, q, x) = ∑

K CB(n, q, K )e2iKx which are the eigen-
solutions of the time-independent Bloch Hamiltonian HB =
− d2

dx2 + s1 sin2(x + φ1) + s2 sin2(2{x + φ2}). Here φ1 and φ2

are controllable phases for the OL. The Bloch coefficients
CB(n, K, q) can be obtained by solving the recurrent formula

(q + 2K )2CB(n, q, K ) − s2e−4iφ2CB(n, q, K − 2)/4

−s1e−2iφ1CB(n, q, K − 1)/4 − s1e2iφ1CB(n, q, K + 1)/4

−s2e4iφ2CB(n, q, K + 2)/4

= (
En

q − s1/2 − s2/2
)
CB(n, q, K ), (A1)

namely, the central equation (see Ref. [31] and our previous
work [24]), where En

q represents the eigenenergy of the Bloch
state.

In the linear regime, once the Bloch waves are obtained,
the time evolution of the two-step pulse sequence is given
in the form of �(τtotal ) = HF (τ ′

2)HB(τ2)HF (τ ′
1)HB(τ1)�(0),

where the Hamiltonian for free propagation is HF = − d2

dx2 .
In order to optimize the pulse sequence, we assume that the
initial condition is the zero-momentum state, although the
initial wave packet contains nonzero momentum states. This
approximation works well if the harmonic potential ν is loose
and the interaction strength g is high. Since there is no ac-
celerating force during the pulse sequence, we only consider
the dynamics at q = 0. This assumption allows us to use
a fidelity F = | 〈φB(m, q = 0)|�(τtotal )〉 |2 as an informative

TABLE V. Optimized loading protocols to the first and the sec-
ond excited bands with two-step on-off procedure by using a brute
force method with a period of 0.1 μs grid [24]. The lattice height s1

is fixed to 10. In this paper, we chose a relative phase equal to π/4
for loading atoms to the antisymmetric solution.

φ11 φ21 φ12 φ22 τ1 τ ′
1 τ2 τ ′

2 F

π/4 π/4 π/4 π/4 33.8 34.7 14.8 4.5 0.939
0 0 π/4 π/4 12.7 34.6 1.5 16.9 0.966
π/4 π/8 π/4 π/8 32.8 39.9 39.9 6.5 0.967
0 0 π/4 π/8 29.0 18.2 0.1 4.9 0.957

FIG. 13. Time propagation of the wave packet as a function of
holding time with the normal band s1 = 10, s2 = 5 for g = 8. The
optimized loading protocol is shown in Table VI. (a) and (b) corre-
spond to the density distributions in position space with symmetric
(even-to-even) and antisymmetric (even-to-odd) loading process, re-
spectively. (c) and (d) correspond to the momentum distributions
after the band mapping for (a) and (b).

index where m is a target band index. In this paper, our target
states are the eigenstates of the Bloch Hamiltonian HB with
the phases φ1 = φ2 = 0. During the on-duty cycle, we use the
same lattice height s1, s2 for the target state; however, we vary
φ1, φ2 for optimization.

As seen in Fig. 1, the coefficients of the antisymmetric
solutions in K space must have different signs for positive
and negative indices K . And the off-duty cycle with the free
Hamiltonian HF gives a time-dependent phase change corre-
sponding to the square of the momentum e−4K2τ ′

for each K
momentum state. Therefore, to achieve loading atoms onto
antisymmetric states, the on-duty cycle with HB needs to
choose appropriate phases φ1, φ2. For example, if we choose
φ1 = π/4 and φ2 = π/8, the recurrent formula becomes

(q + 2K )2CB(n, q, K ) + is2CB(n, q, K − 2)/4

+is1CB(n, q, K − 1)/4 − is1CB(n, q, K + 1)/4

−is2CB(n, q, K + 2)/4

= (
En

q − s1/2 − s2/2
)
CB(n, q, K ). (A2)

In this case, the on-duty cycle gives phases for momentum
states with negative K , which is opposite to the phases for
positive K states. Besides, we need to vanish the K = 0
components using an interference effect since the K = 0 com-
ponents of the antisymmetric state should be zero. Thus, the
effect of the OL phases on the optimization is nontrivial.
We numerically searched optimized time intervals by using a
brute force method with a 0.1 μs step size in each of the time
durations 0 � τ1, τ

′
1, τ2, τ

′
2 � 40 μs. We limit τtotal � 100 μs

by following the previous studies [19–21,24,27]. To check the
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TABLE VI. Optimized loading protocols with two-step on-off
procedure for s1 = 10, s2 = 5. As in Table I, we chose relative phase
equal to φ11 = φ21 = φ12 = φ22 = π/4 for antisymmetric loading
for on-duty cycles.

Target τ1 τ ′
1 τ2 τ ′

2 F

Second, even 3.8 4.9 23.1 28.9 0.999
First, odd 35.6 29.4 17.3 4.5 0.940

effect of the OL phases for loading atoms to the second excited
band (antisymmetric solution), we chose 0, π/4, and π/8. See
Table V for the results.

The result shows that φ11 = φ21 = π/4 and φ12 = φ22 =
π/8 are the best choices for loading atoms to the second
excited and the fidelity was found to be above 90% for all
combinations. As for the experiments, it is better to choose
the same phases φ11 = φ12 = φ21 = φ22 to increase repro-
ducibility, so, for simplicity, in this paper, we used φ11 =
φ12 = φ21 = φ22 = π/4. We note that we used the zero phase
for loading atoms to the first excited band (symmetric solu-
tion) since the φ11 = φ12 = φ21 = φ22 	= 0 lowers the fidelity
for loading. For detailed discussions on the effects of the
parabolic trap, see our previous paper [24].

APPENDIX B: LOADING PROCESS
WITH THE NORMAL BAND

In this section, we briefly discuss a selection rule of the
loading process with the normal band (s1 = 10, s2 = 5). Here,
we numerically examine the loading process to the first ex-
cited (even to odd) and second excited (even to even) band
with g = 8.

In the case of normal dispersion, at q = 0, the first excited
band solution is antisymmetric, and the second excited band is
symmetric. Therefore, in the linear limit, the loading process
with the relative phases φ11 = φ21 = φ12 = φ22 = 0 can load
atoms to the second excited band. Figure 13 shows the time
evolution immediately after the loading process. Both of the
processes load atoms to around |p| = 2 in momentum space
[Figs. 13(c) and 13(d)]. In position space, contrary to the
case of the inverted band, the loading to the antisymmetric
solutions produces the solitonic state. We also numerically
confirmed that the trend is unchanged in the monochromatic
lattice limit (s2 = 0, normal band). The results for s1 = 10,
s2 = 0 are not shown since it is similar to the case of s1 = 10,
s2 = 5. In this Appendix, we just checked the validity of
the pulse-sequence procedure. Therefore, further research is
needed on the properties of solitons in the normal band, such
as dynamical instabilities.

FIG. 14. (a) Band structure around first and second excited
bands. Purple dashed, green dash-dotted, light blue short dashed,
and orange solid lines correspond to glat = 0, 0.19, 0.36, and 0.49.
The interaction term gradually modifies the band structure, and the
loop appears at a point a little short of glat = 0.4. (b) The first four
Bloch coefficients for glat = 0.49. The coefficients at the crossing
point (referred to as “c-lower” and “c-upper”) are a superposition of
an even and odd symmetry solution. The solution at the top of the
loop has even symmetry.

APPENDIX C: LOOP STRUCTURE IN BICHROMATIC OL

This Appendix considers the loop formation in the band
structure with the nonlinear bichromatic OL. Here we use
the lattice height s1 = 10, s2 = 8, the same as in the main
discussion.

Figure 14(a) shows the band structure around the first and
second excited bands with s1 = 10, s2 = 8 for four values of
glat . As a precursor to the emergence of the loop, the derivative
of the band dispersion dμ(q)

dq becomes discontinuous at q = 0,
if glat = 0.36. When glat is greater than 0.4, the solution of
the first excitation band at q = 0 is split into three parts: two
degenerate solutions and a loop top solution. Then the loop
appears at q = 0 as seen in Fig. 1(b).

Figure 14(b) shows the first four NBW coefficients
CNB(n, q, K ) with glat = 0.49. The solution at the ground
band has the same symmetry as in the linear case [see
Fig. 1(d)]. Two additional solutions at the crossing point
consist of a superposition of odd and even symmetric so-
lutions. At the loop, the solution reflects the symmetry of
the linear solution, which has a large overlap with the lin-
ear one. We numerically checked that this trend remains
unchanged up to glat = 1 [see Fig. 1(a)]. This result sug-
gests that it is possible to load atoms onto the loop top
by the pulse-sequence method; however, it is necessary
to discuss how the degenerate solutions affect the loading
process.
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