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We study the circular shaking of a two-dimensional optical lattice, which is essentially a (2 + 1)-dimensional
space-time lattice exhibiting periodicities in both spatial and temporal dimensions. The near-resonant optical
shaking considered here dynamically couples the low-lying s band and the first excited p bands by transferring
a photon of shaking frequency. The intertwined space-time symmetries are further uncovered to elucidate the
degeneracy in the spectrum solved with the generalized Bloch-Floquet theorem. Setting the chirality of circular
shaking explicitly breaks time-reversal symmetry and lifts the degeneracy of p± = px ± ipy orbitals, leading to
the local circulation of orbital magnetism, i.e., the imbalanced occupation in p± orbitals. Moreover, the dynamics
of Berry connection is revealed by the time evolution of the Berry curvature and the polarization, which have
physical observable effects in experiments. Interestingly, the dynamics is found characterized by a universal
phase shift, governed by the time screw rotational symmetry involving a fractional translation of time. These
findings suggest that the present lattice-shaking scheme provides a versatile platform for the investigation of the
orbital physics and the symmetry-protected dynamics.
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I. INTRODUCTION

Floquet driving provides a promising recipe to realize a
periodic structure in the extra dimension of time, generalizing
the conventional concept of lattice that is spatially periodic.
The Floquet shaken optical lattice [1], which is essentially a
space-time lattice with periodic structures in both spatial and
temporal dimensions, has been the recent focus of theoretical
[2–4] and experimental [5–7] research for the purpose of
synthetic gauge fields [8–10]. From the symmetry perspective,
the Berry curvature of a static lattice, which provides indis-
pensable information to characterize the topology of Bloch
bands, vanishes strictly across the Brillouin zone if the system
preserves both space inversion and time-reversal symmetries.
However, the Floquet driving generally entwines the space
and time dimensions and can break these symmetries, thereby
losing the symmetry constraint on the Berry curvature and
enriching the topology. For instance, a recent experiment at
Munich probed the Berry curvature by measuring the Hall
deflection in a Floquet driven honeycomb lattice and iden-
tified various types of topological phases [7]. In particular,
the anomalous Floquet topological phase they realized has
no static counterpart and is characterized by the topology
of Bloch-Floquet bands, reflecting the intertwined space-time
nature [11–13]. Besides the success of topology, the orbital
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degree of freedom is also a recent research focus in the
Floquet driving. Experimentally, the lattice-shaking scheme
with the near-resonant shaking dynamically activates the p or-
bital, which is originally separated from the low-lying s orbital
in the static lattice [14–19]. The recent experimental advance
leads to a rich variety of interesting phenomena. For instance,
a double-well dispersion from the reconstructed band struc-
ture through the shaking of one-dimensional optical lattice
promotes the quantum simulation of ferromagnetism [15],
roton-maxon excitations in Bose-Einstein condensates [16],
and the quantum critical dynamics [17,18]. Later, the shak-
ing scheme is extended to a two-dimensional optical lattice,
generalizing the previous experiments in one dimension [19].
Theoretically, a quantum phase transition in one-dimensional
shaken lattices is predicted to exhibit a Z2 superfluid phase
owing to the double-well structure [20]. While the general-
ization to two-dimensional shaken lattices is nontrivial, the
p-orbital angular momentum is quenched in one dimension
but is revival in two dimensions. The early studies on static
interacting systems have shown that the orbital angular mo-
mentum (OAM) arises from the spontaneous time-reversal
symmetry breaking and renders a nonvanishing Berry curva-
ture, which is the key attribute of emerging exotic quantum
states [21–26]. For two-dimensional shaken lattices under the
near-resonant condition, the theoretical understanding starting
from symmetry aspects, however, remains open due to the
activation of p orbitals.

Here we study the (2 + 1)-dimensional space-time lattice
that is synthesized by circularly shaking a two-dimensional
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optical lattice with the quasifrequency spectrum being solved
with the generalized Bloch-Floquet theorem. Beyond the
primitive space and time translational symmetries, the inter-
twined space-time symmetry, which cannot be decomposed
as a direct product of spatial and temporal symmetries, is un-
covered to further reveal the symmetry-protected degeneracy
in the quasifrequency spectrum. We also show that the time-
reversal symmetry breaking, caused by the chirality of circular
shaking, lifts the degeneracy between the dynamical acti-
vated p± = px ± ipy orbitals, resulting in the local circulation
of OAM. Moreover, both Berry curvature and polarization,
which can be directly derived from the Berry connection,
are inherently dynamical due to the circular shaking. The
dynamics is further studied by numerically evaluating the time
evolution of the Berry curvature and the polarization. Finally,
the frequency-domain analysis reveals that the dynamics is
characterized by a universal phase shift, originating from the
intertwined space-time symmetry.

The rest of paper is organized as follows. In Sec. II, we
solve the Bloch-Floquet spectrum of the (2 + 1)-dimensional
space-time lattice. The intertwined space-time symmetry is
discussed in Sec. III by revealing the symmetry-protected
degeneracy in the Bloch-Floquet spectrum. We also discuss
the orbital magnetism and the dynamical Berry connection
in Secs. IV and V, respectively. Finally, we summarize our
results and discuss the possible generalization in Sec. VI.

II. BLOCH-FLOQUET SPECTRUM

We start with the following (2 + 1)-dimensional optical
potential

V (r, t ) = −V {cos [qx − θx(t )] + cos [qy − θy(t )]},
{θx(t ), θy(t )} = θs{cos [ωt], sin [ωt]}, q = 2kL (1)

with kL being the wave vector of laser beams. It describes
that a two-dimensional square optical lattice with lattice
depth V and lattice spacing d = π/kL is circularly shaken
with amplitude θs and frequency ω [19]. Without loss of
generality, we focus on the shaking with right circular po-
larization θ = (θx, θy) in the (2 + 1)-dimensional space-time
coordinate. Different chiralities of shaking polarizations are
simply connected by a space mirror operation. The optical
potential V (r, t ) in Eq. (1) is invariant under discrete trans-
lations with integer multiples of space and time primitive
vectors {dx̂, dŷ, T t̂} where T = 2π/ω is temporal periodic-
ity. The time-dependent Schrödinger equation ih̄∂tψ (r, t ) =
Ĥ(r, t )ψ (r, t ) with Ĥ(r, t ) = p̂2/2m + V (r, t ) can be solved
by using the generalized Bloch-Floquet theorem with its μth
eigenstate ψμk(r, t ) = exp[i(k · r − εμkt )]uμk(r, t ) labeled by
quasimomentum k and quasifrequency εμk. The Bloch-
Floquet orbital wave function inherits the periodicities of
space-time optical potential V (r, t ) and takes the form

uμk(r, t ) =
∑
G�

exp [i(G · r − �t )]uG�
μk (2)

with G and � being the reciprocal space and time vectors, re-
spectively. Following the Floquet theory, the time-dependent
Schrödinger equation is then converted into an eigenvalue

FIG. 1. (a) Band structure along high-symmetry lines in the first
Brillouin zone. Red dashed lines denote the lowest three Bloch bands
of the static potential V0(r) in Eq. (5). Solid lines are the Bloch-
Floquet bands of the shaking optical potential in Eq. (1). Black and
blue lines trace the original and shifted Bloch-Floquet bands due to
the shaking, respectively. The first Floquet Brillouin zone −ω/2 <

h̄ε � ω/2 is indicated by the yellow shaded region. (b) Spatial dis-
tribution of Wannier-orbital wave function for the lowest three Bloch
bands. The sign + (−) of wave functions is indicated by the red
(blue) color. (c) Band structures from plane-wave expansion (blue
solid lines) and Wannier-orbital interpolation (open red circles). Blue
dashed lines are shifted Bloch bands from plane-wave expansion
for comparison. The parameters are {V, ω, θs} = {4ER, 5.4ER, 0.1},
where the recoil energy is defined as ER = h̄2k2

L/2m. The higher
orbital bands are not shown since their coupling to the s orbital band
is negligible for weak shaking.

problem ∑
G′�′

K̂G�,G′�′uG′�′
μk = h̄εμkuG�

μk (3)

with

K̂G�,G′�′ =
[

(h̄k + h̄G)2

2m
− h̄�

]
δG�,G′�′ + VG−G′�−�′ (4)

being the Floquet operator K̂ (r, t ) = Ĥ(r, t ) − ih̄∂t in the
Fourier-transformed bases [27,28]. Here VG� are the Fourier
component of the space-time potential V (r, t ). Before pro-
ceeding, it is instructive to discuss the optical potential in
temporal series V (r, t ) = ∑

n Vn(r) exp[−inωt] with

Vn(r) = −Vn ×
{−in+1 sin (qx) + i sin (qy), n odd

in cos (qx) + cos (qy), n even
(5)

where Vn = V Jn(θs) is the effective potential and Jn(x) is the
Bessel function of the first kind. The zeroth-order optical
potential Vn=0(r) gives rise to a static square optical poten-
tial with effective potential V0 = V J0(θs). The corresponding
Bloch band structure is shown in Fig. 1(a). For the lowest three
bands, Wannier orbitals are further constructed to reveal the
band characters

wμR(r) =
∑

k

exp [ik · R]ψ̄μk(r), (6)

where R specifies the center of Wannier orbitals and ψ̄μk(r) is
the μth Bloch state of the static potential Vn=0(r) in Eq. (5)
in the Wannier gauge. Technical details are presented in
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FIG. 2. Trajectory of shaking phase θ(t ) = [θx (t ), θy(t )] in Eq. (1) to illustrate (a) intertwined space-time operation Ix = 
{C2x|0}
composed of a space-time rotation of π about x axis followed by a time reversal 
, and (b) time screw rotation S = {C4t |(0, 0, T/4)} composed
of a spatial rotation of π/2 about the temporal axis t followed by a time translation T/4. (c) Landscape of the quasifrequency ε for the s
Bloch-Floquet band. Four degenerate band minima (valleys), indicated by the open circles with different colors, illustrate the
symmetry-protected degeneracy between the Bloch-Floquet states at different quasimomenta. The parameters are chosen as {V, ω, θs} =
{4ER, 5.4ER, 0.1}.

Appendix A. The lowest and first excited two bands are char-
acterized by s and (px, py) orbitals, respectively. Their spatial
distributions of wave functions are depicted in Fig. 1(b).
Upon shaking, the Bloch bands are repeatedly shifted by
shaking frequency ω and are hybridized by the dynamical
optical potential Vn �=0(r). As sketched in Fig. 1(a), we fo-
cus on the blue detuned case ω � �� such that the shaking
frequency ω is slightly higher than the direct band gap ��

between s and (px, py) bands at � point. In the weak shak-
ing limit, the effective potential of high-order Vn is severely
suppressed by the asymptotic behavior of Bessel function
J|n|(x) ≈ (x/2)|n|/�(|n| + 1), where �(x) is the gamma func-
tion. In practice, the optical potential Vn(r) in our numerical
simulations are truncated up to |n| = 1. As shown in Fig. 1(c),
the s and (px, py) bands are hybridized by the dynamical opti-
cal potential Vn=±1(r), accompanied by absorbing or emitting
a photon of shaking frequency. The Bloch-Floquet band struc-
tures calculated by plane-wave expansion and Wannier-orbital
interpolation show excellent agreement with each other.

III. INTERTWINED SPACE-TIME SYMMETRY

Having established the Bloch-Floquet band structure, we
next show that the present (2 + 1)-dimensional system pos-
sesses a D4 space-time symmetry. Besides the primitive
spatial and temporal translational symmetry discussed above,
the intertwined space-time symmetries are essential to un-
derstand the degeneracy of the quasifrequency spectrum at
different quasimomenta connected by the symmetry opera-
tion. To facilitate discussion, we adopt a (2 + 1)-dimensional
space-time vector (r, t ) to define a space-time operation

{g|τ}(r, t ) = g(r, t ) + τ, (7)

where g and τ denote point group operations and transla-
tional vectors, respectively. The D4 space-time group has two
group generators in total. As depicted in Fig. 2(a), the first
generator is

Ix = 
{C2x|0}, (8)

which is a space-time rotation of π about x axis that sends
the space-time vector (r, t ) to (x,−y,−t ), followed by a time
reversal 
. For spinless bosons, the time-reversal operator is

mathematically described by complex conjugate 
 = K. It
is worth remarking that the symmetry discussed here refers
to the space-time transformation Û (r, t ) under which the
Floquet operator K̂ = Ĥ − ih̄∂t is left invariant. As depicted
in Fig. 2(b), the second generator of the D4 space-time group
is the time screw rotation

S = {C4t |(0, 0, T/4)}. (9)

It describes a spatial rotation of π/2 about the temporal
axis t , which sends the space-time vector (r, t ) to (−y, x, t ),
followed by a fractional primitive translation of time T/4.
These two symmetries have crucial implications on the Bloch-
Floquet band structure. To illustrate, we focus on the s
Bloch-Floquet band that is adiabatically connected to the s
band in the nonshaking limit. The symmetry prediction is,
however, not limited to this band. As shown in Fig. 2(c),
the intertwined space-time symmetry Ix ensures an identical
spectrum at quasimomenta (kx, ky) and (−kx, ky) by construct-
ing an explicit connection between their Bloch-Floquet orbital
wave functions. Similarly, the time screw rotational symmetry
S connects the states at (kx, ky) and (−ky, kx ). Detailed proofs
are provided in Appendix B. Particular attention should be
paid to four degenerated band minima (dubbed valleys), which
are fully connected by the space-time symmetries. These val-
leys arise from the dynamical hybridization of s and (px, py)
orbitals due to lattice shaking, and are generally incom-
mensurate to the optical lattice. The single-particle ground
state, constructed by the linear superposition of the wave
functions at these valleys, has an infinite degeneracy. This
single-particle degeneracy can be lifted by many-body inter-
actions through the spontaneous symmetry breaking. In the
weakly interacting limit, the interacting energy is further esti-
mated within the Gross-Pitaevskii approximation [29,30]. The
ground state is found to be valley polarized. This is different
from the commensurate case that the intervalley exchange
interaction promoted by the umklapp scattering process sup-
ports the valley coherent Bose-Einstein condensation [31,32].

IV. ORBITAL MAGNETISM

The chirality of shaking polarization in Eq. (1) explic-
itly breaks the time-reversal symmetry, which leads to the
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generation of orbital magnetism, i.e., the imbalanced oc-
cupation in p± = px ± ipy orbitals. To gain an intuitive
understanding, we take a close inspection of the optical po-
tential Eq. (5) in temporal series. In polar coordinates (r, θ ),
the leading order expanded in terms of partial waves takes the
form

Vn=±1(r) = −2V±1

∑
 odd

�
±J(qr) exp [iθ ] (10)

with the symmetry indicator �
± = ±(i−1 ± 1)/2. The transi-

tion probabilities between the local s and p± Wannier orbitals
are exclusively determined by the potentials with partial
waves  = ±1 according to the selection rule of OAM [33].
Furthermore, the time-reversal symmetry breaking induced by
the circular shaking is indicated by �

±. Specifically, the tran-
sition from the s orbital to the p+ (p−) orbital by absorbing
a photon is permitted �+1

+ = 1 (forbidden �−1
+ = 0). In con-

trast, the transition from the p+ (p−) orbital to the s orbital by
emitting a photon is forbidden �+1

− = 0 (permitted �−1
− = 1).

Consequently, the degeneracy lifting between the p± Wannier
orbitals leads the local circulation of OAM around the lattice
sites in the bulk, which is extensively studied in electronic
solids in the context of orbital magnetism [34–39]. Here, we
extend the microscopic derivation on the local circulation of
OAM by explicitly calculating the contribution of a single
Bloch-Floquet state, which is crucial for the valley-polarized
Bose-Einstein condensation. Importantly, the OAM studied
here is inherently dynamical due to the lattice shaking, which
sets our study apart from the previous studies on static lattices.
The contribution of s-band Bloch-Floquet state ψsk(r, t ) in
frequency domain is mathematically described by

L(k,�) = 1

Nuc

∑
R

1

T

∫ T

0
dt〈ψsk|L̂z

R|ψsk〉 exp [i�t], (11)

where L̂R = (r − R) × p̂ is the OAM operator around the
static lattice sites R and Nuc is the number of unit cells.
A lengthy but straightforward algebra leads to the explicit
expression

L (k,�′ − �) = −ih̄
∑

G �=G′

∑
��′

uG�∗
sk uG′�′

sk

×
{

exp

[
−i(G′

x − Gx )
d

2

]
ky + G′

y

G′
x − Gx

δGy,G′
y
− x ↔ y

}
.

Figures 3(a) and 3(b) show the numerical evaluation of
L(k,�) at four valleys. The static OAM dominates while the
high-frequency component at � = ±2ω is vanishingly small.
The phase of dynamical OAM at neighboring valleys differs
by π/2 and π for � = ±ω and ±2ω, respectively. This phase
shift between neighboring valleys is dictated by the fractional
translation of time T/4 in the time screw rotation symmetry
S and thus serves as a signature of the intertwined space-
time symmetry. The static OAM in the first Brillouin zone
shown Fig. 3(c) reaches its maximum at the � point where
the coupling between s and p+ orbitals is most significant.
Remarkably, the emergent local circulation of OAM under the
near-resonant condition distinguishes our study from the early
study, in which an additional phase of intersite tunneling is
imprinted by Floquet driving [5].

FIG. 3. (a) Amplitude and (b) phase of the complex-valued local
circulation of orbital angular momentum L(k, �) in Eq. (11) at four
valleys with the representation of bar colors indicated in Fig. 2(c).
(c) Static orbital angular momentum L(k,� = 0) in the first
Brillouin zone for the s Bloch-Floquet band. The parameters in
numerical calculations are {V, ω, θs} = {4ER, 5.4ER, 0.1}.

V. DYNAMICAL BERRY CONNECTION

The Berry phase of the s Bloch-Floquet band, which is
inherently dynamical due to the circular shaking, can be ex-
pressed as an integral of the Berry connection

Ak(t ) = i〈usk(r, t )|∇k|usk(r, t )〉 (12)

over a closed path. Mathematically, the Berry curvature de-
scribing the local Berry phase can be defined in terms of the
Berry connection via the Stokes theorem

B(k, t ) = ∇k × Ak(t ), (13)

which is a gauge invariant quantity with physical significance
[40,41]. The numerical evaluation of Berry curvature is based
on an efficient method in the discretized Brillouin zone [42].
As depicted in Fig. 4(a), the time evolution of Berry curvature
B(k, t ) at four valleys shows an oscillating behavior. For the
valley-polarized Bose-Einstein condensation, the dynamical
Berry curvature can be in principal detected by measuring
the transverse shift of anomalous velocity F × B(k, t ) in the
presence of an external force F , which can be engineered by a
slowly varying optical potential [43–45]. This transverse shift
resembles that of charged particles under ac magnetic fields.
The dynamics is quantitatively characterized by introducing
the Fourier-transformed Berry curvature

B(k,�) = 1

T

∫ T

0
dt B(k, t ) exp [i�t] (14)

in the frequency domain. As shown in Fig. 4(b), the dynamical
Berry curvature is dominated at the frequency � = ±ω with
a vanished static component, which is in stark contrast with
the dynamics of the local circulation of OAM. The phase shift
of Berry curvature between neighboring valleys in Fig. 4(c)
follows the prediction of intertwined space-time symmetry
discussed above. Figure 4(d) shows that the Berry curvature
in frequency domain grows monotonically as the shaking
amplitude increases. Since the Berry curvature is purely
dynamical and generally weak, the experimental detection
through measuring the transverse shift of the micromotion
within a driving period may be challenging. Alternatively,
the dynamics of Berry connection can be inferred from the
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FIG. 4. (a) Time evolution of Berry curvature B(k, t ) in Eq. (13),
(b) amplitude and (c) phase of the complex-valued Berry curvature
B(k, �) in Eq. (14) at four valleys with the representation of colors
indicated in Fig. 2(c). (e) Time evolution of dynamical polarization
P (t ) in Eq. (15), (f) amplitude and (g) phase of the complex-valued
polarization P (�) in Eq. (16) for the s Bloch-Floquet band. The
Berry curvature |B| among different valleys and the polarization |P |
along different directions in (b) and (f) share an identical amplitude
at the same frequency, respectively. The frequency-resolved identical
amplitudes of (d) |B| and (h) |P | as a function of shaking amplitude
θs. The parameters are taken as {V, ω, θs} = {4ER, 5.4ER, 0.1}. The
shaking amplitude θs in (d) and (h) is varied to study its dependence.

dynamical polarization

P (t ) = 1

2π

∫
BZ

dkAk(t ), (15)

which can be derived from the dynamical Berry connection
through the Wannier-Bloch duality between real and mo-
mentum space [46,47]. The dynamical polarization Pμ(t )
corresponds to the averaged Berry phase accumulated along
the closed path in the direction kμ, which is also propor-
tional to the shift of the instantaneous Wannier-orbital center
away from the neighboring lattice site in direction μ [48].
Figure 4(e) shows the numerical results on the time evolution
of the dynamical polarization, which is locked in phase with
the circular driving. Similarly, the frequency-domain analysis
applies to the dynamical polarization

P (�) = 1

T

∫ T

0
dt P (t ) exp [i�t]. (16)

Figures 4(f) and 4(g) show that the dynamical polarization
oscillates at frequency � = ±ω with a universal π/2 phase
shift between Px(±ω) and Py(±ω). As shown in Fig. 4(h), the

shaking amplitude generally enhances the frequency-resolved
polarization as expected. Experimentally, the dynamical po-
larization can be determined by measuring the center-of-mass
position of ultracold atoms through in situ imaging. For
instance, such a measurement was done in a dynamically
controlled optical superlattice [49,50].

VI. SUMMARY AND OUTLOOK

To summarize, we have studied the intertwined space-time
symmetries as well as their implication on dynamics for the
circularly shaken optical lattice. In particular, the time screw
rotation symmetry studied here can be easily generalized to
the n-fold spatial rotational axis in the presence of a circu-
larly polarized ac field. The symmetry-protected phase shift
is generally applicable as a universal feature of the dynami-
cal response for these systems. Moreover, the orbital angular
momentum is shown as a direct consequence of time-reversal
symmetry breaking induced by the circular shaking. Finally,
the dynamical nature of Berry connection is revealed by
studying the time evolution of the Berry curvature and the
polarization. Our study mainly focusing on the symmetry
aspect serves as a starting point for future studies, e.g., out
of equilibrium with dissipation.
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APPENDIX A: WANNIER ORBITAL CONSTRUCTION

The approach of Wannier orbitals for the solid-state ma-
terials has relied on the well-established Marzari-Vanderbilt
scheme [51–53], and is numerically implemented into a nu-
merical package [54]. The Wannier states are determined by
numerically minimizing the spatial spread functional to find
the optimal unitary transformation into the Wannier basis.
Here, we adopt an alternative numerical method based on
Refs. [55,56] to calculate Wannier states for the static optical
Vn=0(r) in Eq. (5), reducing the problem to the diagonalization
of a matrix. This intrinsically avoids the possible problem of
trapping in local minima during the numerical minimization
and is numerically highly efficient.

Following Refs. [55,56], the Wannier orbitals are the eigen-
states of Resta’s position operator R̂ = exp[−i�k · r], which
satisfies the periodic boundary condition. In the Bloch band
basis, the matrix elements of the operator R̂ can be expressed
as the real-space integrals over the entire spatial region

Rμμ′

kk′ = 1

LxLy

∫
dr ψ∗

μk(r)R̂ψμ′k′ (r), (A1)

where ψμk(r) are the Bloch states of the static potential. The
real-space integration can be calculated analytically. Then, the
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explicit expression reads

Rμμ′

kk′ =
∑
GG′

δk+G+�k,k′+G′uG∗
μk uG′

μ′k′ , (A2)

where uG
μk are the Bloch orbitals of the static potential. More-

over, the separability of the static optical potential

Vn=0(r) = −V0[cos (qx) + cos (qy)] (A3)

ensures the commutation relation of the position operators
[X̂ , Ŷ ] = 0. Therefore, the two-dimensional Wannier orbitals
can be obtained simultaneously by successively diagonalizing
the corresponding matrices X and Y in Eq. (A2).

APPENDIX B: INTERTWINED SPACE-TIME SYMMETRY

In the following, we provide the detailed proof of the
implication of the intertwined space-time symmetry. With
the generalized Bloch-Floquet theorem, the time-dependent
Schrödinger equation is recast to the following equation:

K̂ (r, t ) exp [ik · r]uμk(r, t ) = h̄εμk exp [ik · r]uμk(r, t ) (B1)

with the Floquet operator

K̂ (r, t ) = Ĥ(r, t ) − ih̄∂t . (B2)

First, we shall focus on the time screw rotation

S (x, y, t ) =
(
−y, x, t + T

4

)
. (B3)

It is easy to check that the Floquet operator is invariant under
the time screw rotation S†K(r, t )S = K(r, t ), which ensures

that both S exp[ik · r]uμk(r, t ) and exp[ik · r]uμk(r, t ) are the
eigenstates of Eq. (B1) and share an identical quasifrequency.
On the other hand, the simple relation

S exp [ik · r]uμk(r, t ) = exp [i(−ky, kx ) · r]Suμk(r, t ) (B4)

indicates that Suμk(r, t ) is the eigenstate of Eq. (B1)
with quasimomentum (−ky, kx ). Therefore, the degeneracy
between (−ky, kx ) and (kx, ky) is established with their eigen-
states obeying

u
(−Gy,Gx )�
μ(−ky,kx ) ∝ uG�

μk exp
[

1
4 i�T

]
. (B5)

It is worth remarking that the phase shift discussed in Secs. IV
and V is dictated by the twist phase exp[i�T/4] in Eq. (B5).

Second, we would like to briefly discuss the intertwined
space-time symmetry

Ix = 
{C2x|0}. (B6)

A similar analysis shows that the states Ixuμk(r, t ) and
uμk(r, t ) share an identical quasifrequency with the following
relation on their Fourier components:

u
(−Gy,Gx )�
μ(−kx,ky ) ∝ uG�∗

μk (B7)

between (−kx, ky) and (kx, ky) in momentum space.
It is worth remarking that these results have their origin

in symmetry and are independent on detailed Wannier-orbital
projections.
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