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Tractor atom interferometry
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We propose a tractor atom interferometer (TAI) based on three-dimensional (3D) confinement and transport
of split atomic wave-function components in potential wells that follow programmed paths. The paths are
programmed to split and recombine atomic wave functions at well-defined space-time points, guaranteeing
closure of the interferometer. Uninterrupted 3D confinement of the interfering wave-function components in
the tractor wells eliminates coherence loss due to wave-packet dispersion. Using Crank-Nicolson simulation
of the time-dependent Schrödinger equation, we compute the quantum evolution of scalar and spinor wave
functions in several TAI sample scenarios. The interferometric phases extracted from the wave functions allow
us to quantify gravimeter sensitivity for the TAI scenarios studied. We show that spinor TAI supports matter-wave
beam splitters that are more robust against nonadiabatic effects than their scalar-TAI counterparts. We confirm
the validity of semiclassical path-integral phases taken along the programmed paths of the TAI. Aspects for
future experimental realizations of TAI are discussed.

DOI: 10.1103/PhysRevA.104.013307

I. INTRODUCTION

Since their first demonstrations [1–4], atom interferometers
(AIs) [5,6] have become a powerful tool with a broad range of
applications in tests of fundamental physics [7–11], precision
measurements [12–17], and applied sciences [18–20]. A chal-
lenge in AI design is to achieve a high degree of sensitivity
with respect to the measured quantity (e.g., an acceleration)
while minimizing geometrical footprint of the apparatus and
maximizing readout bandwidth to allow for practical applica-
tions. Previous work on AI includes free-space [21–23] and
point-source [24,25] AI experiments, as well as guided-wave
AI experiments [26,27] and proposals [28,29]. Free-space
and point-source AIs typically employ atomic fountains or
dropped atom clouds. The point-source method supports effi-
cient readout and data reduction [30], enables high bandwidth,
and affords efficiency in the partial-fringe regime. Atomic
fountains typically employed in free-space AI maximize in-
terferometric time and hence increase sensitivity [21–23] but
require large experimental setups. Guided-wave AIs offer
compactness and are often used as Sagnac rotation sensors
but are susceptible to noise in the guiding potentials. In both
free-space and guided-wave AI, wave-packet dynamics along
unconfined degrees of freedom can cause wave-packet dis-
persion and failure to close, i.e., the split wave packets may
fail to recombine in space-time. Coherent recombination of
split atomic wave functions upon their preparation and time
evolution remains challenging in recent AI studies [31–34].

Here we propose and analyze an AI method in which there
are no unconfined degrees of freedom of the center-of-mass
(COM) motion. The method relies on confining, splitting,
transporting, and recombining atomic COM quantum states
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in three-dimensional (3D) quantum wells that move along
user-programmed paths. We refer to this approach as “tractor
atom interferometer” (TAI). Proper tractor path control en-
sures closure of the interferometer, and tight 3D confinement
at all times during the AI loop suppresses coherence loss due
to wave-packet dispersion.

II. QUANTUM MODEL

The quantum state of a single atom in the COM and spin
product state space is

|ψ〉 =
imax∑
i=1

|ψi(t )〉 ⊗ |i〉, (1)

with COM components |ψi(t )〉 in a number of spin states imax.
For simplicity, we assume that all elements of the spin-state
basis {|i〉} are position and time independent, and that the x
and y degrees of freedom of the COM are frozen out. Denoting
ψi(z, t ) = 〈z|ψi(t )〉, the time-dependent Schrödinger equation
becomes

ih̄
∂

∂t
ψi(z, t ) = −

[
h̄2

2m

∂2

∂z2
+ Ui(z, t )

]
ψi(z, t )

+
imax∑
j=1

h̄�i j (z, t )

2
ψ j (z, t ), (2)

with i = 1, ..., imax, particle mass m, COM potentials Ui(z, t )
that may depend on spin, and couplings �i j (z, t ) between the
spin states.

In our examples below, we consider a scalar case, in which
imax = 1, and a spinor case with imax = 2. In the scalar case,
the tractor traps of TAI are all contained in a single poten-
tial U1(z, t ) for a scalar wave function ψ1(z, t ) (and there
are no couplings �i j). In the spinor case, the spin space
can be viewed as that of a spin-1/2 particle with spin states
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FIG. 1. Tractor control functions, ±z0(t ) (solid lines), and tractor paths, zI/II (t ) (dashed lines), for a scalar TAI. The gray-shaded region
shows the AI area. The insets (A)–(E) show how the trapping potential U1(z, t ) and the scalar wave function evolve in time. Note the different
z ranges in the insets. The final state is a superposition of the ground (|ψν0〉) and first-excited (|ψν1〉) COM states in the recombined well, as
seen in inset (E), with the population ratio revealing the interferometric phase �φQ.

{| ↑〉, | ↓〉}. The spin states could, for instance, represent two
magnetic sublevels of the F = 1 and F = 2 hyperfine ground
states of 87Rb. In spinor TAI, the spin states have distinct
potentials, U↑(z, t ) and U↓(z, t ), with spin-specific potential
wells, and the spinor wave-function components are coupled
via �↓↑ = �∗

↑↓.
We numerically solve Eq. (2) using the Crank-Nicolson

(CN) method [35]. We use 87Rb atoms in wells ∼ 20 μm
wide and ∼ h × 1 MHz deep. We employ a time-step size of
�t = 10 ns and a spatial grid step size of �z = 10 nm. For
the spinor simulations, we have generalized our CN algorithm
to cover problems with imax > 1.

III. SCALAR TAI

In our scalar TAI implementation, the scalar potential
U1(z, t ) is the sum of two identically shaped Gaussian po-
tential wells that are both h × 500 kHz deep and have a
full-width-at-half-depth (FWHD) of 23.5 μm. The two Gaus-
sians are centered at positions that are chosen to be symmetric
in z and are given by programmed tractor control functions
±z0(t ) (red solid lines in Fig. 1). Initially, they are colocated
at z0 = 0 μm, forming a single trap that is h × 1 MHz deep.
A 87Rb atom is initialized in its COM ground state, |ψν0〉,
of the h × 1 MHz-deep well [inset (A) in Fig. 1]. The func-
tion z0(t ) is then gradually ramped up in order to split the
single initial well into a pair of symmetric wells, causing
the wave function to coherently split into two components
[inset (B) in Fig. 1]. For |z0| � 10 μm, the split wells are
about h × 500 kHz deep. The minima in U1(z, t ) follow the
paths zI (t ) and zII (t ) shown by dashed blue lines in Fig. 1,
with zI (t ) = −zII (t ). The paths zI/II (t ) are found by solv-
ing (∂/∂z)U1(z, t ) = 0. After the splitting, tunneling-induced
coupling of the wave-function components ceases, and the

components adiabatically follow the separated paths of the
potential minima. In our example, the wave-function compo-
nents stay separated for about 1 s, with the separation held
constant at a maximum of 2z0 = 100 μm for a duration of
0.2 s [inset (C) in Fig. 1]. The wells and wave-function com-
ponents in them are recombined in a fashion that mirrors the
separation [insets (D) and (E)]. In order to provide a sufficient
degree of adiabaticity, the ramp speed of the tractor control
functions, |ż0(t )|, is reduced near the times when the wave
function splits and recombines. The total duration of the cycle
is 2.2 s, which is in line with the typical operation of modern
AIs [16].

In scalar TAI, the tractor paths, zI/II (t ), differ significantly
from the tractor control functions, ±z0(t ), during the well sep-
aration and recombination phases, while they are essentially
the same when the minima are separated by more than the
width of the wells (compare red-solid and blue-dashed lines
in Fig. 1). The AI area, visualized in Fig. 1 by a gray shading,
is the area enclosed by the paths zI (t ) and zII (t ).

AI closure is guaranteed by virtue of proper tractor control.
This is evident in the simulated wave-function plots included
in Fig. 1. The quantum AI phase, �φQ, accumulates in the
phases of the complex coefficients of the COM ground states
in the split wells at positive and negative z, denoted |ψν0,±〉
[inset (C) of Fig. 1]. Upon recombination of the pair of wells
into a single well [insets (D) and (E) of Fig. 1], the atomic
state becomes mapped into a coherent superposition of the
lowest and first-excited quantum states of the combined well,
|ψ〉 = cν0|ψν0〉 + cν1|ψν1〉 [inset (E) of Fig. 1]. The observ-
able probabilities, |cν0|2 and |cν1|2, yield the TAI quantum
phase, �φQ, via the relation

|cν1|2
|cν0|2 + |cν1|2 = sin2

(
�φQ

2

)
. (3)
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FIG. 2. Simulated measurement of sin2( �φQ

2 ) vs a small back-
ground acceleration a using TAI with scalar (a) and spinor (b) wave
functions. Squares and dots in (a) and (b) are from wave-function
simulation data, while solid lines are semiclassical path-integral data.
No fitting is performed.

Due to uninterrupted 3D confinement, TAI eliminates
free-particle wave-packet dispersion. There is, however, a pos-
sibility of nonadiabatic transitions into excited COM states
during the wave-function splitting and recombination, which
would reduce the interferometer’s contrast and introduce spu-
rious signals. To show that under conditions such as in Fig. 1
there is no significant coherence loss due to nonperfect closure
or nonadiabatic effects, we have performed wave-function
simulations for 17 values of a small acceleration, a, along the z
direction. The acceleration adds a potential Ug = m a z to the
TAI potential U1(z, t ). We vary a over a range from 0 to 10
mGal (10−4 m/s2). From the wave-function simulations, we
determine sin2(�φQ/2) according to Eq. (3) as a function of a,
and plot the results in Fig. 2(a) (symbols). The visibility of the

expected sinusoidal dependence reaches near unity, providing
evidence for near-perfect closure and absence of coherence
loss due to nonadiabatic COM excitations. The acceleration
sensitivity is discussed in Sec. VI.

IV. SPINOR TAI

The scalar scheme in Sec. III serves well to describe
the TAI concept. At the splitting, the initial COM state is
supposed to evolve into the even-parity superposition of the
ground states in the split wells, (|ψν0,+〉 + |ψν0,−〉)/

√
2, with-

out populating the odd-parity superposition and other excited
COM states. However, under conditions that are less ideal
than in Sec. III, scalar TAI is prone to nonadiabatic excitation
of unwanted COM states at the times when the wells split
and recombine. The splitting and, similarly, the recombination
are fragile because the potential is very soft at the splitting
and recombination times, and nonadiabatic mixing can easily
occur (see Sec. VI).

The fragility of scalar TAI is avoided in our second,
improved method that operates on a two-component spinor
system [imax = 2 in Eqs. (1) and (2)] with a pair of spin-
dependent potentials. The atomic wave function is initially
prepared in the COM ground state |ψν0,↓〉 of a spin-down
tractor potential [inset (A) in Fig. 3]. With initially over-
lapping and identical spin-down and -up tractor potentials,
U↓(z, t = 0) and U↑(z, t = 0), a short π/2 coupling pulse
with Rabi frequency �↓↑ [see Eq. (2)] prepares a coherent su-
perposition (|ψν0,↓〉 + |ψν0,↑〉)/

√
2 of the COM ground states

of the potentials U↓(z, t = 0) and U↑(z, t = 0). The π/2 pulse
can be realized by a microwave or a momentum-transfer-free
optical Raman transition. In the simulated case, the Rabi
frequency �↓↑ is position-independent, has a fixed magni-
tude �↓↑(t ) = 2π × 178 kHz, and is on for a coupling-pulse

FIG. 3. Example for spinor TAI. The tractor control functions, z0,↓(t ) and z0,↑(t ), are identical with the respective paths, zII (t ) and zI (t ).
The interferometric area is shaded in gray. The insets (A), (C), (E) show spin-dependent tractor potentials and spinor wave functions at different
instants of the evolution time. Note the different z ranges in these insets. The Bloch spheres in insets (B) and (D) visualize the ±π/2 splitting
and recombination pulses of spinor TAI. The final-state populations in the spin states reveal the interferometric phase �φQ.
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duration of �tR = 1.4 μs, which is short on the timescale of
the interferometer. The resultant TAI splitting is depicted on
the Bloch sphere in the inset (B) of Fig. 3. After the π/2 pulse,
the spin-dependent potentials and the spinor wave-function
components in them are translated following symmetric
tractor control functions z0,↑(t ) = z0(t ) = −z0,↓(t ). After a
holding time of 0.2 s at a maximal separation of 100 μm [inset
(C) in Fig. 3], the splitting is reversed and the wave-function
components become overlapped again. Closure occurs via an
exit −π/2 pulse [inset (D) in Fig. 3]. In the case of spinor
TAI, the tractor paths and control functions are identical,
zI (t ) = z0,↑(t ) and zII (t ) = z0,↓(t ). The AI area is visualized
by the gray shaded region in Fig. 3.

In the absence of nonadiabatic transitions into excited
COM states in the spin-dependent potentials, the final state is
of the form |ψ〉 = c↓|ψν0,↓〉 + c↑|ψν0,↑〉. The AI phase �φQ

is encoded in the final populations in the two spin states [inset
(E) in Fig. 3] and follows

|c↑|2
|c↓|2 + |c↑|2 = sin2

(
�φQ

2

)
. (4)

In experimental implementations, the |c↓|2 and |c↑|2 can be
measured, for instance, via state-dependent fluorescence to
yield sin2( �φQ

2 ).
Similar to the scalar case in Sec. III, we have performed

wave-function simulations for a set of accelerations a along
the z direction, which add identical gravitational potentials
Ug = m a z to both spin-dependent potentials. From the sim-
ulated spinor wave functions we extract c↑ and c↓, compute
sin2(�φQ/2) according to Eq. (4), and plot the results in
Fig. 2(b) (symbols). The results again provide evidence for
near-perfect closure and absence of coherence loss due to
nonadiabatic COM transitions.

V. COMPARISON OF QUANTUM AND
SEMICLASSICAL PHASES

Using the path-integral formalism, the semiclassical phase
of an AI loop, �φS , in one dimension is [5]

�φS =
∫ tb

ta
[LII (z, ż, t ) − LI (z, ż, t )] dt

h̄
, (5)

where �φ is in rads, LII/I are the Lagrange functions on the
paths zII/I (t ) of the centroids of the split atomic wave-function
components, and ta and tb are the splitting and recombination
times.

A key feature that distinguishes TAI from other AIs is
that the paths zII/I (t ) are predetermined by the system con-
trols [and therefore do not have to be computed prior to
using Eq. (5)]. Simultaneous arrival of the split wave-function
components at the recombination point is achieved by proper
programming of the tractor paths.

The guaranteed closure of TAI in space-time is related
to the fact that the number of generalized Lagrangian co-
ordinates in TAI is zero. Other AIs typically have at least
one generalized coordinate along which the classical motion
is unconstrained and along which quantum wave packets
may disperse. The AI can then, in principle, fail to achieve
closure due to a difference in classical propagation times

along the AI paths between splitting and recombination. A
propagation time difference can be caused by uncontrol-
lable conditions, such as an erratic background acceleration.
In TAI, closure is guaranteed by virtue of uninterrupted
3D control of the interferometric paths and suitable tractor
programming.

In our examples we have considered tractor paths in which
the kinetic energy terms in LII/I are equal, i.e., żII (t ) =
−żI (t ), and we have added a gravitational potential Ug = maz.
In that case, Eq. (5) simplifies to

�φS =
∫ tb

ta
[Ug(zI (t )) − Ug(zII (t ))] dt

h̄
= m aC

h̄
(6)

with a parameter

C =
∫ tb

ta

[zI (t ) − zII (t )] dt (7)

that only depends on the programmed tractor paths zI (t ) and
zII (t ). Note there is no atom dynamics to be solved for. The
zI (t ) and zII (t ) are either identical with the tractor control
functions z0,∗(t ) themselves (spinor case), or they are found
by solving an equation of the type (∂/∂z)U1(z, t ) = 0 (scalar
case).

We compare the semiclassical phases �φS with the quan-
tum phases �φQ over a range of accelerations, a. The �φS (a)
that follow from Eqs. (5)–(7) after utilization of the appro-
priate tractor paths zI (t ) and zII (t ) are shown in Figs. 2(a)
and 2(b) as solid lines. We find in both cases that �φS =
�φQ, with minor discrepancies that are not visible in the
figure. Quantum and semiclassical phases are both offset-
free, i.e., in our case of symmetric controls and for a = 0
it is �φS = �φQ = 0. This indicates that the exact quantum
dynamics does not add an offset splitting and recombination
phase.

VI. SENSITIVITY, COMPUTATION ACCURACY,
AND NONADIABATIC EFFECTS

The scalar and spinor implementations simulated in
Secs. III and IV exhibit similar sensitivities to the accelera-
tion a. The sensitivities are not the same because the cases
happen to have slightly different AI areas (shaded regions in
Figs. 1 and 3). Assuming a phase resolution of 2π/100, the
acceleration sensitivity of the sequences in Figs. 1 and 3 is on
the order of several hundreds of microGals (10−7g), which is
about a factor of 100 short of the level of modern gravimeters
[18]. TAI could reach that level by a ten-fold increase of the
interferometer time, TI = tb − ta (on the order of 1 s in Figs.
1 and 3), and a ten-fold increase of the spatial separation
between the tractor potential wells.

We have checked that a reduction of the grid spacing �z
in the simulation does not noticeably affect the accuracy of
the results, whereas a reduction of the time-step size �t
does improve the agreement of �φS with �φQ. Therefore we
attribute the minor differences between quantum and semi-
classical phases [too small to be seen in Figs. 2(a) and 2(b)]
mostly to the finite step size, �t = 10 ns, in the CN simu-
lation. The step-size parameters chosen in our work reflect
a tradeoff between accuracy of �φQ and simulation time
needed.
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FIG. 4. Nonadiabaticity vs splitting duration T (top axis) and
peak tractor acceleration aS (bottom axis) for a tractor control func-
tion given in the text for scalar (green squares) and spinor TAI (blue
circles). The dashed lines connecting the respective data points are
to guide the eye. It is seen that spinor TAI (blue circles) allows
about a factor of 100 faster splitting than scalar TAI. The insets show
representative wave-function densities after the splitting for a tractor
acceleration in which spinor TAI performs very well while scalar TAI
fails.

It remains to be seen in the future whether quantum and
Lagrangian phases may exhibit offsets of a physical nature.
Such offsets may occur, for instance, if the tractor control
functions z0,∗(t ) were asymmetric, if the tractor-trap paths
zI/II (t ) had accelerations large enough to cause wave-packet
drag in the 3D tractor wells, or if trajectory bundles of the
semiclassical AI traversed through caustics or focal spots that
lead to quantum phase shifts.

We have noted that scalar TAI generally is more suscep-
tible to nonadiabatic COM excitations in the splitters and
recombiners than spinor TAI, necessitating longer splitter- and
recombiner durations with reduced slopes |ż0| near the critical
time points when the single well splits into two and vice
versa (see Fig. 1). This entails a longer overall AI sequence, a
reduced reading bandwidth, and additional susceptibilities to
noise (such as vibrations) during the splitting and recombina-
tion. These shortcomings are naturally avoided in spinor TAI,
where the tractor potentials do not soften at the splitting and
recombination times.

To quantify the nonadiabaticity in both TAI cases, we have
run a series of simulations of splitting sequences with smooth
tractor control functions z0(t ) = 50 μm × sin2 [πt/(2T )] (as
in Fig. 3) for a range of splitter durations T and acceleration
a = 0. The nonadiabaticity is given by 1 − p0(T ), where p0

is the COM ground-state probability after the splitting. In
Fig. 4 we plot 1 − p0(T ) vs T and the peak value, aS =
25 μm (π/T )2, of the splitter acceleration |z̈0| for both TAI
cases. The wave-function densities in the inset visualize the
contrast between adiabatic [inset (A), no COM excitation] and
nonadiabatic splitting [inset (B), substantial COM excitation].
The results underscore that for scalar TAI it is crucial to
reduce the slope |ż0| at the times when the wells split and
recombine. For the control-function type used in Fig. 4, spinor
TAI allows for rapid splitting, T ∼ 10 ms, while scalar TAI
requires splitter times T ∼ 1 s.

For Sagnac rotation interferometry [24,26,27,30], the trac-
tor paths can be programmed to circumscribe a nonzero

geometric area A, and the paths can be traversed N times be-
tween splitting and recombination. For a sensitivity estimate
for the angular rotation rate �, we assume TAI loop parame-
ters of A = 1 cm2 and N = 300, which seems feasible. For
rubidium it then is �φ/� ∼ mA/h̄ ≈ 4 × 107 rad/(rad/s).
Assuming a phase resolution �φ = 2π/100, the rotation sen-
sitivity would be ∼1 nrad/s.

VII. DISCUSSION

In this section we consider aspects regarding experimental
implementations of TAI. Useful methods will likely include
elements of pioneering demonstrations of AI with Bose-
Einstein condensates [36], of proposals for AI in magnetic
microtraps [37–39], and of emerging techniques of moving
(arrays of) ultracold atoms on arbitrary trajectories [40–44].
To reduce quantum projection noise, the utilized method must
allow for parallel operation of many identical loops in a small
overall volume [45]. Compact, 3D-confining, and paralleliz-
able platforms that allow dynamic tractor control include
optical lattices [46–49] and optical tweezers [40–42,44] that
may use an array of microlenses [43].

TAI can fail if the acceleration to be measured is too large,
causing splitter asymmetry and exaggerated nonadiabatic ef-
fects. In [9], a needed to be �103 Gals ≈1 g. With the quantum
confinement in 3D traps, afforded by TAI, the tractor traps
can be designed steep enough to avoid such effects, which
can be an advantage in high-g scenarios. As seen in Fig. 4,
where traps of a depth of h × 500 kHz and with a FWHD of
23.5 μm are used, spinor TAI is especially promising in that
regard. Deeper and tighter traps in optical lattices with well
sizes <1 μm are expected to afford closure and robustness
under high-g conditions.

As in guided-wave AI, in TAI it is important to avoid
differential fluctuations in depth and position of the tractor
potentials. In experimental implementations, this will present
a serious challenge. For instance, the sensitivity to differen-
tial noise in the potential depths, δ�V = δ(V I − V II ), with
V I and V II denoting the depths of the individual tractor
wells, scales with the interferometer time TI = tb − ta, which
is ∼1 s in our examples. The requirement δ�V TI < h then
leads to a requirement of δ�V < h × 1 Hz. For wells that are
h × 100 kHz deep, the allowed variation in differential tractor
depth, therefore, is in the range of 10−5 of the well depth. This
estimation becomes considerably more favorable for tractor
wells that are approximations of deep square wells with an ab-
solute trapping potential near zero inside the wells. One may
envision, for instance, traps formed by blue-detuned optical
lattices or box potentials, in which the atoms are trapped near
locations of minimal light intensity.

Along similar lines, in sensing applications where
common-mode fluctuations do not affect �φ [50], TAI could
be implemented with tractor controls that act symmetrically
in both TAI paths. The symmetry requirement extends to
several types of noise, including noise in the differential trap
depths of the tractor wells, δ�V , in the differential poten-
tial energy of the tractor paths, δ�U = ma · δ(rI − rII ), in
constant-acceleration background potentials, and in the dif-
ferential kinetic energy along the tractor paths. The latter
aspect translates into effects of differential mirror vibrations,
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phases of optical-lattice laser beams, etc. Future experi-
mental work as well as detailed simulations that include
various types of noise will help in exploring the opportuni-
ties afforded by TAI, as well as in establishing its practical
limitations.

In summary, our theoretical study and the discussion re-
garding experimental feasibility show that TAI is a promising
concept for future experimental demonstration. TAI offers a
set of values that we believe is hard to match with free-
space and partially-confining atom interferometers, including
guaranteed closure in space-time, even under rough condi-
tions with large and variable background accelerations and

rotations, suppression of wave-packet dispersion due to un-
interrupted 3D confinement, and use of user-programmable
loops with arbitrary hold times and flexible geometries for a
variety of sensing applications.
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