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Multiorder topological superfluid phase transitions in a two-dimensional optical superlattice
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Higher-order topological superfluids have gapped bulk and symmetry-protected Majorana zero modes with
various localizations. Motivated by recent advances, we present a proposal for synthesizing multiorder topo-
logical superfluids that support various Majorana zero modes in ultracold atomic gases. For this purpose, we
use the two-dimensional optical superlattice that introduces a spatial modulation to the spin-orbit coupling in
one direction, providing an extra degree of freedom for the emergent higher-order topological state. We find
the topologically trivial superfluids, first-order and second-order topological superfluids, as well as different
topological phase transitions among them with respect to the experimentally tunable parameters. Besides the
conventional transition characterized by the Chern number associated with the bulk gap closing and reopening,
we find the system can support the topological superfluids with Majorana corner modes, but the topological phase
transition undergoes no gap-closing of bulk bands. Instead, the transition is refined by the quadrupole moment
and signaled out by the gap-closing of edge states. The proposal is based on the s-wave interaction and is valid
using existing experimental techniques, which unifies multiorder topological phase transitions in a simple but

realistic system.
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I. INTRODUCTION

Ultracold atoms in optical lattices offer a remarkable
platform for investigating quantum many-body problems.
Based on existing optical techniques, the high controllabil-
ity and lack of disorder in ultracold atomic gases make it
an ideal platform for the discovery of unconventional topo-
logical phases that are difficult to be realized or evinced
in ordinary condensed-matter systems [1-3]. In particu-
lar, the engineering of the artificial gauge fields [4,5] and
nontrivial atomic interaction or pairing [6—12] facilitates
the investigations in a variety of phenomena and phases,
including the topological Hall effect [13—18], topological
insulators [19,20], topological semimetals [21,22], and topo-
logical superfluids [23-26]. Among them, the engineering
topological superfluid has been attracted intensive interests
for its unconventional non-Abelian exchange statistics and
the potential application in fault-tolerant topological quantum
computation [27].

It has been well known that traditional d-dimensional
topological superfluids support a bulk gapped phases with
topologically protected Majorana edge modes (MEMs) on the
(d — 1)-dimensional boundaries [28], which is specified as
a first-order topological superfluid (FOTSF) phase. In stark
contrast, for higher-order topological phases [29-36], both the
d-dimensional bulk and the (d — 1)-dimensional boundary are
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gapped, but the Majorana zero-energy modes (MZMs) arise
at lower dimensions. Particularly, the higher-order topological
phases [37] support MZMs whose distribution is localized at
corners of the two-dimensional (2D) lattice, i.e., the Majorana
corner modes (MCMs) instead of MEMs. Such a topological
phase is characterized by a second-order topological invariant,
which is also known as a second-order topological superfluid
(SOTSF). It has recently attracted a great deal of attention
because of the enrichment of boundary physics, and a set
of schemes based on solid-state systems as well as ultracold
atomic gases has been proposed for realizing MCMs [38-50].
Most of those schemes rely on nontrivial atomic interaction
(e.g., the higher-order-wave ones), which generally face un-
expected frustrations, such as inelastic three-body scattering
[51], to be implemented with current experimental technolo-
gies.

The paper is organized as follows: In Sec. II, we present the
model Hamiltonian of the proposal in the SO-coupled Fermi
gas. The engineering of homogeneous SO coupling has been
experimentally realized [52-56]. We extend these results and
propose a feasible scheme by using an A-B sublattice structure
to impose a staggered modulation, which is key for realizing
the SOTSF phase. In Sec. III, we show the phase diagrams
and associated numerical results. Assisted by the controllable
staggered modulation and the tunable interaction strength, we
find the first- and second-order topological transitions gov-
erned by different bulk-boundary correspondences. Especially
during the second-order transition, the SOTSF phase is distin-
guished not by gap closings of the bulk bands but by those
of the edge states. In Sec. IV, we discuss the potential ways
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for engineering the model using existing methods in ultracold
atoms and summarize the work.

II. LATTICE MODEL

We consider the spinful Fermi gas trapped in a two-
dimensional (2D) optical lattice. For such a fermionic system
with contact interaction, it has been known that, by simulta-
neously introducing the SO coupling and the Zeeman field,
the s-wave interaction will become an effective chiral p-wave
form if only the lower band is fully filled [57]. When increas-
ing the Zeeman field, the bulk band gap closes and reopens.
Thus the system evolves to FOTSF that supports MEMs
[23], which motivates us to search the possible multiorder
topological transitions based on such a FOTSF transition. In
comparison with previous works (see, e.g., Ref. [30]), one can
directly conclude that the above-mentioned system does not
support the interesting SOTSF phase because of insufficient
degrees of freedom. However, in general, an optical lattice can
be dimerized in an A-B sublattice system via external optical
fields [20,22] or the manipulation of the lattice geometry
[58-60]. In this way, it provides extra degrees of freedom
that are presented by the sublattice index. Besides, the in-
tersublattice interplays can be designed by the optical lattice
configuration or laser fields. It paves the way to engineer
interesting Hamiltonians in ultracold atoms. In this work, we
follow this trick. We prepare the trap potential as (k, = 7 /d,
d is the lattice constant)

Vi(r) = Vg sin? (kpx) + Vp sin® (kzy) + V, sin (kpy + ¢).
(D

Here ¢ is the relative phase between the two potentials. With
the setup of V/ <V, the perturbative potential V; will not
phonemically change the lattice configuration constructed by
V.. Instead, in the presence of V/, the lattice model exhibits a
double-well structure within adjacent sites along the y direc-
tion. It comprises an A-B sublattice configuration, which is
illustrated in Fig. 1.

The Fermi gases can be described by the tight-binding
model Hamiltonian composed of three parts,

H = Hy + Hey + Hiy. ()

The first part describes the nearest-neighbor (NN) hopping
and chemical potential,

HO = = Z /W/};st + Su(ngféwsl//Zj—éy,x - w;i,sjuﬁZj,s)

J.s
- (txw;ij-kéx.s + ntyw;j_éy,sl//?j,s
+ 4,95 Woje,s + He), 3)

where ¥, denotes the field operator for fermionic atoms of
pseudospin s = 1, |. f, is the hopping magnitude and is
chosen as the energy unit. &, stands for the unit vector.
H.c. stands for the Hermitian conjugate. w is the chemical
potential. In Hamiltonian (3), we introduce the dimensionless
parameter n and the energy offset §u to characterize the
spatial modulation of the hopping magnitude and chemical
potential due to the double-well structure. We note that 1 can
be artificially tunable via not only the trap depths V; and V/,
but also the relative phase ¢, as shown in Fig. 1(c).

Plr

FIG. 1. (a) llustration of the lattice model. The system is dimer-
ized in A-B sublattices in the presence of the double-well structure.
(b) Detailed setup for NN interplays along the y direction. Both
the hopping and SO coupling «, exhibit the staggered pattern. The
energy offset between atoms in adjacent sites is characterized by
du. (c) The dimensionless parameter 7 as a function of phase ¢ for
different V//V,. We set V;, = 4Eg with Eg = h2k2 /(2m) being the
recoil energy of the lattice [61].

The second part of Hamiltonian (2) describes the external
fields, including the Rashba-type SO coupling and the Zee-
man field. Its form is given by

How = Y Valjor Vi — (it 03 Ve, v + He)

J.s.s
+ [i“y (”/I/szj—éy,xU;S Vaj.y
+ W;-j,ﬁf,%j%),sr) +H.cl], 4)

where i = Uz ¢)T. Oy,y,; are the Pauli matrices defined in
the spin space. V; is the strength of the Zeeman field. o,
denotes the strength of the SO coupling. Likewise, due to
the double-well structure, the magnitude of the SO coupling
also exhibits a staggered pattern that is controllable via a
dimensionless parameter n’. For simplicity and without loss of
generality, hereinafter we shall choose t, =t, =1, 0y =ty =
o, and set n” & 7 to facilitate further discussion.

The last part of the Hamiltonian (2) describes the s-wave
interaction, which is usually controlled by Feshbach reso-
nances,

Hio= =Y UYL v vs. 5)
J

Here U denotes the interaction strength. The minus sign
makes the interaction that we focus on attractive. In cold
atoms, this gives rise to the superfluid state, in which atoms
form Cooper pairs in the same way as electrons do in super-
conductors of solids.

013306-2



MULTIORDER TOPOLOGICAL SUPERFLUID PHASE ...

PHYSICAL REVIEW A 104, 013306 (2021)

(a)2.0 (b)2.0 (c)2.0 ; -
> ) OTSE 14
Trivial SF C=1 s
L5} 15} (C=0) 1 15 O
1.1
s1.0F N =10F N =1.0 N 10
0.9
0.5 0.5 0.5 08
0.7
0.6
0.0 0.0 : 0.0 - 05
0 2 4 6 8 10 —4 0
Uit ult
(d)1.2 SOTSF FOTSF Trivial SF_FOTSF (e)3 SOTSF " Trivial SF_
= [ r===1 1 —A - - 11 —A
0.8 ‘ 1 o =2f T
S b 7 v oo = 00
0.4 —Cc  41F = --c
. - r. < -
oo , 1 o == . 1
0.0 0.5 1.0 1.5 2.0 4 5 6 7 8 9 10
n Ult

FIG. 2. (a)—(c) Phase diagrams in the (a) «-n, (b) U-n, and (c) u-n planes. We set (U, u) = (6t, 3¢) in panel (a), (o, u) = (2¢, 3t) in panel
(b), (@, U) = (2t, 6t) in panel (c), and V, = 2t and . = 0 in all panels. Trivial SF and N stand for the trivial superfluid and normal gas phase,
respectively. The black solid (blue dashed) lines correspond to the phase-region boundaries with (without) bulk-gap closing. The colors in
panel (c) characterize the filling factor n. The order parameter A (blue solid line), bulk gap I' (red dashed line), and Chern number C (green
dash-dotted line) as functions of (d)  and (e) U. We set («, U, V,) = (2t, 6¢, 2¢t) in panel (d) and («, n, V) = (2¢,0.33, 2¢) in panel (e). In
panel (d) we additionally show the critical temperature 7. by the magenta dotted line.

III. NUMERICAL RESULTS

To investigate nontrivial topological properties of the
system, we employ the mean-field Bogoliubov-de Gennes
(BdG) approach. By introducing the order parameters
A= —-U{yj ¥jr) = A, we can recast Hamiltonian (2) into
a matrix form, i.e., the BdG Hamiltonian. In particular, due
to the presence of the staggered SO coupling, we rewrite
Hamiltonian (2) in terms of A-B sublattices by invoking
the following representation: Vrj_s, s —> ajs and Y5 — bjs.
After the transformation, the odd-index (even-index) sites
along the y direction are mapped to those on the A (B)
sublattice, respectively. a and b are the corresponding atomic
operators of the sublattices. As the results, the order parameter
may also exhibit a staggered pattern, and we modify the
uniform order parameter A by adding an additional term
8A: —Ul(aj ajy) = A+8A and —U(b] bjp) = A —SA.
In the momentum space (k space), under the base
V= (ak,Ta bk,’[‘v ak, | bk,\La aik,y bT_kyi, _aik,T’ _bT_k,T)Ts
the BAG Hamiltonian is expressed as

Hpyg(k) = Ho(K) + Hexi (K) + Hinc(k), (6)
with

Ho(k) = — [2t cos (kid) + plt; +dutg,
—t[n + cos (kyd)]fz;x —tsin (kyd)l'zéy» @)

Hexi(K) = 20 sin (kyd) 1,0, + a[cos (kyd) — n]T,0:8,
— asin (kyd)t.0,.0 + V.0, ®)

Hint(k) = At + (SA":X{Z' (9)

Here 7, ., and ¢, ., are Pauli matrices defined on the particle-
hole and a-b operator basis.

The ground state of the system is determined by the ther-
modynamic potential 2. At zero temperature, it is given by

1
Q= kXVjEv(m[—Eu(k)] + &. (10)

Here E, (k) is the energy of the vth eigenstate of Hamiltonian
(6). O(-) is the Heaviside step function that is used to describe
the Fermi-Dirac distribution at zero temperature. The en-
ergy constant & = (|A|> + |8A|?)/U + > k[—2t cos(k.d) —
w]. The order parameters A and § A can be obtained by self-
consistently solving the gap equations

B = 0and E =0,

A dsA
while the filling factor n can be obtained by the number
equation

Y

a2

n=——.

au
When A # 0 or §A # 0, it outlines the superfluid phase re-
gion, otherwise is a normal gas if they vanish.

12)

A. Phase diagrams

The phase diagrams are displayed in Figs. 2(a) and 2(b)
with different interaction strengths. For simplicity, here we
first consider the balanced A-B filling case §u = 0. Since
our motivation for this work is based on the known FOTSF
phase, we directly tune V; to obtain it at n = 1. The superfluid
phase region is composed of the trivial superfluid, FOTSF,
and SOTSF phases. Moreover, SOTSF does not appear unless
n < 1, yielding that n is viatal for processing the SOTSF
transition. The order parameters are found to be uniform in
all the superfluid phases, i.e., SA =0, due to the balanced
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A-B filling. To distinguish the FOTSF and SOTSF phases, we
inspect two topological invariants: the Chern number C [62]
and the quadrupole moment g,, [32]. The Chern number is
widely applied in characterizing MEMs, which is well known
as bulk-edge correspondence. It is defined by

occ.

1
c= 5 Z / Frodk, (13)

with Berry curvature defined as F, =V x A, and Berry
connection A, = —i{uy| % k). The summation Y takes
over all the occupied quasiparticle bands and |u,y) is the nth
occupied eigenstate. The quadrupole moment can be calcu-
lated by means of the nested Wilson loops formalism [63].
It refines the topologically protected charges that characterize
the existence of MCMs. In particular, the quadrupole moment

is defined as [32]
s ooV
Gxy = Py Px + Py Px s (14)

+
where the invariants p];?'i and p;"‘ are calculated by the Wan-
nier sector polarizations (see Appendix). The system lies in
SOTSF when ¢, is half quantized, otherwise it is topologi-
cally trivial when g,, = 0.

In Fig. 2(a), we find two FOTSF regions with Chern num-
bers of opposite signs. As mentioned in Sec. II, when n = 1,
Hamiltonian (2) has been known for supporting MEMs. We
find the desired SOTSF phase with C = 0 and g, = 1/2 iso-
lated from the trivial superfluid phase by the FOTSF regions.
In Fig. 2(b), we investigate the interaction effect on the phase
transition. The system transits to the superfluid phase as long
as U exceeds a threshold. Besides the conventional FOTSF
transition, we find the system undergoes a direct transition
from the trivial superfluid phase to SOTSF, during which
C remains zero but gy, changes instead. The phase diagram
reveals that the SOTSF transition is inadequate to be figured
out by C; instead, its topological invariant is replaced by q.,.

The influence of the chemical potential on the system is
shown in Fig. 2(c). Due to the particle symmetry introduced
by the order parameter, the phase diagram is symmetric with
respect to u = 0 (i.e., half filling). We find that the superfluid
phase collapses in a wide range between u & +2¢. This is
because, at the large Zeeman field V., the single-particle prop-
erties of the nearly-half-filled system exhibit a band insulator
[64], and the existence of the fermionic superfluidity is known
to be manifestly suppressed [65].

We remark that the superfluid phases potentially exist even
at finite temperature. This can be qualitatively estimated by
the critical temperature T;. of the superfluid phases under the
BdG approach,! as shown in Fig. 2(d). In the tight-binding
approximation, the hopping magnitude ¢ is typically of the
order 0.1Eg [61]. Since the recoil energy Eg ~ (m/3)*’Er
[66] (Er denoting the Fermi energy of the Fermi gas), we
find 7.(~0.3¢t) is of the order 0.1Er. Hence the superfluid

At temperature T, the form of © in Eq. (10) will be rewritten as
Q= 8LY, | In f—E,(K)] + &, where f(E) = 1/[exp(E /ksT) +
1] is the Fermi-Dirac distribution. We assume the Boltzmann con-
stant kg = 1 in the whole paper.

phases can be expected to survive at T ~ 0.05EF with current
experimental techniques [67,68].

B. Topological features

The feature of the existed topological transitions relies
on the intrinsic bulk-boundary correspondence, but in vari-
ous ways. To extract the underlying properties of topological
transition, we plot the bulk gap I' and the Chern number
C with respect to n. In Fig. 2(d), by changing 7, the bulk
gap closes and reopens at the transition between different
topological phases. This is consistent with the conventional
physics picture, in which the topological transition occurs in
the company of the bulk gap closing as well as the changed
Chern number. The topological transition is known of the first
order and obeys the unambiguous bulk-edge correspondence.
The existing edge states are topologically protected in FOTSF
unless the bulk gap closes.

However in Fig. 2(e), by changing U, both A and T
increase monotonically, during which the unconventional
topological transition without gap closing processes from the
SOTSF to the trivial phase. To capture the features of the
SOTSF transition, we use the cylindrical geometry by im-
posing a periodic boundary condition in the x or y direction.
The quasiparticle spectrum E, is obtained by diagonalizing
the BdAG Hamiltonian in spatial space, shown in Figs. 3(a)—
3(c). By increasing U, in the cylindrical geometry along the
y direction, the edge-state gap closes at the critical point
and reopens in the x direction when system evolves into
SOTSE. In the cylindrical geometry along the x direction,
the edge-state gap remains open. Therefore, the topological
transition without bulk closing is of second order, as signaled
by the edge-state gap. The second-order topological transition
follows the edge-corner correspondence [69] rather than the
bulk-edge correspondence. In other words, the corners of the
lattice plaquette play the role of boundaries while the edges
are regarded as the bulk. For this sake, the SOTSF phase is
also known as being boundary obstructed [49].

The Hamiltonian (6) of the system preserves particle-hole
symmetry: PHpyg(K)P~! = —Hpag(—k) with P = 1,0,k
and X standing for the complex conjugation. In the presence
of V., the time-reversal symmetry is broken. Meanwhile, the
spatial-inversion symmetry is also satisfied: ZHgqg(K)Z™! =
Hgac(—k), where Z = 0,¢, anticommutes with P. Therefore,
the system belongs to the D class [70,71]. Due to the bulk-
edge correspondence of SOTSF, we can see that the MCMs
are fourfold degenerate in the square lattice due to the two
symmetries. This is shown in Fig. 3(d) for the square boundary
geometry and in Fig. 3(f) for the circular one. However, the
degeneracy of MCMs is affected by the adjustable boundary
geometry and reduces to be twofold in a triangular lattice
[Fig. 3(e)]. This is a ubiquitous feature of the SOTSF phase
[38,40,45].

C. Imbalanced A-B filling

We now investigate the influence of the imbalanced A-B
filling case, i.e., 6 # 0. The order parameters and the associ-
ated phase diagram in the §u-n plane are shown in Fig. 4.
We find that the modulated order parameter §A changes
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FIG. 3. (a)—(c) The quasiparticle spectrum with cylindrical geometry for different U at («, n) = (2f,0.33). We set the open boundary
condition in x for left and y for right of each panel. Other parameters are the same with Fig. 2(b). The twofold degenerate edge-state
spectrum is highlighted by red solid lines. (d)—(f) The spatial distribution of the MCMs with the same parameters as in panel (a) but in
different boundary geometries. The colors characterize the number density occupied on each site. The inset shows the quasiparticle spectrum
in the vicinity of zero energy. We employ the open boundary condition with different boundary geometries, while the Hamiltonian (2)
remains the original square one. The edge size of the lattice sample is set as L = 40 in panels (d) and (e), while the radius is set as 28 in

panel ().

monotonically with respect to §u and remains zero when
éu = 0. Furthermore, the magnitude of § A is obviously less
than A, revealing a weak staggered pattern. As the results, the
phase boundaries between different superfluid phases varies
nearly independently of §t.

The presence of the modulated density triggered by Su
does not affect the topological features of the superfluids.
This is because both 7. ¢, in Eq. (7) and § At ¢, in Eq. (9)
preserve the particle-hole and inversion symmetries discussed
in Sec. III B. Therefore, the topological phases in the phase
diagrams are robust against the modulated density and order
parameter.

0.0 0.1 0.0
-1.0-0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0
Oplt Oplt

FIG. 4. The order parameters (a) A and (b) §A in the parameter
plane of §u and n. The colors characterize the magnitudes of order
parameters, and specifically in panel (b), the white region indicates
the uniform order parameter with §A = 0. The black-solid lines
outline the boundaries of the phase regions. We set (o, U, u, V;) =
(2t, 61, 3t, 2t).

IV. DISCUSSIONS

In practice, the model Hamiltonian (2) can be engineered
as follows: A direct way for generating the SO coupling is
based on optical fields with standing-wave modes like M (r) ~
sin(kzx) cos(k.y) + i cos(kx) sin(k.y) [72]. In this setup, the
onsite spin hybridization is thus dramatically suppressed and
ignorable because of the odd parity of M(r) with respect to
each site center, by contrast the NN coupling is dominant
and generates the SO coupling. The parameter that char-
acterizes the staggered pattern is thereby obtained by n' =
T,/I», where Z,, = [ dr cos(kpx) sin(k,y)W*(r + né, )W [r +
(n+1)&,] and W(r) stands for the localized Wannier wave
function on each site. The alternative way for generating the
SO coupling is assisted by an additional gradient field with
the strength § in both two directions. The original NN hopping
will be prohibited due to the gradient field. Motivated by the
laser-assisted tunneling technique [73,74], by using Raman
optical fields whose frequency offset matches §, not only the
SO coupling can be engineered, but also the NN hopping is
restored. In this setup, the magnitudes of the SO coupling
and NN hopping can be separately tunable. This is attainable
by using two groups of optical fields that separately drives
different transitions due to the selection rule.

To observe the MCMs localized in lattice corners, it is
intuitive to produce the real-space sharp edges by preparing
the external confinement [75]. We remark that, since 7 is re-
sponsible for multiorder topological transitions, it provides an
alternative way for creating the artificial topological interfaces
[76-81] by preparing the spatially dependent . The MCMs
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inside the band gap may be signaled via the Bragg spectra
[82] or visualized from the Wannier-Stark spectrum [83].

In summary, we demonstrate an experimental feasible
scheme for engineering SOTSF that supports MCMs. The
double-well superlattice potential imposes a staggered pattern
to the NN hopping and SO coupling, which leads to multiorder
topological phase transitions. The FOTSF and SOTSF tran-
sitions are separately characterized by different topological
invariants as well as band gap signals, revealing various bulk-
boundary correspondences. The proposal is feasible by means
of current experimental techniques and can pave the way for
exploring SOTSF and the associated MCMs.
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APPENDIX: NESTED WILSON LOOPS

Here we present the technical details for calculating the
quadrupole momentum by means of nested Wilson loops.
We first diagonalize the total eight-band Hamiltonian and
obtain the Ny =4 occupied states |uy'). Then we define
the Wilson loop operators W, x and W,k in the x and y
directions, where k = (k,, k) is the initial point of the Wil-
son loop operator. For the L x L square lattice, by using the
obtained occupied states, we define Ny X Nyec-dimensional
matrix [Gex]™ = (U, o |u}), where AK,, = 2£&, . Thus
we can define the Wilson loop operator in the discrete
limit

Wik = Gyk+LAk, - - - Gy k+ak, Gy k- (Al

Because of the discretization of momentum Kk, the matrix G
is not a unitary matrix. It can be mapped to be unitary by
the singular value decomposition (SVD) at each discretized
momentum: G, = UDV. In this way, by redefining F, =
UV, we can rewrite the unitary Wilson loop operator as

Wik = Fektrak, -+ Foxrak Frke (A2)

Under the periodic boundary condition of a torus geometry,
the eigenequation of the Wilson loop operator is expressed as

k|vxk> xk) (A3)

Here + represent two different Wannier sectors, and r =
1, ..., Nyc/2. The nested Wilson loops along the y direction
is thus obtained as

27'[11)Y

it + + +
Wik, = Fokrrak, - Frrar Bk (Ad)
where
Fie = (ks [w3id) Zluk Wl (A
[vikr]” are the components of the Wilson loop eigenstate
+.r

[vi i )- The Wannier sector polarization is given by

+ i1
P =

s-7 2 In Vil (A6)
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FIG. 5. Band structure of the Wannier sectors with open bound-
aries in a single direction: y (left column) or x (right column). The
colors stand for different sectors. The band gap closes at (c) k, = ki,
(g) ke = ki, and (h) k, = 0 (2k.). Panels (a) and (b) are plotted at
(U, n) = (7t,0.33), corresponding to the trivial superfluid. Panels
(c) and (d) are plotted at (U, ) = (8, 0.33), corresponding to the
gap-closing point (phase transition). Panels (e) and (f) are plotted
at (U, n) = (9t,0.33), corresponding to SOTSF. Panels (g) and (h)
are plotted at (U, n) = (7t, 1), corresponding to FOTSF. The other
parameters are the same as in Fig. 2(b).

It is specified as a Z, topological 1ndex p)‘ e {0, 1/2}.

Likewise, the other topological index px can be obtained
following the same approach.

The quadrupole invariant g,y is expressed as

N - vy
Qo =P i+ DY Py (A7)

In Fig. 5 we display the band structure of the Wannier
sectors in a cylindrical geometry. In the SOTSF phase

vE \J . .
with (p), p}:‘i) =(1/2,1/2), we obtain a half-quantized
quadrupole moment ¢,,. However, in the trivial superfluid

+

phase, we obtain (p;v ,p;“i) =(0,1/2), (1/2,0), or
(0,0), resulting in g,, =0. Therefore, ¢, can play
the role of a topological invariant featuring in the
transition between the trivial superfluid and SOTSF
phases.

We note that g, is ill defined and hence not available for
the FOTSF phase as well as the gap-closing point. This is
because the band structure of Wannier sectors is gapless over
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the entire Brillouin zone, as shown in Figs. 5(c), 5(g), and
5(h). But the transition from FOTSF to other phases can still

be characterized by the Chern number as in the conventional
physics picture.
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