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Ground-state phase diagram of ultrasoft bosons
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In two-dimensional bosonic systems ultrasoft interactions develop an interesting phenomenology that ulti-
mately leads to the appearance of supersolid phases in free space conditions. While suggested in early theoretical
works and despite many further analytical efforts, the appearance of these exotic phases as well as the detailed
shape of the ground-state phase diagrams have not been established yet. Here we develop a variational mean-field
calculation for a generic quantum system with cluster-forming interactions. We show that by including the
restriction of a fixed integer number of particles per cluster the ground-state phase diagram can be obtained in
great detail. The great detail includes the determination of coexistence regimes of crystals of different occupancy
as well as crystals with superfluid phases. To illustrate the application of the method we consider the softened van
der Waals potential, for which the phase diagram is known via quantum Monte Carlo simulations. For densities
other than that corresponding to the single-particle crystal, our results show very good quantitative agreement
with the simulations regarding the location of the superfluid transitions. Additionally, the phase diagrams suggest
that the solid-superfluid coexistence could be a reliable marker to locate supersolidity.
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I. INTRODUCTION

The theoretical study of the quantum phase transition oc-
curring in the crystallization of soft-core bosons has received
particular attention over the last decade [1–5]. This inter-
est is twofold. On the one hand ultrasoft bosons allow one
to understand exotic many-body effects in which quantum
fluctuations weakens crystalline order to give rise to, e.g.,
supersolid states [6–9]. On the other hand, the advances in
experimental Bose-Einstein condensation techniques involv-
ing cold atomic gases have boosted and fed back the need
for theoretical insights into how to control these phases of
matter [10–13].

In the supersolid phase, the systems still display a mod-
ulated density that breaks the rotational and translational
symmetries, while at the same time developing superfluid
transport properties. The characterization of the proper-
ties of these ground-state phase diagrams using specific
interaction potentials have been a fruitful direction for nu-
merical research [14–16]. Several analytical studies have
focused as well on the supersolid and superfluid phases of
systems with standard non-cluster-forming soft interaction
potentials [17–22]. Properties related to, e.g., the supersolid-
superfluid transition [17,18] and the excitation spectra [21,22]
are of great current interest for the scientific community.
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Many calculations use mean-field variants [20,21] and more
sophisticated approaches [17,18] to tackle the problem in this
scenario. In this context, the ground-state phase diagrams
of ultrasoft bosons, in which the crystalline structures are
formed by clusters instead of single particles, is a relatively
new problem that is generating theoretical and experimental
advances [2,6,9].

Bosons interacting via ultrasoft potentials crystallize in a
lattice of clusters [23,24] which, at very small temperatures,
melts due to the quantum fluctuations produced by the zero
point motion. This quantum transition to a superfluid phase is
always present in the ground state for the regime of small pres-
sure and weak interaction strength. Near the melting point,
however, a supersolid behavior has been predicted via numer-
ical simulations and analytical approximations [2,25].

Recently, some important efforts have also been done to
analytically determine these ground-state properties in the
ultrasoft cluster-forming scenario, through formulations that
can be applied to different potentials. In particular, by using
generalizations of the Gross-Pitaevskii mean-field model [4]
and variational formulations of the condensate wave func-
tion [3,9], a number of predictions have been put forward.
These predictions include the order of the transitions and the
dispersion relations of the supersolid lattice. Other important
properties like the location of the phase boundaries are deter-
mined only approximately [3,4] and not in full agreement with
the outcomes of Monte Carlo simulations.

In the present work we go a step further in the analytical
understanding of the ground-state phase diagrams of ultrasoft
bosons. By using a variational mean-field calculation we im-
prove the predictions on the location of the phase boundaries
of generic ultrasoft potentials. The main assumption used
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in the present formalism is the restriction of the number of
particles within the clusters to be a constant integer value.
We show that, for the model potential considered in Ref. [2],
the ground-state phases and the coexistence regimes can be
calculated to a degree of reliability that is consistent with
Monte Carlo numerical simulations in moderate and high
density. This interaction form is of relevance for ultracold
atoms [18,26] and has been used to model a large variety of
other soft-matter systems [27–29].

We determine the solid-superfluid coexistence (SSC) re-
gion by looking at the chemical and mechanical equilibrium
conditions that exist between the pure solid and superfluid
thermodynamical phases. Clearly, this regime cannot be inter-
preted as a supersolid by any means. However, for the model
potential used here as example, there is a coincidence regard-
ing the shape and the location of the SSC region analytically
calculated and the supersolid phase that has been observed via
exact numerical simulations [2].

II. METHOD

Consider a system of interacting bosons in two dimensions
with a pair potential V (�r) = Uv(�r). The units of energy and
length are such that the kinetic energy operator of a particle is
given by T̂ = −( �∇ )2/2. Under these conditions the Hamilto-
nian of the system is given by

Ĥ =
∑

i

T̂i +
∑
i< j

V (�ri − �r j ) (1)

= −1

2

∑
i

( �∇i)
2 + U

∑
i< j

v(�ri − �r j ). (2)

Here the potential v(r) is bounded and its Fourier transform
has a negative minimum at some finite wave vector. These
conditions determine the ultrasoft character of the interactions
and ensure the cluster-forming character of the system in
the classical regime. The characterization of the ground-state
phase diagram is done by means of a variational approach. It
is thus expected that our results will better describe the system
in the regime where the interparticle distance is smaller than
the length scale of the potential. A variational ground-state
function is proposed consistent with the mean-field approxi-
mation [3,9]

|ψ〉 =
∏

i

φ0(�xi ), (3)

where the single-particle wave function is

φ0(�x) =
∑

j c j cos(�k j · �x)√
A
(
c2

0 + 1
2

∑
j �=0 c2

j

) . (4)

Here A stands for the area of the system, and the set of vectors
�k j are selected in such a way that the field φ0(�x) reproduce
the symmetries of a triangular lattice of particles. While other
structures could be stable for specific potentials, we focus
here on triangular lattices as this is the most common struc-
ture observed in simulations of ultrasoft potentials [2,30,31].
Consequently �k j = (p�u1 + q�u2)k0, with p and q integers, u1 =
(0, 1), and u2 = (

√
3/2,−1/2). We set c0 = 1 without loss of

generality.

These ansatz for the single-particle ground-state function
are usually used in the literature to model states in which
particles form a triangular crystal or even triangular crystal
of clusters [3,25]. A central constraint, that in the case of
cluster-crystals has not been taken into account to the best of
our knowledge, is the relation between k0, the lattice spacing
a, and the occupancy number n of the clusters in the crystal,
which is a positive integer. To consider n as a positive integer
does not rule out states with fractional average occupation,
since these states can be seen as the result of the phase coex-
istence of solids with consecutive integer occupation number.

Considering our definition of φ0(�x), it can be shown that,
for this function to be periodic with a spatial period a, the
main modulation wave vector should be k0 = 4π/(

√
3a). At

the same time the average density ρ is related to the lattice
spacing a and the occupancy number n by the relation

ρ = 2n√
3a2

. (5)

This relation implies that cluster crystals with different oc-
cupancy number, at the same density, have different lattice
spacing. As a consequence

k0(n, ρ) = 4π√
3

√√
3ρ

2n
. (6)

This relation is at the core of numerous properties of the
cluster-forming particle system. The disregard of this con-
straint, in the assumption that n can be treated as a variational
real parameter, explains the absence of transitions between
different cluster-crystal phases in mean-field approaches when
describing the zero and finite temperature properties of classi-
cal and quantum particle systems [3,4].

In numerical simulations cluster-forming particle systems
have been observed to remain with a fixed occupancy num-
ber while density is increased [30,32]. While this result has
already been observed, it is generally considered that the
presence of hopping between neighboring clusters justifies
the consideration that n and consequently k0 are variational
parameters [30,33,34].

In this work we assume that n is an integer value. This
means that the cluster-crystal phases consist of lattices of
equally occupied clusters of bosons. We use this assumption
to make a complete analysis of the ground-state phase diagram
indicating the regions corresponding to the different clusters
phases. At some special regions, of course, coexistence be-
tween states with occupancy number n and n + 1 exists, but
only in these regions can the occupancy number be interpreted
as varying continuously between n and n + 1.

Proceeding with the construction of the energy functional,
the energy per particle of the cluster crystal with n particles
per cluster, at an average density ρ, is given by

E

N
= εn = 〈ψ |T̂1|ψ〉 + N − 1

2
〈ψ |V̂12|ψ〉 (7)

= 1

4

∑
j �=0 c2

j k
2
j(

1 + 1
2

∑
j �=0 c2

j

)
+Uρ

[
v̂(0)b2

0 + ∑
j �=0 v̂(k j )b2

j

/
2
]

2
(
1 + 1

2

∑
j �=0 c2

j

)2 , (8)
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where k j = |(p�u1 + q�u2)| 4π√
3

√
2n√
3ρ

, and the coefficients b j

are related to c j through the relation (
∑

j c j cos(�k j · �x))2 =∑
j b j cos(�k j · �x). The quantity v̂(k) stands for the Fourier

transform v̂(�k) of the potential v(�r),

v̂(�k) =
∫

d2r e−i�k·�rv(�r), (9)

once we take into account the rotation symmetry of the pair
interaction potential.

By minimizing the energy per particle, Eq. (8), in terms
of the coefficients c j the ground-state (U versus ρ) phase
diagram of the system can be obtained in this mean-field
approximation.

III. RESULTS

For the quantum regime one has to consider not only the
different cluster configurations, characterized by their occu-
pancy number, but also the superfluid homogeneous phase.
This homogeneous configuration can be recovered from the
modulated solution φ0(�x) by setting c j = 0 for all j �= 0. So it
is straightforward that the energy per particle of the homoge-
neous phase is given by Eh(ρ)/N = U v̂(0)ρ/2.

To minimize analytically the function of Eq. (8) consider-
ing the whole set of coefficients c j can be a very difficult task.
Consequently, finding closed expressions for the boundaries
between the different phases is fairly complicated. However,
the more interesting transition happening in the quantum
regime, i.e., the quantum melting of the solid phases into
the superfluid phase, is in fact tractable within certain ap-
proximations. Around this transition, quantum fluctuations
characterized by the amplitude of the zero point motion are
expected to be strong enough to destabilize the crystalline
order. In this scenario the particles are less localized and
the profile is smoother, making the Fourier amplitudes of
the profile smaller for all nonzero wave vectors. In order to
analytically advance we consider the single mode approxi-
mation, c j = 0 for j > 1. Such as an approximation cannot
be fully justified with qualitative arguments, and its ultimate
validity can be verified by comparing with general mean-field
numerical results and with previous Monte Carlo simulations.

A. Analytical results on the quantum melting

Following the single mode approximation c j>1 = 0 lets us
proceed with the analytical study of the quantum melting of
the solid phase. In the single mode approximation the energy
per particle of the system [Eq. (8)] yields

εn = 3k0(n, ρ)2c2
1

4
(
1 + 3

2 c2
1

) + U

2
ρv̂(0) + 3Uρv̂(k0(n, ρ))

(
2c1 + c2

1

)2

4
(
1+ 3

2 c2
1

)2 ,

(10)

where k0(n, ρ) is given by Eq. (6). Consequently, the differ-
ence between the energy per particle of the modulated phse
and the homogeneous phase (c1 = 0) is

�εn(c1) = 3k0(n, ρ)2c2
1

4
(
1 + 3

2 c2
1

) + 3Uρv̂[k0(n, ρ)]
(
2c1 + c2

1

)2

4
(
1 + 3

2 c2
1

)2 .

(11)

The boundary between each type of modulated phase with the
homogeneous phase defines an energy-crossing line through
the condition

�εn(c∗
1 ) = 0, (12)

where c∗
1 represent the value of c1 minimizing the energy of

the modulated state εn(c1) and consequently �εn(c1), once we
take into account that the energy of the homogeneous phase is
independent of the value of c1. Our definition for c∗

1 implies
then

d�εn

dc1
(c∗

1 ) = 0. (13)

Solving Eq. (12) for c∗
1 we concluded that

c∗
1 = 6Ũ + 2π

√
−72π2 + 42

√
3Ũ

12
√

3π2 − 3Ũ
, (14)

where Ũ = Un|v̂[k0(n, ρ)]| and U and ρ represent. This result
can now be substituted in Eq. (13) with the conclusion that, at
the transition,

Ũ = 4
√

3π2/7,

c1 = 1/3. (15)

Equation (15) implies that, in the single mode approxima-
tion, the energy crossing line between the solid phase and
the superfluid phase is given by the condition Ũ = 4

√
3π2/7.

This is a universal condition, independent of the occupancy
number of the solid and valid for any cluster forming poten-
tial v̂(k). At the energy crossing line, the amplitude c1 takes
the universal value c1 = 1/3, which can be interpreted as a
quantum analog of the Lindemann criterion.

At this point it is possible to calculate the value of the in-
teraction strength U at the transition point from the n-particle
cluster solid to the superfluid phase by using the first condition
in Eq. (15). This leads to

Un(ρ) = − 4
√

3π2

7nv̂[k0(n, ρ)]
, (16)

where k0(n, ρ) is given by Eq. (6).
For different values of n, Eq. (16) represents the melting

curves of the different solid phases, and naturally they are
valid in the region of densities in which v̂[k0(n, ρ)] is negative
and contains the absolute minimum of v̂(k). The union of
the areas delimited by the curves Un(ρ) represents the whole
solid region. Interestingly, the boundary of the solid region
is not a simple monotonic curve as obtained in mean-field
calculations. This is in agreement with reported results of
ground-state numerical simulations [2].

In order to test the single mode approximation we addi-
tionally calculated the solid-to-fluid phase boundary resulting
from the minimization of the full energy function Eq. (8)
for the potential v(r) = (1 + r6)−1. This is a repulsive poten-
tial expressed through the dimensionless quantities r/rc → r,
v(r)/U0 → v(r), where rc and U0 are the units of length and
energy respectively. The potential approaches a constant value
for small interparticle distances r < 1, and drops to zero for
r → ∞ with a repulsive van der Waals tail [26].

In Fig. 1 the result from this numerical minimization (blue
dots) is plotted together with the curves Un(ρ) for occupancy
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FIG. 1. Comparison between numerical minimization of the
full energy function Eq. (8) and the single-mode melting the-
ory. Blue dots correspond to the numerical minimization while
the red curves correspond to the function Un(ρ ) of Eq. (16) for
n = 1, 2, 3, 4, and 5.

numbers 1 � n � 5. As can be observed, the numerical results
and the single mode melting curves compare very well, which
indicates that in the melting region the single mode approxi-
mation is essentially correct. This is a quite useful validation
because it largely simplifies all analytical calculations in the
melting region.

The envelope of the family of curves Un(ρ) can be also
calculated and yields

U (ρ) = −3
[
2v̂(km) − k2

mv̂′′(km)
]

14v̂(km)v̂′′(km)ρ
. (17)

This envelope correspond to the result that would be obtained
by considering n as a real variational parameter, which is the
assumption in previous mean-field descriptions. Not taking
into account the variation of the stability of the different
cluster-crystal phases with fixed occupancy number can ex-
plain why many theoretical calculations find a monotonic
behavior of the solid-to-superfluid phase boundary. The ob-
tained scaling U (ρ) ∝ ρ−1 of the envelope curve is also a
result that has been observed with numerical simulations [2].

B. Extent of the SSC region

For a given occupancy n, with varying density each cluster
phase is limited by the inverted dome-shaped region of the
curve Un(ρ). This transition from the solid to the homoge-
neous or superfluid state is expected to be of first-order type
and consequently occurs through a crossover along the coexis-
tence region [3]. In the coexistence regions the pressure P(ρ)
and the chemical potentials μ(ρ) of each phase are equal and
remain the same when density is increased from the beginning
to the end of the coexistence regions. The mathematical con-
dition determining the densities ρ1n and ρ2n at the beginning
and end of the coexistence regions is given by

Pn(ρ1n) = Pn+1(ρ2n),

μn(ρ1n) = μn+1(ρ2n). (18)

Within the canonical ensemble formalism, pressure and chem-
ical potential can be calculated using the relations Pn(ρ) =
ρ2 ∂εn(ρ)

∂ρ
and μn(ρ) = εn(ρ) + ρ

∂εn(ρ)
∂ρ

[35].

To pursue the calculation of the coexistence region analyti-
cally we need to calculate the energy per particle of the cluster
state as a function of the density. Even within the single-mode
approximation, no simple analytical closed expression exist
for the ground-state energy of the system. In order to obtain
such analytical expression from Eq. (10) further approxima-
tions have to be done. First, the general relation between Ũ
and the value of c1m minimizing the energy function (10)
is found from the condition d�ε

dc1
(c1) = 0. This leads to the

relation

Ũ = − 4π2
(
2 + 3c2

1m

)
√

3
(−4 − 6c1m + 4c2

1m + 3c3
1m

) . (19)

Then the value of Ũ is used to write a closed expression for
the minimum energy per particle in terms of c1m, eliminating
the interaction strength parameter U . This procedure yields

�εn(c1m) = ρ

n

4
√

3π2(−1 + 3c1m)c3
1m(−4 − 4c1m − 6c3

1m + 9c4
1m

) . (20)

Now a series expansion is made for Ũ around the value of
c1m at which the energies of the cluster and the homoge-
neous configuration are equal, fulfilling Eq. (15). Inverting
this expansion, we can rewrite c1m as a power series of (Ũ −
4
7

√
3π2). This expansion can be then substituted in Eq. (20) to

finally obtain a series expansion of the energy �εn in powers
of (Ũ − 4

7

√
3π2). This procedure leads to the expression

�εn(Ũ ) = ρ

n

(
−1

3

(
Ũ − 4

7

√
3π2

)

− 7

2
√

3π2

(
Ũ − 4

7

√
3π2

)2

+ · · ·
)

, (21)

which is valid for Ũ � 4
7

√
3π2. For Ũ < 4

7

√
3π2 the mini-

mum of �εn is reached at c1 = 0 and consequently �εn = 0.
Examining the system of equations (18) for the densities at

the beginning and the end of the coexistence region, we realize
it needs as an input the quantities εn(ρ) and its derivatives with
respect to ρ. A general analytical solution of this equation
system for the n-cluster SSC phase, for an arbitrary potential
v̂(k), is impossible even in the single-mode approximation.
We estimate it using an expansion of εn(ρ) up to first order
around the density at which the energy of the cluster and fluid
phases equals ρ0(n,U ). We proceed considering

εn(ρ) = U v̂(0)ρ0(n,U )

2
+ ε′

n(ρ0)[ρ − ρ0(n,U )],

εh(ρ) = U v̂(0)ρ

2
, (22)

where εh(ρ0) represents the energy of the homogeneous state.
Additionally let us note that ε′

n(ρ0) can be calculated using
the obtained result for �εn(Ũ ) in Eq. (21). A straightforward
calculation allows us to conclude that

ε′
n(ρ0) = U v̂(0)

2
− 1

3
Uρ0∂ρ |v̂[k0(n, ρ0)]|. (23)

Taking into account the above simplifications, we directly
obtain the densities at the beginning and the end of the
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FIG. 2. Coexistence regions of the solid-to-superfluid transi-
tions. Dotted curves correspond to the exact SSC determined from
the minimization of the full energy function while the continuous
lines represent the analytical estimate described in the main text.

coexistence regions:

ρ1(n) = 1

2
ρ0(n,U )

(
1 +

√
v̂(0)

v̂(0) − 2ρ0∂ρ |v̂[k0(n, ρ0)]|/3

)
,

ρ2(n) = 1

2
ρ0(n,U )

(
1 +

√
v̂(0) − 2ρ0∂ρ |v̂[k0(n, ρ0)]|/3

v̂(0)

)
.

(24)

To asses the accuracy of the analytical estimations on the
coexistence region, in Fig. 2 a comparison is shown between
the approximate solution of Eq. (24) and the exact values of
the density at the beginning and end of the SSC. The exact
values are determined from the exact mean-field value of
εn(ρ) following the procedure described in this section. In
Fig. 2 the exact coexistence regions corresponding to different
occupancy numbers are represented by the blue dots while
the analytical estimation of Eq. (24) is represented by the
continuous red curves.

As can be seen, the analytical approximation underesti-
mates the extent of the SSC. It is possible to show that this
is a general feature resulting from neglecting higher order
corrections in ρ − ρ0(n,U ) for the expansion of εn(ρ). Nev-
ertheless, the result serves as a simple analytical lower bound
for the extent of the SSC, which only exists in a narrow region.

C. Numerical phase diagram

The numerical minimization of the energy function allows
us to construct the full phase diagram for the potential under
consideration, v(r) = (1 + r6)−1. This ground-state phase di-
agram is shown in Fig. 3, including not only the pure cluster
phases (nCC), but also the coexistence regions between clus-
ter solids with different occupation (SC) and the SSC. The
method followed to determine the coexistence regions in this
case is the same one sketched in the previous section. As
expected, we observe that with increasing density the pure
cluster phase with occupancy number n is limited from below
by the coexistence region of the cluster transition from n − 1

SF
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5CC5CC

SSC

SC

0 20 40 60
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1.5
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D
en

si
ty

,
Ρ

FIG. 3. Ground-state phase diagram for the potential v(r) =
(1 + r6)−1. Regions are determined by our numerical mean-field cal-
culations. Pure phases are represented in light blue for the superfluid
region (SF), black for the single-particle triangular lattice (STL),
and gray scale for the cluster crystal solids (nCC). The coexistence
regions are colored in green for the solid coexistence (SC) and
orange for the solid-superfluid coexistence (SSC). Dark blue dots
are the superfluid-supersolid boundary obtained with Monte Carlo
techniques in Ref. [2], taken with permission of the authors.

to n and from above by the coexistence region of the cluster
transition from n to n + 1.

As can be seen in Fig. 3, the SSC only exists in a narrow
region between the solid and the superfluid phases. Thus, the
SSC region follows the nonmonotonic behavior of the energy
crossing line of the solid-to-fluid transition (see Fig. 1). This
behavior is well documented with Monte Carlo simulations
for the supersolid phases of this potential [2]. Moreover, it
was also reported that the density intervals corresponding to
the coexistence of two solid phases are more likely to develop
supersolidity, which is consistent with the phenomenology
observed for the SSC in Fig. 3.

For comparison, we also show in Fig. 3 the superfluid-
supersolid boundary as numerically obtained in Ref. [2] with
dark blue dots. The correspondence between the exact local-
ization of these points and our SSC boundary without any
extra fit is remarkable, although for small density this cor-
respondence is lost. The superfluid phase boundary is thus
quantitatively and qualitatively better described by looking at
the coexistence regions, which are a direct consequence from
considering that clusters phases have a fixed integer number
of particles per cluster.

An interesting feature regarding the phase diagram is
related to the boundary of the coexistence regions. From
the thermodynamical point of view a system with only one
component cannot present an extended region in the phase di-
agram in which three phases coexist. This constraint is a result
of the Gibbs phases rule. At the same time, when the three
coexistence regions solid(n)-solid(n + 1), solid(n)-superfluid,
and solid(n + 1)-superfluid meet there are a number of ther-
modynamical constraints that need to be fulfilled. As a result
the topology of the phase diagram, in the region where coexis-
tence between different phases coincides, needs to reproduce
the kind of behavior shown in Fig. 4, independently of the
level of approximation of the calculation.
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FIG. 4. Zoom of the ground-state phase diagram of Fig. 3 in-
dicating the coexistence regions of clusters with occupations n and
n + 1, and the superfluid. (a) n = 1 and (b) n = 7. Pure phases are
represented in light blue for the superfluid region (SF), black for the
single-particle triangular lattice (STL), and gray scale for the cluster-
crystal solids (nCC). The coexistence regions are colored in green
for the solid coexistence (SC) and orange for the solid-superfluid-
coexistence (SSC).

To understand why this is a general result we have to real-
ize that, within each coexistence region, the chemical potential
and the pressure have constant values along the density axis.
At the same time, the pressure and the chemical potential need
to be continuous functions of the density ρ and of the strength
of the interaction U . Consider now that at some value U0 the
coexistence region of the transition from phase I to phase II,
with increasing density, meets the coexistence region of the
transition from phase II to phase III. This means that at U0

the pressure and the chemical potentials of the pure I and
III phases, at the boundary of the whole I-II-III coexistence
region, are equal. And this is exactly the condition for the
establishment of the I-III coexistence region. The above ar-
guments imply that at U0 the energy curves resulting from
the condition ρ2 ∂ε(ρ)

∂ρ
= constant, associated with the coexis-

tence regions I-II, II-III and I-III, coincide. Consequently the
overlap of the I-II and II-III coexistence regions with the I-III
coexistence region have to be vertical, as shown in panels (a)
and (b) of Fig. 4.

It is worth noting, from Eqs. (16) and (24), that for a given
cluster state the extent in densities of the SSC region decreases
as we approach the bottom of the dome shaped curve sepa-
rating the solid phase from the superfluid phase (Fig. 2). This
mathematical result is a consequence of the fact that, at a given
U , the angle between the curves εn(ρ) and εh(ρ) in its crossing
point decreases to zero as we approach the limit of stability of
the solid region. Lowering this angle implies that the curves
are progressively more parallel and, consequently, the region
in which we can further minimize the energy by creating
a coexistence state, i.e. following an energy-density relation
of the form εc(ρ) = ε(ρ1) − Pc(ρ−1 − ρ−1

1 ), is consistently
diminished. The functionality εc(ρ) previously stated, is just
a consequence of demanding that the pressure of the system
within the coexistence region remains constant as the density
is varied. This explanation clarifies why the extent of the SSC
regions increases as we move away from the bottom of each
solid dome.

The above discussion clarifies the connection between the
solid coexistence (SC) states with the SSC. In short, the
coexistence regions between different pure cluster phases al-
ways evolve into a SSC phase as the interaction strength is
decreased. It can be ensured that this transition occurs at a
fixed value of U in the whole density range of coexistence
between different cluster phases and, at the moment of such
transition, the extent of the SSC is the biggest possible. In
this sense it can be understood that cluster coexistence favors
the development of the SSC, as previous works have pointed
out [2].

IV. CONCLUDING REMARKS

We have shown that the analytical understanding of the
ground-state phase diagrams of ultrasoft bosons can be
achieved by a variational approach when considering an in-
teger number of particles per cluster. With this assumption,
the detailed shape of the phase diagrams can be improved
with respect to mean-field calculations where a real number
is considered for the cluster occupation. The analytical ap-
proach introduced here is generally applicable to any ultrasoft
potential.

Among the determinations of the regions of coexistence
of solid phases, the solid-superfluid coexistence region (SSC)
is particularly relevant. The comparison with previous Monte
Carlo outcomes of bosonic systems revealed that the SSC
region is visually coincident with the supersolid phase. The
method can be used to find nontrivial information like detailed
phase diagrams and possible markers for the emergence of
supersolid regimes.
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