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Electromagnetically-induced-transparency (EIT) cooling has established itself as one of the most widely used
cooling schemes for trapped ions during the past 20 years. Compared to its alternatives, EIT cooling possesses
important advantages such as a tunable effective linewidth, a very low steady-state phonon occupation, and
applicability for multiple ions. However, the existing analytic expression for the steady-state phonon occupation
of EIT cooling is limited to the zeroth order of the Lamb-Dicke parameter. Here we extend such calculations and
present the explicit expression to the second order of the Lamb-Dicke parameter. We discuss several implications
of our refined formula and are able to resolve certain difficulties in existing results.
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I. INTRODUCTION

Laser cooling of a trapped ion into its motional
ground state is a key step towards various applications in
quantum simulation [1–14], quantum computing [15–17], and
quantum metrology [18–20], as well as testing foundations
of quantum mechanics [21]. There exists a variety of cooling
schemes that work in the Lamb-Dicke (LD) regime in which
the Lamb-Dicke parameter η satisfies η � 1. Those schemes
could be roughly categorized into sideband cooling [22,23],
dark-state cooling [24–34], and feedback cooling [35–38].

To date, electromagnetically-induced-transparency (EIT)
cooling is perhaps one of the most widely used dark-
state cooling scheme in trapped-ion experiments [39–47].
Compared to its alternatives, EIT cooling possesses several
outstanding advantages. First, compared to traditional side-
band cooling, the resolved sideband condition, namely, the
linewidth γ of the excited state should be much smaller than
the axial secular trap frequency ν, is not required in EIT cool-
ing. Second, compared to other dark-state cooling schemes as
well as feedback cooling schemes, EIT cooling, in its ideal
realization, only requires three internal energy levels and two
static lasers, making it an experimentally friendly scheme.
Third, the internal ground state is prepared as a dark state of
the carrier transition, eliminating one of the two major heating
mechanisms (the other one is the blue sideband transition),
and therefore a very low steady-state phonon occupation could
be reached. Moreover, since the internal excitation of the
ion is transparent to the lasers, in a multiple ion setup, EIT
cooling could easily cool down one phonon mode without
heating up the others. For the same reason, it was recently
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pointed out that EIT cooling could actually be implemented in
the strong-sideband-coupling regime, speeding up the cooling
rate by more than one order of magnitude without a significant
increase in the steady-state phonon occupation [48,49].

In this work we are primarily interested in the steady-state
phonon occupation defined as n̄st = tr(n̂ρ̂st ), where n̂ is the
phonon number operator and ρ̂st is the density operator of the
system at steady state. In the literature, n̄st is often expressed
as an η-independent term plus a contribution of the order
η2, that is, n̄st = const + O(η2). Here we note that the recoil
energy due to one-photon emission is of the order η2. As an
example, for sideband cooling n̄sb

st = (α + 1
4 )( γ

2ν
)2 + O(η2),

where the geometry factor α = 2
5 for the dipole transition,

while for standing-wave sideband cooling n̄SWSC
st = 1

4 ( γ

2ν
)2 +

O(η2) [50]. In comparison, n̄EIT
st for EIT cooling was first

given in Ref. [24] as

n̄EIT
st = γ 2

16�2
+ O(η2), (1)

where � is the detuning for both lasers used in EIT cooling.
Equation (1) also reflects the flexibility of EIT cooling since
� is highly tunable, while in the case of sideband cooling,
the axial secular trap frequency ν is often a given constant.
Subsequent dark-state cooling schemes utilize more compli-
cated energy-level structures and laser setups to suppress both
the carrier and blue sideband transitions, thus completely
eliminating the η-independent term on the right-hand side
of Eq. (1) and reaching a steady-state phonon occupation
of O(η2) [25,27–29,34], which means that the ion could be
cooled down to recoil or even subrecoil temperature.

To this end we point out that the expression (1) poses at
least two theoretical difficulties. (i) In the EIT cooling setup,
the excited state |e〉 of linewidth γ dissipates to two ground
states |g〉 and |r〉, with dissipation rates γg and γr satisfying
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FIG. 1. (a) Standard three-level configuration of EIT cooling.
The system consists of a dissipative excited state |e〉 and two ground
states |g〉 and |r〉. The transitions |e〉 ↔ |g〉 and |e〉 ↔ |r〉 are induced
by two external lasers. (b) Dynamics of internal degrees of freedom
can be understood on the basis of {|e〉, |b〉, |d〉}, where the dark state
|d〉 decouples from |b〉 and |e〉, and the bright state |b〉 is coupled to
|e〉 with an effective coupling strength �b.

γ = γg + γr , as can be seen from Fig. 1(a). However, the dark
state is a certain combination of |g〉 and |r〉, and cooling is es-
sentially induced by an effective dissipation rate γeff from |e〉
to this dark state. In a certain parameter regime (which does
not violates the EIT cooling conditions) one could even have
γeff ≈ 0 (this statement will become clear later) and cooling
should not be possible. Such an effect cannot be predicted
from Eq. (1) since it only depends on γ . (ii) The detuning
� is usually highly tunable in experiments. Therefore, it is
possible to make it very large such that γ 2

16�2 is comparable
to or even less than the O(η2) term, in which case the recoil
temperature could already be achieved without eliminating
the blue sideband. However, this statement can only be made
precise once we have the exact expression for the O(η2) term.
Therefore, in this work we perform a more refined calculation
of n̄EIT

st which gives us an explicit expression to the order of
η2, with which we are able to resolve these two difficulties.

This paper is organized as follows. In Sec. II we derive
the master equation for EIT cooling in a slightly different
representation compared to previous works, which would be
more convenient for the derivations in this work. In Sec. III we
solve the master equation to obtain our main result, namely,
the analytic expression for the O(η2) term in Eq. (1). We
verify our result by comparing it with the exact numerical
solutions of the master equation. We also discuss several im-
plications of it and use it to resolve the two above-mentioned
difficulties of Eq. (1). We summarize in Sec. IV. Since in this
work we focus on only EIT cooling, we will eliminate the
superscript in the expression of n̄EIT

st in the following.

II. MASTER EQUATION FOR EIT COOLING

In a standard EIT cooling setup, an ion of mass M is
confined in a harmonic trap with axial secular trap frequency
ν. As shown in Fig. 1(a), the excited state |e〉 is coupled to
two ground states |g〉 and |r〉 by two lasers with frequencies
ωg and ωr and with Rabi frequencies �g and �r . The angles
of the lasers with respect to the motional axis are ϕg and ϕr ,
respectively. The excited state |e〉 dissipates to |g〉 and |r〉 with
rates γg and γr . The energy differences between |e〉 and |g〉 and
between |e〉 and |r〉 are denoted by �eg and �er , respectively.

The dynamics of the system is described by the Lindblad
master equation [51,52] (we set h̄ = 1 throughout this work)

d

dt
ρ̂(t ) = −i[Ĥ , ρ̂(t )] + D(ρ̂(t )). (2)

Here ρ̂(t ) is the density operator of the system at time t . The
Hamiltonian Ĥ takes the form

Ĥ = νâ†â − �|e〉〈e|

+
(

�g

2
|e〉〈g|eikgx̂ cos(ϕg) + H.c.

)

+
(

�r

2
|e〉〈r|eikr x̂ cos(ϕr ) + H.c.

)
, (3)

where â† (â) is the creation (annihilation) operator of the ion’s
motional state (phonon), x̂ = 1√

2Mν
(â† + â) is the position

operator, and the wave numbers kg = ωg/c and kr = ωr/c
(c is the speed of light). As one of the EIT cooling con-
ditions, the detunings of both lasers are tuned to the same,
that is,

� = ωg − �eg = ωr − �er . (4)

The LD parameters ηg and ηr related to the two lasers are
defined as

ηg = kg

√
1

2Mν
, ηr = kr

√
1

2Mν
. (5)

Expanding Ĥ to the first order of ηg and ηr , we get

ĤLD = νâ†â − �|e〉〈e|

+
(

�g

2
|e〉〈g| + �r

2
|e〉〈r| + H.c.

)

+
(

iηg cos(ϕg)
�g

2
|e〉〈g|(â† + â) + H.c.

)

+
(

iηr cos(ϕr )
�r

2
|e〉〈r|(â† + â) + H.c.

)
. (6)

The dissipative part D will only be kept to the zeroth order
of the LD parameters since the next nonvanishing term would
contribute only to the fourth order of the LD parameters [50],
namely, we take D ≈ D0, with

D0(ρ̂) =
∑
j=g,r

γ j

2
(2| j〉〈e|ρ̂|e〉〈 j| − {ρ̂, |e〉〈e|}). (7)

We note that D0 denotes the usual spontaneous emission when
the atomic motion is neglected.

Under the condition (4), we can perform a unitary
transformation on the subspace {|g〉, |r〉} spanned by states
|g〉 and |r〉 as

|d〉 = cos(θ )|g〉 − sin(θ )|r〉, (8)

|b〉 = sin(θ )|g〉 + cos(θ )|r〉, (9)

with tan(θ ) = �g/�r . Then |d〉 is a dark state in that it de-
couples from the subspace spanned by |b〉 and |e〉 if only
the internal degrees of freedom are considered. Here |b〉 is
referred to as the bright state since it is coupled to |e〉. In
the usual derivation of EIT cooling, |b〉 and |e〉 are further
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FIG. 2. The EIT cooling dynamics in the {|d〉, |b〉, |e〉} repre-
sentation. (a) All the possible transitions up to η2 are shown by
solid lines, which include |d, n〉 ↔ |e, n ± 1〉, |b, n〉 ↔ |e, n〉, and
dissipations |e, n〉 → |b, n〉 and |e, n〉 → |d, n〉. Meanwhile, the con-
tributions of the sideband transitions |b, n〉 ↔ |e, n ± 1〉 as well as
the effective dissipations |e, n〉 → |d, n ± 1〉 are of O(η4) and are
shown by dashed lines. (b) In the steady state of EIT cooling, the
population is mostly in the state |d, 0〉. We thus are limited to the
subspace V0 spanned by the seven energy levels most closely related
to this state as shown by the solid lines.

diagonalized into two states |±〉 such that the internal degrees
of freedom are fully diagonalized. The second condition for
EIT cooling is chosen as

� = �2
g + �2

r

4ν
(10)

such that the red sideband transition |d, n + 1〉 ↔ |+, n〉 is
resonant [24,53]. In the {|d〉, |±〉} representation, the state |−〉
is neglected since it is far off-resonance, leaving the two states
{|d〉, |+〉} together with the phonon states closely resembling
the standing-wave sideband cooling [48], with an effective
dissipation rate from |+〉 to |d〉 denoted by γeff . In general,
γeff < γ . This physical picture, although nice for a rough un-
derstanding since it reduces the model to the well-understood
standing-wave sideband cooling, has one important difficulty
that if we directly apply the standing-wave sideband cooling
formalism, the obtained n̄st will only depend on γeff instead
of γ . The truth is that the dynamics between |d〉 and |−〉
cannot really be neglected since the internal dynamics in the
subspace {|b〉, |e〉} could still be much faster than that of the
red sideband. To correctly obtain a refined expression for
n̄st, one has to take all the internal states into account. We
thus work in the {|d〉, |b〉, |e〉} representation of the internal
states in the following, which is shown in Fig. 2(a). In this

representation we can rewrite ĤLD in Eq. (6) as

ĤLD = νâ†â − �|e〉〈e| +
(

�b

2
|e〉〈b| + H.c.

)

+
(

iη
�d

2
|e〉〈d|(â + â†) + H.c.

)
, (11)

where �d = �g�r√
�2

g+�2
r

, �b =
√

�2
g+�2

r , and η = ηg cos(ϕg) −
ηr cos(ϕr ). Here we have neglected the sideband transitions
between |b, n〉 and |e, n ± 1〉 since their contributions are of
the order η4. We can also rewrite D0 in Eq. (7) as

D0(ρ̂) =
∑
j=d,b

γ j

2
(2| j〉〈e|ρ̂|e〉〈 j| − {ρ̂, |e〉〈e|}), (12)

with γd = γg cos2(θ ) + γr sin2(θ ) and γb = γr cos2(θ ) +
γg sin2(θ ).

III. RESULTS AND DISCUSSION

In the following we compute the steady-state solution of
Eq. (2) to the second order of η. Since the population is
mostly in the state |d, 0〉 when reaching the steady state of
EIT cooling, we restrict Eq. (2) to the subspace V0 spanned by
the seven states

V0 = {|d, 0〉, |b, 0〉, |e, 0〉, |d, 1〉, |b, 1〉, |e, 1〉, |d, 2〉}, (13)

as shown in Fig. 2(b). The reason for this choice is that the
states in V0 can be reached by at most one blue sideband
transition starting from |d, 0〉, which is assumed to be much
weaker than both the dissipation and the red sideband. Then
the steady-state solution ρ̂st to Eq. (2) in the subspace V0 can
be found by solving the set of equations

tr(ÔP{−i[ĤLD, ρ̂st] + D0(ρ̂st )}) = 0, (14)

where P is the projection operator into the subspace V0 and
Ô is an operator belonging to the group {| j〉〈 j|, | j〉〈k| +
|k〉〈 j|, i| j〉〈k| − i|k〉〈 j|} ( j 	= k), where | j〉 and |k〉 are any of
the states in V0.

Equation (14) contains 49 equations in total, which in
general is not easy to solve directly. However, under the
conditions γg, γr � �, η�d � �b, and Eq. (10), we find that
certain subblock of equations decouples from the rest, thus
simplifying the calculations, and we can get the solutions for
all the diagonal terms as

ρb0,b0 = η2�2
d (γd + γb)

4�2
bγd

ρd0,d0, (15a)

ρe0,e0 = 0, (15b)

ρd1,d1 = η2�2
d (γd + γb)

4�2
bγd

(
1 + 4γdν

2(γd + γb)

η2�2
d�

2
b

)
ρd0,d0,

(15c)

ρb1,b1 = η2�2
d (γd + γb)

4�2
bγd

ρd0,d0, (15d)

ρe1,e1 = 0, (15e)

ρd2,d2 = η2�2
d

4�2
b

(
γb

γd

)
ρd0,d0. (15f)
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Here we have used ρb0,b0 = tr(|b, 0〉〈b, 0|Pρ) and similar
solutions for other terms. The detailed derivation of Eq. (15)
is in the Appendix. Using ρd0,d0 ≈ 1, we obtain n̄st as

n̄st ≈ρd1,d1 + ρb1,b1 + ρe1,e1 + 2ρd2,d2

≈ γ 2

16�2
+ η2�2

d

�2
b

(
1

2
+ γb

γd

)
. (16)

Equation (16) is the main result of this work. Compared with
Eq. (1), we can see that it gives the explicit expression to the
order of η2. In the following we discuss two special parameter
regimes which are frequently considered.

First, �g � �r and thus θ ≈ 0. In this regime we have
|d〉 ≈ |g〉, |b〉 ≈ |r〉, �d ≈ �g, �b ≈ �r , γd ≈γg, and γb ≈γr .
Consequently, we have

n̄st ≈ γ 2

16�2
+ η2�2

g

�2
r

(
1

2
+ γr

γg

)
. (17)

In the usual experimental setup, the condition γg � γr can be
satisfied (if this is not satisfied, one could simply swap the
roles of |g〉 and |r〉). In this case the coefficient of the η2

term on the right-hand side of Eq. (17) can often be smaller
compared to the first term and then Eq. (1) will agree well with
the exact solution of Eq. (2). Now we note that in Eq. (17), the
η2 term is explicitly dependent on γg and γr . From a purely
theoretical point of view, Eq. (17) shows that n̄st diverges
when γg → 0, which coincides with the intuition that in this
limit ground-state cooling cannot be achieved. This is an ef-
fect which cannot be predicted from Eq. (1).

Second, �g = �r and thus θ = π/4. In this case |d〉 and
|b〉 are equal superpositions of states |g〉 and |r〉 as |d〉 =

1√
2
(|g〉 + |r〉) and |b〉 = 1√

2
(|g〉 − |r〉), and �d = �b

2 = 1√
2
�r

and γd = γb = γ

2 . Thus we have

n̄st ≈ γ 2

16�2
+ 3

8
η2. (18)

From Eqs. (17) and (18) we can see that for EIT cooling,
the contribution from the η2 term is not necessarily smaller
than from the η-independent term, since we can tune � to be
much larger than γ with the EIT cooling conditions in Eqs. (4)
and (10) still being satisfied. The necessity of using more
elaborate dark-state cooling schemes with more lasers is thus
obscure since one could already reach the recoil temperature
with carefully tuned parameters in standard EIT cooling. To
this end, the two difficulties from Eq. (1) have been resolved
based on our analytical result.

To verify Eq. (16), we compare it with the exact numerical
solution of Eq. (2), which is shown in Fig. 3. To clearly see
the effect of the η2 term in Eq. (16), we also plot in Fig. 3 the
predictions from Eq. (1) without the η2 correction term. More
concretely, we perform two sets of simulations, one with �g =
�r/5 [Figs. 3(a), 3(c), and 3(e)] and the other with �g = �r

[Figs. 3(b), 3(d), and 3(f)]. In each set of simulations, we show
n̄st as a function of �g [Figs. 3(a) and 3(b)], ηg [Figs. 3(c) and
3(d)], and γg [Figs. 3(e) and 3(f)], respectively. We can see
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FIG. 3. Comparison of predicted steady-state phonon occupation
n̄st . The solid, dashed, and dotted lines in all the panels stand for
the exact numerical solutions from Eq. (2), predictions from our
analytical expression (16), and predictions from the previous results
in Eq. (1) with the O(η2) term neglected, respectively. (a), (c), and
(e) Plot of n̄st as a function of (a) �g, (c) ηg, and (e) γg, under the
condition �g = �r/5. (b), (d), and (f) Plot of n̄st as a function of
(b) �g, (d) ηg, and (e) γg, under the condition �g = �r . In (c) and
(e) we have used �g = 4ν, while in (d) and (f) we have used �g =
15ν. In (e) and (f) we have set γg + γr = 20ν. The other parame-
ters (if not specified in the figures) are γg/ν = 20/3, γr/ν = 40/3,
ηg = ηr = 0.15, ϕg = π/4, and ϕr = 3π/4; � is chosen according
to Eq. (10).

that in all the panels predictions from our analytical expres-
sion (16) agree better with the exact numerical solutions. In
particular, from Figs. 3(b), 3(d), and 3(f) we can see that the
effect of the η2 term is more significant when �g = �r ; this
is because in this case the �d/�r term in the coefficient of
η2 reaches its maximum value 1

2 . From Figs. 3(c) and 3(d) we
can see that the η2 correction term is more significant when ηg

becomes larger; in fact, it can be several times larger than the
contribution of the zeroth term in Eq. (1) when ηg approaches
a moderate value of 0.2. Figure 3(e) also reveals the failure
of Eq. (1) when �g � �r and γg is small, which is the case
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we considered in Eq. (17). Figure 3(f) demonstrates the case
of Eq. (18), where our prediction differs from Eq. (1) by a
constant shift 3η2/8, and we can see that this shift could be
much larger than the zeroth-order term γ 2

16�2 .
The parameter regimes considered in our numerical sim-

ulations could readily be explored in current ion cooling
experiments. Taking the 40Ca+ ion as an example, EIT cooling
can be implemented on the 2S1/2 → 2P1/2 transition. Both
2S1/2 and 2P1/2 have two Zeeman sublevels, which consti-
tute a four-level system. Then one can choose either |e〉 =
|P,+〉, |g〉 = |S,+〉, and |r〉 = |S,−〉 or |e〉 = |P,−〉, |g〉 =
|S,−〉, and |r〉 = |S,+〉 for EIT cooling. For both choices
we have γg/γr = 1/2, which is the case we considered in
Figs. 3(a)–3(d). The Rabi frequencies �g and �r vary case by
case; however, from Eq. (16) we can see that what really mat-
ters for n̄st is the ratio �g/�r , which is often widely tunable
in experiments. The Lamb-Dicke parameter could be tuned by
changing the relative angle between lasers or using different
ions (for example, the Be+ and Yb+ ions have very different
masses and thus the Lamb-Dicke parameters will be very
different if the laser angle remains the same [44–46]). Here we
also note that for a very large Lamb-Dicke parameter, Eqs. (1)
and (16) would no longer be valid. This situation is studied
numerically in Ref. [54]. The ratio γg/γr can be tuned by using
different ions; for example, for Yb+ we have γg/γr = 1 [45].
The numerical solutions of the Lindblad master equation are
obtained using the QUTIP package [55].

IV. CONCLUSION

In summary, we have derived a refined expression for the
steady-state phonon occupation n̄st of the EIT cooling, where
the contribution to the second order of the Lamb-Dicke pa-
rameter was explicitly given. Based on our analytical result,
we showed that n̄st not only depends on the linewidth γ of the
excited state, but also depends on the detailed ratios �d/�b

and γb/γd . In particular, we pointed out that if �g � �r , then
n̄st diverges when γg → 0, thus resolving one difficulty from
Eq. (1) which predicts that n̄st → 0 even in a parameter regime
that cooling cannot be achieved. We also showed that the η2

correction term may well be larger than the η-independent
term when �g ≈ �r or when ηg is large, which means that
with standard EIT cooling one could already reach the re-
coil temperature, obscuring the necessity of utilizing more
complicated dark-state cooling schemes. Our results indicate
that to suppress the η2 correction term, thus reaching a low
steady-state phonon occupation in ion cooling experiments,
one should properly choose the energy levels as well as the
laser strengths such that �g � �r and that γg is comparable
to or larger than γr .
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APPENDIX: DETAILS FOR DERIVING THE
STEADY-STATE PHONON OCCUPATION

We denote the Hamiltonian ĤLD and D in the subspace V0

by Ĥ s
LD and Ds, which can be written as

Ĥ s
LD = − �|e, 0〉〈e, 0| + ν|d, 1〉〈d, 1| + ν|b, 1〉〈b, 1|

− (� − ν)|e, 1〉〈e, 1| + 2ν|d, 2〉〈d, 2|

+ �b

2
(|b, 0〉〈e, 0| + |e, 0〉〈b, 0|)

+ �b

2
(|b, 1〉〈e, 1| + |e, 1〉〈b, 1|)

+ i
η�d

2
(|e, 1〉〈d, 0| − |g, 0〉〈e, 1|)

+ i
η�d

2
(|e, 0〉〈d, 1| − |d, 1〉〈e, 0|)

+ i
η�d

2
(|e, 1〉〈d, 2| − |d, 2〉〈e, 1|) (A1)

and

Ds(ρ̂) = γd

2
(2|d, 0〉〈e, 0|ρ̂|e, 0〉〈d, 0| − {ρ̂, |e, 0〉〈e, 0|})

+ γd

2
(2|d, 1〉〈e, 1|ρ̂|e, 1〉〈d, 1| − {ρ̂, |e, 1〉〈e, 1|})

+ γb

2
(2|b, 0〉〈e, 0|ρ̂|e, 0〉〈b, 0| − {ρ̂, |e, 0〉〈e, 0|})

+ γb

2
(2|b, 1〉〈e, 1|ρ̂|e, 1〉〈b, 1| − {ρ̂, |e, 1〉〈e, 1|}),

(A2)

respectively. Substituting Eqs. (A1) and (A2) and all the pos-
sible Ô into Eq. (14), we will get 49 coupled equations. Here
we first consider the seven equations by taking Ô = | j〉〈 j|,
which are

γdρe0,e0 − η�d

2
σ x

d0,e1 = 0, (A3)

γbρe0,e0 − �b

2
σ

y
b0,e0 = 0, (A4)

− (γd + γb)ρe0,e0 + �b

2
σ

y
b0,e0 + η�d

2
σ x

e0,d1 = 0, (A5)

γdρe1,e1 − η�d

2
σ x

e0,d1 = 0, (A6)

γbρe1,e1 − �b

2
σ

y
b1,e1 = 0, (A7)

− (γd + γb)ρe1,e1 + η�d

2
σ x

d0,e1

+ �b

2
σ

y
b1,e1 + η�d

2
σ x

e1,d2 = 0, (A8)

− η�d

2
σ x

e1,d2 = 0, (A9)

where we have used σ
y
jk = tr[(i| j〉〈k| − i|k〉〈 j|)ρ̂st] and σ x

jk =
tr[(| j〉〈k| + |k〉〈 j|)ρ̂st]. Solving the above equations, we get

ρe0,e0 = ρe1,e1, (A10a)

σ x
d0,e1 = σ x

e0,d1, (A10b)

σ
y
b0,e0 = σ

y
b1,e1. (A10c)
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Now we substitute Eqs. (A10) into the eight equations

γbρe0,e0 − �b

2
σ

y
b0,e0 = 0, (A11)

γdρe1,e1 − η�d

2
σ x

e0,d1 = 0, (A12)

− γd + γb

2
σ x

b0,e0 + �σ
y
b0,e0 + η�d

2
σ x

b0,d1 = 0, (A13)

− �bρe0,e0 − �σ x
b0,e0 − γb + γd

2
σ

y
b0,e0

+ η�d

2
σ

y
b0,d1 + �bρb0,b0 = 0, (A14)

− η�d

2
σ x

b0,e0 − νσ
y
b0,d1 + �b

2
σ

y
e0,d1 = 0, (A15)

− η�d

2
σ

y
b0,e0 + νσ x

b0,d1 − �b

2
σ x

e0,d1 = 0, (A16)

− η�dρe0,e0 + η�dρd1,d1 + �b

2
σ

y
b0,d1

− γd + γb

2
σ x

e0,d1 − (ν + �)σ y
e0,d1 = 0, (A17)

− �b

2
σ x

b0,d1 + (ν + �)σ x
e0,d1 − γb + γd

2
σ

y
e0,d1 = 0, (A18)

which, together with the conditions 4�ν = �2
b and η2�2

d �
�2

b, result in

ρd1,d1 ≈ ρb0,b0

(
1 + 4γdν

2(γd + γb)

η2�2
d�

2
b

)
, (A19)

σ x
d0,e1 = σ x

e0,d1 ≈ ρb0,b0
8ν2γd

η�d�
2
b

, (A20)

σ
y
b1,e1 = σ

y
b0,e0 ≈ ρb0,b0

8ν2γb

�3
b

. (A21)

Now substituting σ x
d0,e1, σ x

e0,d1, σ
y
b1,e1, and σ

y
b0,e0 back

into Eq. (14), we get the solutions [Eq. (15)] for the
diagonal terms.
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