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Classical backpropagation for probing the backward rescattering time of a tunnel-ionized
electron in an intense laser field
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We present a method to estimate the backward rescattering time of a tunnel-ionized electron in an intense laser
pulse. The idea of the classical backpropagation method is applied to determine the backward rescattering time
and its dependence on various parameters such as the ionization potential of the parent ion, its spatial profile
and the peak intensity and wavelength of the driving laser field. The accurate estimation of the rescattering
time would provide critical information in analyzing ultrafast rescattering dynamics in applications such as
high-order harmonic generation, above-threshold ionization, and laser-induced electron diffraction experiments.
We find that the backward rescattering time is significantly affected by the peak intensity of the laser pulse.
The rescattering time changes by a few hundred attoseconds when the peak intensity varies from 1 × 1014 to
5 × 1014 W/cm2.
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I. INTRODUCTION

Understanding strong-field phenomena requires an accu-
rate description of the ultrafast electron dynamics in an intense
laser field. When an atom interacts with an intense laser field,
a valence electron can tunnel out every half optical cycle
[1–3]. Subsequently, the electron can be driven back to the
parent ion when the sign of the laser field is reversed in the
next half optical cycle. The returning electron can rescatter
or recombine with the parent ion. The recombination of the
electron results in EUV or soft X-ray emissions generated
through high-order harmonic generation (HHG) [4–11] and
frustrated tunneling ionization [12–14]. Electron rescattering
is responsible for the formation of the high energy electrons in
the above-threshold ionization (ATI). The rescattered electron
provides thus critical information on the parent ion in the ATI
process [15–20], and related phenomena such as laser-induced
electron diffraction (LIED) [21–25] or other phenomena ac-
companying strong-field ionization [26–28]. Therefore, an
accurate description of rescattering or recombination pro-
cesses is of great importance.

An important parameter characterizing rescattering is the
rescatternig time. It determines the phase of extreme ultravio-
let emission in HHG known as attochirp [29,30], the energy of
ATI electrons in an ATI photoelectron spectrum [17–19], and
the phase accumulation of the diffracted electrons in LIED
experiments.

A full ab initio description of the ultrafast electron dy-
namics can be provided by the time-dependent Schrodinger
equation (TDSE). A solution of the TDSE provides exact
information on the evolution of the electronic wave function
in an intense laser field for simple atoms such as H and He and
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reasonably good approximations even for complicated atoms
[31,32]. However, it is challenging to extract quantitative in-
formation from the evolution of the wave function for the
description of the ultrafast electron dynamics. One approach
to analyze the electron’s trajectories using the solution of the
TDSE is to use Bohmian mechanics [33–35]. However, it
only provides the trajectories corresponding to the total wave
function, not the trajectories corresponding to ionized wave
packets produced at each half optical cycle of the laser pulse.
Therefore, it is difficult to obtain a clear intitutive interpre-
tation of ionization dynamics using the solution obtained by
solving the TDSE.

To introduce the notion of rescattering time we must rein-
troduce the concept of an electron trajectory in some form.
This can be done, for instance, basing on the picture of ioniza-
tion provided by the strong-field approximation (SFA) model
or trajectory-based semiclassical models developed for the de-
scription of the strong field dynamics of a tunneling ionization
[36–38]. While a clear physical picture of the trajectories can
be obtained using these approaches, the results obtained by
the SFA model are highly dependent on the initial conditions
assumed at the birth time. Also, in the framework of the
SFA model and the quantum orbits approach it is difficult to
consider the influence of the atomic potential.

Recently, the classical backpropagation method has been
proposed [39–43], which provides a consistent theoretical
framework allowing to reintroduce trajectories in quantum
mechanics. The classical backpropagation method combines
advantages provided by the two approaches, the TDSE and the
semiclassical approach. First, the evolution of the wave func-
tion is obtained by solving the TDSE which provides accurate
information on the ultrafast electron dynamics, including tun-
neling and rescattering in an intense laser field. Then, the
electron trajectory is backpropagated by solving Newton’s
equation of motion, in which the Coulomb potential is taken
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FIG. 1. Concept of the classical backpropagation for probing backward rescattering time. (a) Electron probability distribution (blue line)
calculated by solving the TDSE and spatial derivative of phase (red line) in Ar. The blue area is the region where the classical backpropagation
method is applied. (b) Evolution of an electron wave function colored in the logarithmic scale with an electric field (blue solid line) and
electron trajectories (white solid and dashed lines) obtained using the classical backpropagation. The wave function shown in (a) is the part
of the wave function shown in (b) at the end of the propagation time. (c) Backward rescattering times tr obtained for different final momenta
using the classical backpropagation for the right direction (red line with diamonds, x > 0) and the left direction (blue line with circles,
x < 0). Note that the range of the y axis for the left and the right directions are different. A cos-squared envelope for the laser pulse as
E(t) ∝ cos2(πt/4T1) cos(2πt/T1 + φCEP ). Here, the center wavelength is 800 nm, T1 is 2.6 fs, and φCEP is 0.5π . The peak intensity is 2.0 ×
1014 W/cm2.

into account, with the initial (or rather final) conditions pro-
vided by the solution of the TDSE. The backpropagation stops
when the tunneling criterion is met [39]. In this way, the
tunneling time has been determined in an unambiguous way
in an attosecond angular streaking configuration [39–41].

In the present work, we use the idea of the classical back-
propagation method to estimate a backward rescattering time
(BRT) for the process of tunneling ionization in an intense
laser field. We study the dependence of the BRTs on various
factors, such as the peak intensity and the center wavelength of
the driving laser field, the ionization potential of the target ion
and the spatial profile of the ionic potential. We find that the
peak intensity is the most essential parameter that determines
the BRT. An accurate estimation of the BRT will provide
useful information in applications such as LIED, attosecond
holography, and HHG.

This paper is organized as follows. A brief description
of the semiclassical picture of the backward rescattering dy-
namics is given in Sec. II A. The concept of the classical
backpropagation method and its application to BRT is de-
scribed in Sec. II B. The BRTs obtained for different laser
parameters and ionic potential shapes are analyzed in Sec. III.
The carrier-envelope phase (CEP) dependence of the BRT
is presented in Sec. III A. The BRTs obtained for different
ionization potentials and peak intensities are discussed in
Sec. III B. The BRT dependences on the ionic potentials width
and laser center wavelengths presented in Sec. III C. Finally,
we discuss the results and present conclusions in Sec. IV.

II. CLASSICAL BACKPROPAGATION AND BACKWARD
RESCATTERING TIME

A. Semiclassical description of backward rescattering dynamics

An electron bound to an atom interacting with an intense
laser field can tunnel out through the potential barrier formed
by the superposition of the Coulomb field of the parent ion and
the laser field [3,44]. Using the simple classical picture pro-
vided by the well-known simple man model (SMM) [2,3] the
subsequent electron’s behavior can be described as follows.
Depending on the ionization time the electron may follow

different paths. Electron can be driven away (the so-called
direct electrons) from the parent ion if the ionization time be-
longs to the interval when electric field of the pulse increases
[12–14]. Or, if ionization time belongs to the interval when the
field decreases, the electron can be driven back (the so-called
rescattered electrons) to the parent ion as the sign of the laser
field is reversed. When the electron returns to the parent ion,
it can be rescattered in the forward or backward directions.

Both the direct electrons and the forward rescattered elec-
trons can gain the kinetic energy up to 2Up, where Up is
the ponderomotive energy. On the other hand, the backward
rescattered electron can gain the kinetic energy up to 10Up.
Therefore, such electrons are clearly distinguished in the ATI
energy spectrum, as shown in Fig. 1(a). Note that both the
2Up and 10Up are the upper limits of the kinetic energy in
the classical description, the electron can gain kinetic energy
exceeding these limits with low probability in the quantum
mechanical description.

From now on we concentrate on the trajectories of the
rescattered electrons. The rescattering time satisfies the fol-
lowing condition [45]:

∫ tr

ti

A(t )dt = (tr − ti )A(ti ), (1)

where A is vector potential of the laser field. ti and tr are
ionization time and rescattering time, respectively. Here, any
influence of the ionic potential on the electron is neglected.
Depending on the laser pulse duration, the backward rescat-
tering events leading to the same final electron momentum
may occur one or several times during the pulse duration.
Therefore, either a continuum or an interference pattern can
be observed in a photoelectron spectrum measured along
the polarization direction of the laser field around the cutoff
energy 10Up depending on the CEP of the few-cycle laser
pulse [17,19], because the backward rescattering event occurs
once in every half-cycle of the laser field, and the direction
of the rescattering is reversed for the consecutive half cycles.
If the backward rescattering in a given direction occurs only
once, a continuum spectrum is observed near the cutoff en-
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ergy, and a specific half cycle of the laser field in which the
backward rescattering occurs can be specified. In the present
work, we set the pulse duration to be shorter than two cycles
and analyze the continuum spectrum observed at the cutoff.

B. Classical backpropagation

We use the idea of the classical backpropagation [39–41]
to estimate the timing when the backward rescattering occurs.
This approach has been used in Refs. [39–41] to analyze the
tunneling ionization time. The method combines the advan-
tages of both quantum mechanical and classical approaches.
The quantum mechanical processes such as ionization and
rescattering are taken into account by accurately propagating
the TDSE forward in time on the interval of pulse duration.
Then, the classical trajectories are obtained by propagating
Newton’s equation of motion backward in time.

We study electron dynamics in one dimension. Since we
are interested in the backward rescattered electron in the lin-
early polarized laser field, the one-dimensional (1D) approach
is justified. We used a sufficiently large spatial and temporal
grids to avoid reflection at the absorbing boundaries of the
spatial grid. For example, we solved the 1D TDSE with the
total number of time steps Nt = 32769 with the time step size
of 0.015 atomic unit, resulting in the total interval (−6 fs, 6 fs)
of time propagation. We used the spatial grid of Nx = 16385
steps with the grid size of 0.23 atomic units, resulting in the
total spatial domain of ±200 nm for the center wavelength of
the laser field of 800 nm. The grid size was adjusted when the
wavelength was changed. The calculations results are shown
in Fig. 1.

After propagating the wave function till the end of the laser
pulse, we use the recipe of the backpropagation technique [39]
to set initial conditions for the backpropagation method. We
use the first spatial derivative of the phase of the wave function
to determine the local-momentum of the electron, as shown in
Fig. 1(a) [46]. The local-momenta and positions in the shaded
region in Fig. 1(a) were taken as the initial conditions for
propagating Newton’s equation of motion in the backward
direction in time, as shown in Figs. 1(a) and 1(b). Newton’s
equation of motion were solved with a negative time step, and
the calculation was stopped when the trajectory reached the
core of the potential (x = 0). The moment of time when the
propagation stops is taken as the time of the backward rescat-
tering, Figs. 1(b) and 1(c). In this way, the BRTs for the final
local velocities in the region of interest can be obtained. Note
that the rescattering time is distributed narrowly around the
time when electric field of the pulse passes through zero (the
zero-crossing time) for a wide range of final local momenta,
as shown in Fig. 1(c).

In contrast to the case when circularly polarized pulses
are used [39], the interference of the electron wave packet
following short and long rescattering paths makes dips (at 30
and 33 nm) in the blue shaded region in Fig. 1(a). It is difficult
to determine the phase gradient near the dips. However, the
two quantum trajectories merge at the cutoff near 10Up and
the phase gradient above the cutoff energy can be uniquely
determined. Therefore, we can apply the classical backpropa-
gation method using a linearly polarized pulses.

FIG. 2. BRTs of an electron gaining high energy in Ar going
out to the right (x > 0) for 14 different CEPs. Solid lines are BRTs
obtained by the classical backpropagation and circles are BRTs
obtained by the simple man model. Gaussian enveloped, 3 fs full
width at half maximum electric field with peak intensity of 1 ×
1014 W/cm2, and center wavelength of 800 nm was used to obtain
the results.

III. RESULTS

A. Carrier-envelope phase dependence

Since the BRTs of the electron gaining high kinetic energy
are distributed around the zero-crossing time of the driving
electric field, the BRT shifts as CEP varies. The BRTs ob-
tained for the different CEPs of the laser field in Ar for the
final electron momentum in the right direction (x > 0) are
shown in Fig. 2. The small oscillations observed near t ∼ 1
fs are due to small numerical errors. One can see the BRTs are
distributed narrowly near the zero-crossing time of the electric
field. The BRTs are shifted as the CEP varies as expected.

As shown in Fig. 2 the results obtained by the classi-
cal backpropagation method are consistent with the results
predicted by the SMM (circles in Fig. 2). However, some
differences can also be found between the predictions of two
methods. For the high CEP values, the BRTs calculated by
the backpropagation method are earlier than those obtained
by using the SMM. The difference is clearly observed when
tr ∼ −1 fs. For low CEP values, the BRTs obtained by the
classical backpropagation method are slightly later than those
obtained by using the SMM. These differences can be caused
due to the different intensities between the ionization time and
the rescattering time for different CEPs. As the CEP varies,
the electron can be ionized at the beginning of the laser pulse
where the intensity is low, or at the center of the pulse where
the intensity is high. In addition, it should be noted that the
atomic potential is completely ignored in the SMM. We need,
therefore, to analyze the effect of the ionic potential and the
peak intensity of the driving laser pulse on the BRTs.

B. Ionization potential and peak intensity dependence

In order to estimate the effect of the ionic potential on
the BRTs, we compared classical backpropagation results
obtained for five different soft-core potentials, as shown in
Fig. 3(a). The ground state energies of each soft-core poten-
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FIG. 3. Potential profile and intensity dependence of BRTs
obtained by the classical backpropagation. (a) Potential profile de-
pendence of BRT of the electron at the cutoff. Electric field with the
peak intensity of 2.5 × 1014 W/cm2, the center wavelength of 730
nm, and the CEP of 0.5π was used to obtain the result. (b) Intensity
dependence of BRTs of the electron for nine different intensities.
The BRTs obtained for Ar (dashed lines) and Xe (solid lines) are
compared. (c) Difference between the BRTs of the electron in the
high energy plateau for Ar and Xe potential, where �tr = tXe

r − tAr
r .

For all intensities from 1.0 × 1014 to 5.0 × 1014 W/cm2, the BRTs of
the electron in the high energy plateau for Ar is earlier in time than
that for Xe. Inset: magnified plot p|| − pcutoff between 0.38 and 0.52
atomic units.

tial correspond to the ionization potential of He, Ne, Ar, Kr,
and Xe. As one can see, for each local-momentum relative
to the cutoff momentum pcutoff = √

20Up, the BRTs increase
monotonously with the ionization potential. In other words,
the rescattering time is the earliest in He and the latest in Xe.

The other feature observed in the presence of the potential
is that the BRT is dependent on the peak intensity of the
laser field. In the simple man model, this dependency is ab-
sent because the rescattering condition (1) contains the vector
potential of the laser field linearly. However, if the atomic
potential is included, the rescattering condition of the electron
is no longer a simple linear equation. In addition, the initial
positions and initial momenta of the electron at the ionization
time also depend on the peak intensity when the potential is
included. Therefore, the BRTs can vary depending on both the
peak intensity and the ionization potential.

For more detailed analysis, we compared the BRTs cal-
culated for different intensities in Ar and Xe, as shown in
Fig. 3(b). The BRTs are delayed when the peak intensity of
the laser field increases for both potentials. The BRTs in Ar
are earlier than those in Xe for the peak intensities between
1 × 1014 W/cm2 and 5 × 1014 W/cm2. The BRTs at the peak
intensities greater than 2.0 × 1014 W/cm2 are even later than
the zero-crossing time of the electric field for both Xe and Ar.
The BRTs depend on the peak intensity of the laser field quite
dramatically, and they shift nearly 400 as when the peak inten-
sity changes from 1 × 1014 W/cm2 to 5 × 1014 W/cm2. For a
better comparison, the differences of the BRTs between the Ar

and Xe potentials �tXA
r = tXe

r − tAr
r are shown in Fig. 3(c).

The differences �tXA
r were positive for the intensities from

1 × 1014 to 5 × 1014 W/cm2 and are a decreasing function of
the intensity. We can, therefore, make two conclusions from
these observations. One is that the stronger the attractive force
of the parent ion is, the earlier the BRT of the electron is. The
other is that the BRTs are changed by the peak intensity domi-
nantly over the ionization potential in the tunneling ionization
regime.

C. Potential range and center wavelength dependence

After tunneling, the electron is driven by the laser field in
the presence of the atomic field. Thus, the electron trajectory
can be changed by the spatial profile of the atomic field. We
compared the classical backpropagation results obtained with
a soft-core potential and a soft-core Yukawa potential, which
is defined as

V (x) = −e−b
√

x2+a

√
x2 + a

, (2)

where b � 0 determines the range of the potential. The po-
tential becomes increasingly short ranged as the parameter b
increases. For a given b, the parameter a was adjusted to fix
the ionization potential to that of Ar. As a result, the soft-core
Yukawa potential with non-zero b is narrower and deeper than
the soft-core potential (b = 0).

The BRTs were calculated for different b values and the
peak intensities of the laser field, as shown in Fig. 4. The BRTs
near the cutoff momentum for b = 0 (solid lines, identical to
the soft-core potential) and b = 2 (dashed lines) are shown in
Fig. 4(a). The BRTs for b = 2 are later than those for b = 0
for the peak intensities from 1.0 × 1014 to 5.0 × 1014 W/cm2.
The rescattering times obtained for b = 2 and b = 0 shift by a
few hundred attoseconds as the peak intensity increases. Thus,
it can be concluded that shifts of a few hundreds of attosecond
in the BRTs shown in Figs. 3(b) and 4(a) are due to the peak
intensity dependence of the rescattering dynamics before the
rescattering time. The shape of the potential is an important
factor at relatively low intensities, around 1.0 × 1014 W/cm2,
but it is less important when the peak intensity is high.

To compare the BRTs obtained for different b values and
the peak intensities in detail, we chose a specific momentum,
0.4 atomic units relative to pcutoff at each intensity, as shown
in Figs. 4(a) (black dot-dashed line) and 4(b). The BRTs are
earlier for the soft-core Coulomb potential (b = 0) than those
for the soft-core Yukawa potential with non-zero b values for
all the peak intensities, as shown in the inset in Fig. 4(b). We
set the soft-core potential (b = 0) as a reference and show the
difference �tYS

r = tYukawa
r − tSoft

r in Fig. 4(c). For all the peak
intensities and b values shown in Fig. 4(c), �tYS

r are positive.
These observations show that the BRTs depend on the width
of the core, and the electron rescatters earlier in a shallow and
wide potential than a deep and narrow potential. Similar to
the results shown in Fig. 3, �tYS

r is a decreasing function
of the peak intensity [Fig. 4(c)]. It shows that the BRT is
predominantly determined by the intensity of the laser pulse
and it is less sensitive to the potential profile of the parent ion.

Since the travel distance of the electron between the ion-
ization time and the rescattering time depends on the center

013116-4



CLASSICAL BACKPROPAGATION FOR PROBING … PHYSICAL REVIEW A 104, 013116 (2021)

FIG. 4. Peak intensity dependence of BRTs in the soft-core Yukawa potential. (a) BRTs as a function of momentum near the cutoff
momentum for each peak intensity. Solid lines are BRTs obtained for b = 0, and dashed lines corresponds to BRTs obtained for b = 2. (b)
BRTs obtained for different b values at 0.4 atomc units in momentum relative to the classical cutoff momentum denoted by dotted-dashed line
shown in (a). Inset: a magnified plot near I0 = 2.5 × 1014 W/cm2. (c) BRTs shown in (b) relative to the BRTs in soft-core potential without
the exponential factor, which is equivalent to b = 0.

wavelength of the driving laser pulse, the BRT is also af-
fected by the center wavelength. We calculated the BRTs for
different center wavelengths in Ar, as shown in Fig. 5. We
set the CEP of 0.5π and compared the BRTs near the zero-
crossing time of the laser field (t = 0). The peak intensity of
the laser fields was adjusted so that the ponderomotive energy
of an electron is fixed to 12 eV and the Keldysh parameter
γ = √

Ip/2Up is not changed. The length of the rescattering
trajectory predicted by the equation (1) is proportional to E0λ

2

so that the length of the trajectory is proportional to the center
wavelength for the fixed ponderomotive energy. The BRTs are

FIG. 5. Center wavelength dependence of BRTs in Ar soft-core
potential. Ponderomotive energy of the electron is fixed to 12 eV
so that peak intensity of the laser field is adjusted accordingly. The
legend denotes center wavelength of the laser pulse used for each
result.

earlier for the long center wavelengths in the SMM because
in the case of the SMM the BRT is scaled as tr ∝ λ, (as
follows from the equation (1)). The BRTs obtained by the
classical backpropagation for the short center wavelengths are
later than the zero-crossing time of the electric field. Since we
fixed the ponderomotive energy, the intensity increases as the
wavelength decreases. Therefore, this wavelength dependence
of the BRT when the ponderomotive energy is fixed can be ex-
plained by the peak intensity dependence observed in Figs. 3
and 4.

We have analyzed dependence of the BRTs on vari-
ous atomic and laser parameter as CEP, wavelength, ionic
potential shape, and peak intensity using the classical back-
propagation method. While the BRT is sensitive to all these
parameters, the peak intensity of the driving laser pulse plays
the crucial role. The difference of the BRTs for different
shapes of the potential is an order of 10 as, as shown Figs. 3
and 4. If the long range part of the Coulomb potential is
the main factor for the peak intensity dependence, the BRTs
obtained in the Yukawa potential should be delayed by a few
hundreds of attoseconds compared to that of the Coulomb
potential. The peak intensity dependence of BRTs obtained
for different soft-core Yukawa potentials with various ranges
are similar to the soft-core potential. Since we consider the
potential during the backpropagation, the peak intensity de-
pendence of the BRTs should be related to the electron
dynamics before rescattering time. Therefore, knowledge of
the electron dynamics before rescattering is required to inves-
tigate the peak intensity dependence.

Unfortunately, we cannot access the electron dynamics
before rescattering using the backpropagation method. To do
that, we should be able to start the backpropagation from the
classically forbidden momentum and position (i.e., beyond the
cutoff). Also, it is difficult to describe reliably the rescattering
dynamics classically. In order to find the electron trajectory
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before rescattering, one can assume that elastic backscattering
occurs at x = 0. On the other hand, one can consider an
orbiting trajectory for rescattering. These electron trajectories
are totally different. Even if we set the rescattering conditions
properly, the local classical electron trajectory cannot fully de-
scribe the rescattering process where which-way information
(forward rescattering or backward rescattering) is lacked in
the solution of the TDSE. Thus, although the backpropagation
method that we presented yields reasonable estimations on
the rescattering times, it cannot be used to access the electron
dynamics before rescattering.

IV. DISCUSSION

In summary, we have shown that the backward rescattering
time (BRT) of a tunnel-ionized electron in an intense laser
field can be determined using the classical backpropagation
method. The backpropagation method provides a consistent
way to determine the rescattering time. We analyzed the de-
pendence of the BRTs on various parameters such as the
carrier envelope phase (CEP), ionization potential, peak in-
tensity, potential shape, and center wavelength. The BRT is

affected by all these parameters. The BRTs are distributed
near the zero-crossing time of the electric field. They vary
as the CEP of the driving laser pulse changes as expected on
the basis of the treatment provided by the simple man model
(SMM). The backward rescattering occurs earlier for systems
with higher ionization potentials. The shape of the ionic po-
tential also affects the BRT. The backward rescattering occurs
earlier for a steeper potential of the parent ion.

We find that the peak intensity is the most important factor
which determines the BRT. While the rescattering time is
changed by a few or few tens of attoseconds for different
ionization potentials, profiles and wavelengths, it is changed
by a few hundred attoseconds when the peak intensity is
varied from 1 × 1014 to 5 × 1014 W/cm2. The rescattering
time is a key parameter to describe the ultrafast electron
dynamics in the intense laser field. We note that the back-
propagation method can be applied using 2D models or 3D
models. Consequently, the sensitivity of the rescattering times
to the various parameters, and especially the peak intensity of
the laser field should be carefully considered in applications
in which knowledge of the rescattering time is important,
such as laser-induced electron diffraction (LIED), high-order
harmonic generation (HHG), and attosecond holography.
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and G. G. Paulus, Attosecond Double-Slit Experiment, Phys.
Rev. Lett. 95, 040401 (2005).
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