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Directional population control beyond the exceptional point in a non-Hermitian system
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In the context of dynamical control, non-Hermitian systems offer unique opportunities and challenges. In
the simplest case of two interacting levels with gain and/or loss, the existence of an exceptional point (EP)
of degeneracy in the chiral complex eigenvalue landscape fundamentally changes how the system responds to
adiabatic changes in the coupling γ and energy separation δ of the bare levels. In particular, previous studies
have shown that selective population transfer can be achieved by adiabatically steering the system around closed
paths that encircle the EP with the proper helicity in the γ vs δ parameter space. Here we show that efficient
state-selective population transfer can, in some cases, be achieved even with control loops that do not enclose
the EP.
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I. INTRODUCTION

In the presence of exponential loss and/or gain, pseudo-
two-level quantum systems exhibit complex eigenenergy
surfaces whose real and imaginary parts are chiral functions of
the coupling strength γ and energy separation δ between the
bare states [1]. There has been substantial interest in exploring
methods for robust quantum control in such non-Hermitian
models. For example, controlled population transfer can be
realized by adiabatically steering the system around a closed
control loop in the (γ , δ) parameter space [2,3]. Given the
change in state in this context, the system evolution cannot
be truly adiabatic. Nevertheless, the term is commonly used
to describe transformations that would be adiabatic for a
similar system governed only by the real part of the Hamil-
tonian. Previous work has suggested that population transfer
can only occur through such a transformation if the con-
trol loop encloses an exceptional point (EP), i.e., a point
of energy degeneracy that exists at nonzero coupling in the
eigenenergy landscape [4,5]. Further studies predicted that
the helicity of the control path, as well as its starting or
ending point, can impact the population transfer probability
and serve as additional control knobs [2,6–8]. Experiments
exploring these and related phenomena have been performed
using microwave cavities [9], optomechanical cavities [3,10],
molecules [11–13], and other systems [14–18]. Recently,
the nonadiabatic transition probability in a two-level system
steered directly through two exceptional points was deter-
mined [19]. Here we present results of simulations based
on numerical integration of the time-dependent Schrödinger
equation (TDSE), showing that encircling an EP is not a nec-
essary condition for control of directional population transfer
in a two-level non-Hermitian system.

In the following sections we examine the adiabatic control
problem for simple rectangular paths in the (γ , δ) parame-
ter space for a generic two-level system in the presence of
exponential decay (and/or gain). Our numerical simulations

clearly show that directional population transfer can still occur
in adiabatic transformations that do not enclose the EP. We
also present an analytical model that identifies the mechanism
responsible and predicts how far beyond the control loop
boundary the EP can lie while still affording full directional
population control.

II. TWO-LEVEL SYSTEM WITH DECAY

Consider a pair of uncoupled states with energies E1 and E2

that spontaneously decay at rates of 2�1 and 2�2, respectively,
to some unspecified levels. We assume that a coupling γ be-
tween the two states can be externally applied and that γ and
the energy splitting δ = E2 − E1 between the bare states can
be continuously varied. As a concrete example, this situation
might be realized by driving two opposite-parity atomic states
with a nearly resonant oscillating field. In a dressed-atom
picture, δ is determined by the detuning of the field frequency
from resonance and γ can be changed by varying the field
strength. The system can be described by an effective non-
Hermitian Hamiltonian

H =
(−E1 − i�1 γ ∗

γ −E2 − i�2

)
(1)

in atomic units.
Without loss of generality, we can further simplify the

Hamiltonian. First, we translate the complex energy origin,
subtracting −E1 − i�1 from the diagonal matrix elements.
Next, we define γ to be real and positive. Finally, we rescale
all terms in the Hamiltonian by dividing them by the differ-
ence in the decay rates of the two bare states. The Hamiltonian
is then a function of only two variables γ and δ and takes the
convenient form

H ′ =
(

0 γ

γ −δ − i

)
, (2)
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FIG. 1. (a) Real and (b) imaginary parts of the eigenvalue surfaces E for the coupled pseudo-two-level system with decay. Magenta (dark
gray) and cyan (light gray) correspond to the states with the smallest and largest decay rates, respectively. The black star marks the EP
(δ = 0, γ = 1

2 ). The dashed line beneath the real part of the eigensurfaces illustrates the form of the closed path transformations we consider
in detail (see the text), with two legs (labeled 1 and 3) at constant γ and two legs (labeled 2 and 4) at constant δ.

where one of the uncoupled basis states does not decay and
the other decays with a characteristic lifetime τ = 1

2 .
Figures 1(a) and 1(b) show the real and imaginary parts

of the eigenvalue surfaces E as a function of δ and γ . At
each point, the surface colors identify the eigenstates with the
smallest [magenta (dark gray)] and largest [cyan (light gray)]
rates of decay, i.e., the magenta (dark gray) eigenstate has the
eigenvalue with the least-negative imaginary part. The sur-
faces exhibit a point of degeneracy, the EP, at (δ = 0, γ = 1

2 ).
For (δ = 0, γ > 1

2 ), the real parts of the eigenvalues form
an avoided level crossing, whereas for (δ = 0, γ � 1

2 ) they
cross with zero gap. Conversely, the imaginary parts of the
eigenvalues exhibit a line of degeneracy (δ = 0, γ � 1

2 ).
When attempting to understand how an initial state of the

non-Hermitian system will be transformed during a closed
control loop, it is tempting to assume that the principal effect
of the imaginary part of the Hamiltonian is a steady leak of
population from the two levels. Under that assumption, one
might neglect the difference in the decay rates of the two
states (i.e., ignore the imaginary part of the effective Hamil-
tonian) and consider only the evolution on the real part of
the eigenvalue surfaces. In that case, if the system is initially
in one of the two eigenstates, it will remain in an eigenstate
throughout a perfectly adiabatic transformation. The character
of the initial state will vary smoothly with time as γ and/or
δ are changed, with the system evolution well described by a
path that does not leave the eigenenergy surface. Inspection
of Fig. 1(a) would then predict that because of the line of
degeneracy in the surface, any closed adiabatic path (regard-
less of its shape or the direction of travel) that encircles the
EP (an odd integer number of times) will result in complete
population transfer from one eigenstate to the other. Any
adiabatic path that does not encircle the EP (or encircles it
an even integer number of times) results in no net population
transfer.

However, not only does the presence of an imaginary part
of the Hamiltonian lead to decay of the system as a whole,
it can fundamentally change the system evolution during the
control loop and accordingly the final result of the transfor-
mation. The primary issue is related to the asymmetric decay

of the two eigenstates and the fact that no dynamical process
of finite duration can be truly adiabatic. While nonadiabatic
(de)excitations resulting from time-varying external controls
can be reduced to negligible levels in Hermitian systems,
they can be dramatically amplified by the unequal decay rates
from the constituent eigenstates during a slow transformation.
Increasing the loop time can reduce any nonadiabatic effects
associated with the time-dependent controls, but simultane-
ously enhances the impact of the differential decay. Indeed,
it has been shown, contrary to the naive picture presented in
the preceding paragraph, that the population transfer in the
non-Hermitian system is actually chiral. Depending on the
helicity of the control loop, population transfer is effective
for only one of the two eigenstates, with the other essentially
unaffected by the process [3]. Also in contrast to the Hermi-
tian picture, the transfer probability for a given closed control
loop also depends on the starting point (δ0, γ0) of the trans-
formation [8]. Here we demonstrate via simulations based on
numerical integration of the TDSE and explain through an
analytic model another important result stemming from the
difference in decay rates of the bare states, namely, closed
control loops need not enclose the EP to induce selective
population transfer.

For convenience, we focus on rectangular control loops
that can be separated into four distinct segments (or legs).
As shown in Fig. 1(a), δ varies along legs 1 and 3 (with
constant γ = γmax and γmin, respectively) and γ varies along
legs 2 and 4 (with constant δ = δmax and −δmax, respectively).
Moreover, for ease of illustration, we exclusively consider
population transfer from systems that are initially prepared in
one of the two eigenstates. All closed loop transformations
start from (δ0 = 0, γ0 = γmax). Because our primary goal is
to understand how the relative populations are affected by the
system transformations, when plotting the state populations
(or population transfer probability) at a particular time, we
normalize to the total population remaining in the system at
that time. It is worth noting that the reduced Hamiltonian has
the same form if one or both of the bare states experience
exponential gain rather than decay (as, for example, with
optical modes in a cavity with gain), so our consideration of
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FIG. 2. Energy expectation value of the two-level system, shown as a path in the real part of the energy eigenvalue landscape, computed
via numerical integration of the TDSE for clockwise rectangular control loops. The three plots show control loops with different values of γmin:
(a) 0.3, (b) 0.6, and (c) 2. The surface coloring designates the eigenvalue with the slowest [magenta (dark gray)] and fastest [cyan (light gray)]
decay, analogous to Fig. 1, with a black star positioned at the EP (δ = 0, γ = 1

2 ). The thin solid (thick dashed) black lines show the energy
expectation value vs (δ, γ ) during the transformation, for initial system preparation in the upper (lower) eigenstate. For all cases in the figure
(i) the start and stop point is (δ0 = 0, γ0 = 3), (ii) the detuning is varied over the same range −1 � δ � 1, and (iii) the duration of each leg of
the control loop is 20τ , for a total transformation time of 80τ . In (a) the clockwise control loop encloses the EP and the initial population in
the upper state is transferred to the lower state, while the initial population in the lower state remains in the lower state. In (c) the control loop
does not enclose the EP and there is no population transfer from either initial state. Interestingly, complete and directional population transfer
is observed in (b), despite the fact that the EP is not enclosed within the control loop.

times long compared to τ does not imply negligible system
population.

Figure 2 illustrates the principal effect we explore in this
paper. In Fig. 2(a) the clockwise control loop encloses the
EP and initial population in the upper state is transferred to
the lower state, while initial population in the lower state
remains in the lower state. Following the same path in a
counterclockwise direction (not shown) induces population
transfer from the lower to the upper state, but not from upper
to lower. In Fig. 2(c) the control loop does not enclose the
exceptional point and there is no population transfer from
either initial state. Figure 2(b) shows that efficient chiral
population transfer can still occur, even for closed control
loops that do not enclose an EP, and under conditions where
the evolution would be purely adiabatic (with negligible net
population transfer from either initial state) in a Hermitian
analog system. Adiabaticity of identical transformations in a
Hermitian analog system whose eigenenergy surface closely
matches the real part of the surface in our non-Hermitian
system1 has been directly confirmed via numerical integration
of the TDSE. This observation begs the following questions.
If not enclosure of the EP, what characteristics of a closed
control loop determine whether population transfer occurs?
For the rectangular loops that we consider, can we predict the
range of γmin values for which the transformation leaves the
initial state unchanged?

To gain additional insight toward answering these ques-
tions, we have calculated the population transfer probability
vs γmin for families of clockwise and counterclockwise control
loops [with the same value of γmax = 3, the same starting
point (δ = 0, γ = 3), and the same total loop time of 80τ ]
for three different values of δmax. As shown in Fig. 3, pop-
ulation initially in the upper (lower) eigenstates is largely
unaffected by counterclockwise (clockwise) control loops for

1The Hermitian analog Hamiltonian is obtained by replacing the
diagonal elements of the non-Hermitian Hamiltonian in Eq. (2) with
their real parts and replacing the off-diagonal elements with

√
γ ′2,

where γ ′2 is the greater of γ 2 − 1
4 and 0.

any values of γmin and δmax. However, for γmin below some
threshold (greater than 0.5), clockwise (counterclockwise)
transformations result in efficient transfer from the upper
(lower) eigenstate. We define the critical coupling γc as the
smallest value of γmin for which the population transfer prob-
ability equals 0.5. As Fig. 3 clearly shows, γc depends on the
detuning range in the control loop. In particular, γc > 0.5 and
increases monotonically, but nonlinearly, as a function of δmax.
For γmin > γc, the transfer probability exhibits oscillations
whose amplitude decays with increasing γmin. The amplitude
and rate of decay of those oscillations also depend on δmax.

We first consider the dependence of γc on δmax, i.e., on the
width of the control loop. We note that Fig. 2 suggests that, in
general, population transfer is only significant during leg 3, as
δ varies with γ = γmin. Therefore, to understand the principal
aspects of the population transfer dynamics, we can focus on
the evolution during leg 3. Along that path, for γmin > 0.5,
the system traverses an avoid crossing in the real part of the
eigenvalue surface (Fig. 4). Accordingly, if the Hamiltonian
were Hermitian, the population transfer probability would be
well described by the standard Landau-Zener formula [20]. As
such, one might expect that the key parameter in determining
the population transfer probability would be the rate at which
the system passes through the avoided crossing. However,
Fig. 5 illustrates that this expectation generally fails in the
non-Hermitian case, even for adiabatic transformations where
the detuning is scanned sufficiently slowly that there is neg-
ligible population transfer in an analogous Hermitian system
with the same avoided crossing characteristics.

Figure 5 shows the population transfer probability as the
detuning is adiabatically scanned along leg 3, for fixed val-
ues of the detuning end points, but for different scan rates
and different coupling strengths (i.e., different energy gaps
at the center of the avoided crossing). While the details of
the population transfer along the path depend on the scan
rate and coupling strength, the value of the detuning (i.e., the
position along the path) at which 50% transfer occurs is nearly
independent of the scan rate (within the adiabatic regime).
Apparently, it is the range of δ, and not the rate at which δ

is scanned, that determines γc for the adiabatic passage. As
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FIG. 3. Population transfer probability computed via numerical integration of the TDSE as a continuous function of γmin for closed
rectangular control loops analogous to those in Fig. 2 but for several different values of δmax. Black, magenta (dark gray), and cyan (light
gray) curves correspond to δmax = 0.25, 0.5, and 1, respectively. Results are plotted for (a) clockwise and (b) counterclockwise paths. The
thick solid (dotted) lines give the transfer probabilities when the system is initially prepared in the upper (lower) eigenstate at the start of the
control loop (δ = 0, γ = 3). The thin black vertical dashed line at γmin = 1

2 marks the position of the EP. Loops with γmin < 1
2 enclose the

exceptional point, whereas those with γmin > 1
2 do not. The duration of each leg of each control loop is 20τ , for a total transformation time of

80τ . The insets show examples of three different control loops, each with the same values of δmax and γmax, but different values of γmin.

we show below, this is because the differential decay rate of
the bare states plays a dominant role in the population transfer.

III. LANDAU-ZENER TRANSITION IN
NON-HERMITIAN SYSTEMS

As noted above, the well-known Landau-Zener formula
gives the probability of population transfer at an avoided
crossing in a two-level Hermitian system as the energy differ-
ence between two bare states is scanned through degeneracy
at a constant rate [20]. The extension of the problem to non-
Hermitian systems has also been studied in detail [21,22]. We

FIG. 4. Avoided level crossing along leg 3 of the control loop for
a coupling strength γ slightly greater than 1

2 . Far from the avoided
crossing, the eigenstates are nearly equivalent to the bare states.
Magenta (dark gray) and cyan (light gray) denote the more slowly
and rapidly decaying eigenstates, respectively. The letters label three
principal regions of population evolution during a detuning scan
through the avoided crossing.

take an alternative approach, using an approximate model that
allows us to develop an analytic expression for the critical
value δmax = δc at which the population transfer probability
is 0.5 for a given value of γ . We assume that the detuning
range is sufficiently large that the system evolution along leg
3 can be divided into three regions (Fig. 4). In regions A and
C, δ � γ , so the eigenstates are approximately equivalent to
the bare states, one of which does not decay and the other
decaying with a lifetime τ = 1

2 . Note that energy ordering
of the slow and fast decaying states is opposite for regions
A and C. In region B, δ < γ , the two eigenstates are nearly
equal admixtures of the two bare states, and they decay at
approximately the same rate. Therefore, there is negligible

FIG. 5. Population transfer probability between two eigenstates
calculated via numerical integration of the TDSE as the detuning δ is
scanned from −3 to 3 at different couplings γ with constant detuning
scan rates of dδ/dt = 0.25 [cyan (light gray)], 0.5 [magenta (dark
gray)], and 1(black).
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relative decay. Accordingly, the population transfer between
the two states in region B is accurately described by a Her-

mitian Landau-Zener formula, assuming a coupling
√

γ 2 − 1
4

that exhibits approximately the same energy gap as the non-
Hermitian system at δ = 0.

Inspection of Figs. 2 and 3 shows that for the control
loops we have considered, significant population transfer oc-
curs only when the system enters leg 3 with essentially all
population in the more slowly decaying eigenstate. Therefore,
to predict the value of δc for a given γ along leg 3, we only
need to examine two cases: all population initially in the
lower (upper) state traversing the avoided crossing from left
to right (right to left) as shown in Fig. 4. Since these two cases
are equivalent, we focus on the left to right transformation,
progressing through regions from A to B to C.

Within the model, the eigenstates are approximately equiv-
alent to the bare states in region A. So if all population is
initially in the nondecaying state, it will remain there through-
out region A and at the start of region B. The Landau-Zener
formula [20] then predicts the populations in the nondecaying
(upper) state

PND = exp

[
−2π

(
γ 2 − 1

4

)/
dδ

dt

]
(3)

and decaying (lower) state

PD = 1 − exp

[
−2π

(
γ 2 − 1

4

)/
dδ

dt

]
(4)

at the beginning of region C. Of course, in the adiabatic regime
(γ 2 − 1

4 )/ dδ
dt � 1, so PD � 1. However, PND is nonzero pro-

vided dδ/dt > 0.
In region C, the population in the nondecaying level does

not change, but the other decays exponentially with a time
constant τ ,

PD(t ) � exp
(
− t

τ

)
, (5)

where we have defined t = 0 at the start of region C. For a
constant scan rate, we can substitute t = δ/ dδ

dt and τ = 1
2 to

obtain

PD(δ) � exp

(
−2δ

/
dδ

dt

)
. (6)

At the end of region C, δ = δmax. By definition, if δmax =
δc, then there is 50% relative population transfer during
the transformation and we have PND = PD(δc). Accordingly,
we find δc = π (γ 2 − 1

4 ), independently of the scanning
rate.

Figure 6 compares the approximate analytic prediction for
δc with simulation results based on population transfer along
leg 3 using the non-Hermitian Hamiltonian. The agreement is
excellent.

IV. EXTENSION TO CLOSED CONTROL LOOPS

We can readily extend the model of population transfer
during just leg 3 to the full control loop, starting and ending
at (δ = 0, γmax). To predict γc for the closed loop, we again
only need focus on situations where non-negligible population
transfer occurs during leg 3, i.e., clockwise paths starting

FIG. 6. Critical detuning δc vs coupling γ as determined from
TDSE simulations of population transfer along leg 3 using the
non-Hermitian Hamiltonian (filled circles) and the analytic approxi-
mation δc = π (γ 2 − 1

4 ) (solid line).

from the upper eigenstate and counterclockwise paths start-
ing from the lower eigenstate (Fig. 2). During the first 3

8 of
the loop, the system population remains in the initial, slow
decaying state. Any small level of population transferred to
the other eigenstate (due to imperfect adiabaticity) rapidly
decays. Thus, all population is in the slow decaying state
when the system enters leg 3. Population transfer can then
occur during leg 3 as described in the preceding section, with

γc =
√

δmax/π + 1
4 . The plot in Fig. 7(b) shows this analytic

prediction for γc, along with simulation results based on pop-
ulation transfer during the first 5

8 of the control loop with
the full non-Hermitian Hamiltonian. The agreement is again
excellent.

Continuing on the remaining 3
8 of the control loop after leg

3, small levels of probability amplitude transfer between the
two eigenstates (again due to imperfect adiabaticity) can inter-
fere with the non-negligible population in the two eigenstates
for a substantial effect. The oscillations in the population
transfer for the full loop, visible in Fig. 3 for γ > γc, are the
result of that interference. Those interferences also cause a
substantial steplike increase in the value of γc with increasing
δmax, as shown in Fig. 7(a).

It is worth noting that using our operational definition
based on the evolution of a Hermitian analog system, the
adiabaticity of the closed-loop transformation improves with
increasing distance of the (excluded) EP from the path. This
is because the energy gap at the avoided crossing along the
minimum coupling leg increases the further the EP is from the
path. Thus, adiabatic behavior can be achieved with reduced
transformation times. In addition, as shown by the magenta
(dark gray) and especially the black curves Fig. 3, we find
that in some cases the effectiveness of the population swap
actually improves for loops that do not enclose the EP, with
the population transfer probability increasing as γmin is tuned
from the EP toward γc.

V. SUMMARY AND OUTLOOK

We have shown that encircling an EP is not a neces-
sary condition for achieving directional population control
via closed-loop adiabatic transformations in a non-Hermitian
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FIG. 7. Critical coupling γc (filled circles) for which 50% relative population transfer occurs vs maximum detuning, according to TDSE
simulations with the non-Hermitian Hamiltonian over (a) the full control loop and (b) the first 5

8 of the control loop. The solid curve is the

expression γc =
√

δmax/π + 1
4 derived in the text.

system. We present an analytic model that predicts the
conditions needed to achieve control outside the EP in a
two-level system, predicting the minimum distance between
the control path and the EP for a class of rectangular con-
trol loops in the two-parameter (bare level detuning and
coupling strength) energy landscape. Experimental verifi-
cation of the predictions may require a system in which
one or both of the uncoupled states experiences expo-
nential gain, rather than loss, to maintain non-negligible

population in the system during the long adiabatic transfor-
mation times.
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