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Two-center interference and stereo Wigner time delay in photoionization of asymmetric molecules
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We present numerical simulations of the time delay in photoemission of asymmetric diatomic molecules
using the technique of reconstruction of attosecond beating by interference of two-photon transitions
(RABITT) by solving the time-dependent Schrödinger equation. Our results show an obvious time delay between
photoelectrons emitted to the left and right and this relative time delay oscillates as the photoelectron energy
changes. More interestingly, the amplitude of this oscillation increases when the asymmetry degree of diatomic
molecules decreases. With the method of the selected continuum wave functions, we calculate the Wigner time
delay in photoionization. The obtained stereo Wigner time delay also oscillates with photoelectron energy. This
oscillation is traced back to two-center interferences and it could explain the relative time delay in the RABITT
measurement. Furthermore, our results indicate that the continuum-continuum time delay in photoemission of
heteronuclear molecules is asymmetric.
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I. INTRODUCTION

Since the experimental demonstration of extreme ultravio-
let (XUV) pulses with duration below the femtosecond scale
[1,2], these attosecond pulses have become a unique tool to
study the electronic dynamics inside atoms and molecules in
their natural timescale. The techniques of attosecond streaking
[3–7] and reconstruction of attosecond beating by interference
of two-photon transitions (RABITT) [8–12] are two prevail-
ing approaches to probing the ultrafast electronic dynamics
utilizing attosecond pulses [13]. In the RABITT technique,
an XUV attosecond pulse train (APT) synchronized with a
weak time-delayed infrared (IR) field ionizes a target. The
energy spectra of photoelectrons are recorded as a function
of the relative delay between XUV and IR pulses, which
consist of main peaks corresponding to absorption of a single
XUV photon and sidebands related to absorption or emission
of an additional IR photon. The amplitude of sideband sig-
nals is periodically modulated as the relative delay varies,
from which the photoemission time delay can be extracted.
Nowadays, the RABITT technique is extensively employed to
measure the attosecond photoionization time delay in atoms
[14–16], molecules [17–20], and solids [21–23].
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The retrieved time delay in RABITT measurements, τR,
is connected with the phase of two-photon dipole transition
matrix elements [24–31] and could be approximately decom-
posed into three parts τR = τXUV + τW + τCC, where τXUV

and τW are the group delay of the XUV field and the Wigner
time delay [32,33] associated with the bound-free transi-
tion, respectively, and τCC is the measurement-induced time
delay corresponding to the free-free (continuum-continuum)
transition. The Wigner time delay τW is of particular inter-
est since it reveals the target potential landscape. Over the
years, the Wigner time delay has been deeply surveyed for
a variety of atoms and molecules [27,28,34–44]. Apparent
relative time delays have been revealed for photoelectrons
ejected from different subshells of atoms [34–36,45–48]. The
emission-angle dependence of the Wigner time delay in atoms
has also been reported [37–39]. In molecules, owing to the
lower symmetry degree of the molecular potential, the Wigner
time delay presents a more complicate angular dependence
[27,28,40]. In addition, the complexity of molecules triggers
abundant phenomena in the photoemission time delay induced
by shape resonances [41], the potential environment of func-
tional groups [42], chiral asymmetries [43], and so on, which
have aroused broad attention. Studying the photoionization of
molecules builds a bridge between atomic photoemission and
that from solids or surfaces [49–51].

In asymmetric molecules, the concept of self-referenced
stereo Wigner time delay (SWTD) was proposed [40,52,53],
which measures the relative delay between electrons emit-
ted to the left and right of molecules. This quantity directly
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accesses the Wigner time-delay difference and it is sensi-
tive to asymmetries of the molecule. In previous studies
[40], the scheme of SWTD has been employed to follow
the intramolecular photoemission dynamics of CO on the
attosecond timescale and an obvious left-right relative time
delay in RABITT measurements has been observed. This
relative time delay was interpreted as the consequence of
an asymmetry in the initial location of an ionized photo-
electron wave packet (PEWP) with respect to the molecular
geometric center [40]. This intuitive interpretation is valid
for molecules with extreme asymmetries, for which it is a
good approximation that the ionized electron wave packet
launches from one side of the diatomic molecule. Generally, in
photoionization of diatomic molecules, PEWPs launch from
both nuclei and thus the interference occurs in the photo-
electron spectra [54]. This two-center interference greatly
affects the Wigner time-delay characteristics [55]. For ex-
ample, in the homonuclear diatomic molecule H2

+, it has
been demonstrated that the two-center interference in photoe-
mission dramatically increases the magnitude of the Wigner
time delay and it could lead to either positive and nega-
tive time delays [56]. In addition, the two-center interference
in H2

+ leads to different behaviors of the angle-resolved
time delay, compared with the He+ atom [57]. In heteronu-
clear molecules, the PEWPs from two molecular nuclei have
nonequivalent amplitudes, leading to different two-center-
interference effects on the magnitude of the Wigner time
delay. In particular, the amplitude ratio of two PEWPs is
relevant to the asymmetry degree of diatomic molecules. It
is worthwhile to survey the photoionization time delay in het-
eronuclear molecules and reveal the two-center-interference
effect on the magnitude of the time delay in these asymmetric
molecules.

In this paper we systematically study the time delays in
photoemission of asymmetric diatomic molecules utilizing the
RABITT technique. In particular, we focus on the left-right
asymmetry of the time delay in heteronuclear molecules. Our
results show that both the left-right relative RABITT time
delay and the left-right relative Wigner time delay fluctuate
as a function of photoelectron energy and the amplitudes
of these fluctuations depend on the asymmetry degree of
diatomic molecules. These fluctuations in the relative time
delays are attributed to the interference between the elec-
tron wave packets launching from two molecular nuclei.
Furthermore, the details of the fluctuations in the relative
RABITT time delay and the relative Wigner time delay are
different. This difference indicates the left-right asymmetric
continuum-continuum (CC) time delay in photoionization of
heteronuclear molecules.

This paper is structured as follows. In Sec. II we introduce
the numerical methods, including solving the time-dependent
Schrödinger equation (TDSE) in Sec. II A, extracting the
time delay in RABITT measurements in Sec. II B, and the
calculation of the Wigner time delay with the selected con-
tinuum wave function (SCWF) method [58] in Sec. III C. The
RABITT time-delay results are shown in Sec. III A and the
Wigner time-delay results are exhibited in Sec. III B. The CC
time-delay results are discussed in Sec. III C. We finish with
a summary in Sec. IV. Atomic units will be used throughout
this paper unless otherwise stated.

II. NUMERICAL METHODS

A. One-dimensional time-dependent Schrödinger equation

To demonstrate the effect of two-center interferences on
the time delay in photoionization of diatomic molecules, we
perform numerical simulations in a one-dimensional (1D)
model, which has been employed to study the time delay
for the diatomic molecule CO with the scheme of attosecond
streaking [52]. This 1D model is very simple but is valid and
effective in demonstrating the underlying physics. We solve
the TDSE for diatomic molecules within the single-active-
electron approximation

i
∂

∂t
�(x, t ) = [Ĥ0 + Ĥint (t )]�(x, t ), (1)

where Ĥint (t ) describes the interaction with external fields.
Here the external APT (with a field intensity of 5 ×
1014W/cm2) and the IR field (with a field intensity of 3 ×
1010W/cm2 and a duration of 21 fs) are linearly polarized,
with their common polarization axis parallel to the molecu-
lar axis. Here Ĥ0 = − 1

2
∂2

∂x2 + V (x) is the Hamiltonian of the
field-free target. The target potential is given as

V (x) = − ZL√
1 + (

x + R0
2

)2
− ZR√

1 + (
x − R0

2

)2
, (2)

where R0 = 4.0 a.u. is the internuclear distance of molecules.
In addition, ZL (R) is the charge of the left (right) molecular nu-
cleus, with the charge ratio ZL

ZR
characterizing the asymmetry

degree of molecules. In particular, ZL
ZR

→ 0 corresponds to an

extremely asymmetric molecule and ZL
ZR

= 1 matches a sym-
metric molecule. Here the nuclear charges (ZL, ZR) change
from (0.0,1.0) to (0.5,0.5), satisfying ZL + ZR = 1.

In our calculation, the grid size is 4000 a.u. with a spac-
ing �x = 0.1 a.u. The ground states are obtained using
imaginary-time propagation, yielding the ionization poten-
tials Ip = 0.67, 0.62, 0.57, 0.53, 0.49, and 0.47 a.u. for
(ZL, ZR) = (0.0, 1.0), (0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6),
and (0.5,0.5), respectively. We implement the split-operator
method [59] to solve the TDSE with a time step �t = 0.05.

B. Data analysis in RABITT measurements

Ionization amplitudes are obtained by solving the TDSE.
Squared ionization amplitudes give the photoelectron energy
spectrum. We separately collect the energy spectra of pho-
toelectrons emitted to the left (with negative momenta) and
right (with positive momenta). In the photoelectron spectra,
the yield of sidebands (SBs) oscillates with the relative delay
τ between the XUV and IR fields [26]

S2q = α + β cos[2ω(τ − τR)], (3)

where ω is the frequency of the IR field. Adopting the
finite-difference approximation, the time delay in RABITT
measurements can be expressed as

τR = �φXUV

2ω
+ �η

2ω
+ �φCC

2ω

= τXUV + τW + τCC, (4)
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with the IR probe frequency ω = 1.55 eV. In our calculations,
the group delay of the XUV pulses is zero and thus

τR = τW + τCC. (5)

The oscillating sideband signals are integrated over an energy
range of roughly 1.5 eV and fitted to Eq. (3) after being
frequency filtered by a Fourier transform [40].

C. The SCWF method

The Wigner time delay τW is the term of most interest.
We calculate τW using the SCWF method [58]. The SCWFs
are real-valued functions for one-photon transitions [58], from
which scattering phase shifts and the Wigner time delay can be
retrieved. The scattering phase is extracted from the SCWFs
with the Wronskian functional [60]. The Wigner time delay
is the energy derivative of the scattering phase. Note that our
calculation of the Wigner time delay with the SCWF method
takes an atom potential as a reference, with its nucleus located
at x = 0 a.u. This reference potential is modeled as

Vref = − 1√
x2 + a2

, (6)

with a = 1.3, yielding the ground state with the ionization
potential Ip = 0.5 a.u.

The scattering phase calculated by the SCWF method is
defined as

ηleft (right) ≡ η
left (right)
target − ηref , (7)

where η
left (right)
target is the absolute scattering phase of photoelec-

trons emitted to the left (right), escaping through the target
potential. In addition, ηref is the absolute scattering phase of
photoelectrons going through the reference potential, which is
symmetric for photoelectrons emitted to the left and right.

Applying the finite-difference approximation, the Wigner
time delay is

τ
left (right)
W ≈ ηleft (right)(E + �E ) − ηleft (right)(E − �E )

2�E
, (8)

where the energy interval �E equals the IR frequency ω. The
SWTD is defined as [52]

τSWTD ≡ τ left
W − τ

right
W , (9)

which measures the Wigner time-delay difference between
photoelectrons emitted to the left and right of the target.

III. RESULTS AND DISCUSSION

A. Time delay in RABITT measurements

Figures 1(a) and 1(b) display the photoelectron energy
spectra obtained by solving the TDSE, where the nuclear
charges of the target are (ZL, ZR) = (0.3, 0.7). Figures 1(a)
and 1(b) correspond to the spectra of photoelectrons emitted
to the left and right, respectively. The weak sidebands between
the main peaks are clearly visible. The yield of each sideband
oscillates with the relative delay τ between the XUV and
IR fields. This oscillation encodes the information of pho-
toionization time delay. Previous studies have reported that
the photoionization time delays are different for the electrons
emitted to the left and right sides of an asymmetric molecule

FIG. 1. (a) Energy spectrum of photoelectrons emitted to the left
side of the diatomic molecule [(ZL, ZR ) = (0.3, 0.7)]. (b) Same as in
(a) but for photoelectrons emitted to the right side. (c) Yield of SB
12 as a function of the relative delay between the XUV and IR fields.
The blue circles are the yield of photoelectrons emitted to the left
and the orange rhombuses correspond to photoelectrons emitted to
the right. The inset depicts a part of the magnified sideband signals.
(d) Same as in (c) but for SB 20.

[40,52,53]. To reveal this difference, we compare the τ de-
pendence of the yields of photoelectrons emitted to the left
and right, as shown in Figs. 1(c) and 1(d). Indeed, there is a
small shift between photoelectrons emitted to the two sides
and this shift is energy dependent. For instance, the shift for
SB 20 [Fig. 1(d)] is larger than that of SB 12 [Fig. 1(c)].

We extract the time delays for photoelectrons emitted to
the left (τ left

R ) and right (τ right
R ) using Eq. (3), as displayed

in Figs. 2(a)–2(f). Here the nuclear charges (ZL, ZR) change
from (0.0,1.0) to (0.5,0.5). For the case (ZL, ZR) = (0.0, 1.0),
corresponding to an atom located at x = 2.0 a.u., the time
delays τ left

R and τ
right
R are exactly the same. This is because

the photoelectron momentum distribution does not depend on
where the ionized atom is located, and thus τ left

R and τ
right
R

are symmetric for this atomic potential. For the symmetric
molecule with (ZL, ZR) = (0.5, 0.5), as shown in Fig. 2(f),
τ left

R exactly coincides with τ
right
R , as expected. As the pho-

toelectron energy increases, τ left
R and τ

right
R approach zero,

which is quantitatively consistent with the results in [61].
For the asymmetric molecules, the difference between τ left

R

and τ
right
R is apparent, as displayed in Figs. 2(b)–2(e). For

the case (ZL, ZR) = (0.1, 0.9), as given in Fig. 2(b), τ left
R

and τ
right
R are nearly the same at photoelectron energies be-

low 10 eV. At photoelectron energies ranging from 10 to
35 eV, τ

right
R is larger than τ left

R . As the asymmetry degree
of molecules declines, the difference between τ left

R and τ
right
R

becomes more obvious. For the case (ZL, ZR) = (0.4, 0.6), as
shown in Fig. 2(e), τ left

R is much smaller than τ
right
R at energies
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FIG. 2. The RABITT time delays in photoionization of different targets with nuclear charges of (a) (ZL, ZR ) = (0.0, 1.0), (b) (ZL, ZR ) =
(0.1, 0.9), (c) (ZL, ZR) = (0.2, 0.8), (d) (ZL, ZR ) = (0.3, 0.7), (e) (ZL, ZR ) = (0.4, 0.6), and (f) (ZL, ZR ) = (0.5, 0.5). The blue squares are the
RABITT time delay of photoelectrons emitted to the left and the orange pentagrams correspond to photoelectrons emitted to the right.

ranging from 10 to 35 eV. At photoelectron energies above
35 eV, τ left

R becomes much larger than τ
right
R .

To reveal the energy-dependent difference between τ left
R

and τ
right
R more intuitively, we show the stereo RABITT time

delay (SRTD)

τSRTD = τ left
R − τ

right
R . (10)

Note that in previous studies [40,52,53] it was assumed that
the CC time delay is equal for the left and right photoelectrons
and thus the SRTD is the same as the SWTD.

Figure 3 displays the SRTDs in photoemission for
(ZL, ZR) changing from (0.0,1.0) to (0.5,0.5). For the
atom [(ZL, ZR) = (0.0, 1.0)] and the homonuclear diatomic
molecule [(ZL, ZR) = (0.5, 0.5)], τSRTD remains zero, as

FIG. 3. The SRTDs in photoionization of different targets with
nuclear charges of (ZL, ZR ) = (0.0, 1.0) (blue circles), (0.1,0.9)
(orange pentagrams), (0.2,0.8) (yellow triangles), (0.3,0.7) (pur-
ple squares), (0.4,0.6) (green rhombuses), and (0.5,0.5) (sky blue
hexagrams).

shown in Fig. 3. In contrast, for heteronuclear molecules,
τSRTD changes its sign the increasing photoelectron energy,
in agreement with the calculation results of H2O in [61].
More interestingly, a dip around 18 eV appears in τSRTD for
asymmetric molecules, as shown in Fig. 3. As the asymmetry
degree of molecules decreases, this dip becomes deeper.

B. Wigner time delay

In order to reveal the origin of the oscillation occurring in
the SRTD, we calculate the Wigner time delay with the SCWF
method [58], as described in Sec. II C. Figures 4(a)–4(f)
show the scattering phases calculated by the SCWF method,
where ηleft and ηright represent the scattering phases of pho-
toelectrons emitted to the left and right sides of the target,
respectively. Here the target nuclear charges (ZL, ZR) range
from (0.0,1.0) to (0.5,0.5). In Figs. 4(a)–4(f), ηleft rises and
ηright declines with increasing photoelectron energy, owing to
the fact that our reference atom is located between the two
molecular nuclei. For the atom [(ZL, ZR) = (0.0, 1.0)], ηleft

and ηright smoothly change as a function of photoelectron
energy, as given in Fig. 4(a). For the molecules, as shown in
Figs. 4(b)–4(f), steplike structures appear in ηleft and ηright.
These steps in the scattering phases become more steep as
the asymmetry degree of molecules declines. For the homonu-
clear molecule [(ZL, ZR) = (0.5, 0.5)], sudden phase jumps of
π appear.

We calculate the Wigner time delay using the finite-
difference approximation in Eq. (8), as given in Fig. 5.
Here τ left

W and τ
right
W refer to the Wigner time delays of pho-

toelectrons emitted to the left and right, respectively. For
asymmetric molecules, as displayed in Figs. 5(b)–5(e), humps
appear at the energies where phase jumps happen. The width
and the height of these humps depend on the asymmetry
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FIG. 4. Scattering phases, calculated by the SCWF method, in photoionization of different targets with nuclear charges of (a) (ZL, ZR ) =
(0.0, 1.0), (b) (ZL, ZR) = (0.1, 0.9), (c) (ZL, ZR) = (0.2, 0.8), (d) (ZL, ZR ) = (0.3, 0.7), (e) (ZL, ZR ) = (0.4, 0.6), and (f) (ZL, ZR ) = (0.5, 0.5).
The blue dashed lines are the scattering phases of photoelectrons emitted to the left and the orange solid lines correspond to photoelectrons
emitted to the right.

degree of molecules. For the symmetric molecule [(ZL, ZR) =
(0.5, 0.5)], the Wigner time delays are exactly the same for
photoelectrons emitted to the left and right, except for the
energies near the interference minima, where the absolute
values of τ left

W and τ
right
W are greatly enhanced [56].

In the following we use a two-center interference model
to illustrate the mechanism of the scattering phase jumps in
Fig. 4. In this model, the detected PEWP is the superposi-
tion of two waves launching from both nuclei of diatomic
molecules. Here we adopt the local momentum from the
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FIG. 5. Wigner time delays, calculated by the SCWF method, in photoionization of different targets with nuclear charges of (a) (ZL, ZR ) =
(0.0, 1.0), (b) (ZL, ZR) = (0.1, 0.9), (c) (ZL, ZR) = (0.2, 0.8), (d) (ZL, ZR ) = (0.3, 0.7), (e) (ZL, ZR ) = (0.4, 0.6), and (f) (ZL, ZR ) = (0.5, 0.5).
The blue dashed lines are the Wigner time delays of photoelectrons emitted to the left and the orange solid lines correspond to photoelectrons
emitted to the right.
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Wentzel-Kramers-Brillouin theory [62], and thus the wave
vector is written as k(x) = √

2[E − V (x)], where E is the
asymptotic energy of the photoelectrons and V (x) is the
molecular potential. Then the detected PEWP is described as

ψ = A exp

(
i
∫ +∞

−R0/2
k(x)dx

)
+ B exp

(
i
∫ +∞

R0/2
k(x)dx

)
,

(11)
where R0 is the nuclear distance of the diatomic molecule. In
Eq. (11), the parameters A and B represent the amplitudes of
the photoelectron wave packets launching from two molecular
nuclei. The relative values of A and B depend on the asymme-
try degree of molecules. For the case (ZL, ZR) = (0.0, 1.0),
A = 0. For the symmetric molecule [(ZL, ZR) = (0.5, 0.5)],
A = B.

We calculate the phase of ψ in Eq. (11) relative to that
of the photoelectron wave scattered by the reference atomic
potential, for different values of A

B . Here the reference scat-

tering phase is written as argψref = ∫ +∞
0

√
2[E − Vref(x)]dx.

The results are shown in Fig. 6. Here we display only the scat-
tering phase of photoelectrons emitted to the right side. For the
symmetric molecule (A = B), there are sudden π jumps. This
is because of the familiar two-center interference for homonu-
clear diatomic molecules [56]. As the value of A

B changes, the
scattering phases exhibit steplike structures around two-center
interference minima. The slopes of these steplike structures
depend on the amplitude ratio of two waves ( A

B ) and thus the
asymmetry degree of diatomic molecules. This behavior is
the same as that in Fig. 4. Therefore, we conclude that these
scattering phase jumps could be understood by the two-center
interference in photoionization of diatomic molecules.

To understand the dips appearing in the SRTD in Fig. 3,
we calculate the SWTD with Eq. (9) using the data in Fig. 5.
The results are shown in Fig. 7, where (ZL, ZR) ranges from
(0.0,1.0) to (0.4,0.6). For the asymmetric diatomic molecules
[(ZL, ZR) = (0.1, 0.9) ∼ (0.4, 0.6)], the SWTD fluctuates as
a function of photoelectron energy. There are two dips located
around energies of 20 and 130 eV, respectively. The depth of
these dips increases as the asymmetry degree decreases. The
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FIG. 7. The SWTDs in photoionization of different targets with
nuclear charges of (ZL, ZR ) = (0.0, 1.0) (blue solid line), (0.1,0.9)
(orange dashed line), (0.2,0.8) (yellow dotted line), (0.3,0.7) (purple
dash-dotted line), and (0.4,0.6) (green rhombuses).

location of the first dip and its asymmetry-degree dependence
are the same as those of the SRTD in Fig. 3. This indicates
that the fluctuation behavior of SRTDs originates from the
oscillating Wigner time delays, which is associated with two-
center interferences.

For the atom (ZL, ZR) = (0.0, 1.0), the SWTD decreases
monotonically. In this case, it has been illustrated that the
SWTD is associated with the launching position of the ionized
electron wave packet according to [40]

τ〈SW〉 = 2x0√
2E

, (12)

where E is the asymptotic energy of the photoelectrons and x0

is the mean position of electrons at the moment of birth with
respect to the reference center (in our case the reference center
is located at x = 0 a.u., and x0 = 2.0 a.u.). Figure 8 displays
τ〈SW〉 calculated with Eq. (12). In Fig. 8, τ〈SW〉 and τSWTD are in
excellent agreement for the atom case [(ZL, ZR) = (0.0, 1.0)],
which verifies that the SWTD could be interpreted by the
shifted mean position of electrons at the moment of birth, as
proposed in [40].
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FIG. 8. The SWTD [Eq. (9), yellow crosses], the mean SWTD
[Eq. (12), purple rhombuses], and the Wigner time delays in pho-
toionization of the atom [(ZL, ZR ) = (0.0, 1.0)]. The blue squares are
the Wigner time delay of photoelectrons emitted to the left and the
orange pentagrams correspond to photoelectrons emitted to the right.
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FIG. 9. (a) The SRTD (blue squares) and the SWTD (orange pentagrams) in photoionization of the asymmetric diatomic molecule
[(ZL, ZR ) = (0.3, 0.7)]. (b) Left-right relative CC time delay (yellow rhombuses) in photoionization for the asymmetric diatomic molecule
[(ZL, ZR ) = (0.3, 0.7)].

For the cases of diatomic molecules, electron wave packets
launch from both nuclei and thus the picture above breaks
down. Instead, the interference between the two wave packets
from different nuclei should be considered. It leads to the
fluctuation in the SWTD and thus the SRTD, as given in
Figs. 3 and 7.

C. Continuum-continuum time delay

The time delay in RABITT measurements, τR, can be de-
composed into the Wigner time delay τW and the CC time
delay τCC, according to Eq. (5). Here τW, the term of most
interest, is expected to be extracted directly from RABITT
measurements. In previous studies, τCC was thought to be a
universal quantity owing to the symmetric contribution of the
long-range Coulomb potential [26]. Therefore, τCC is removed
from the stereo measurement [40,52,53] and thus the SWTD
[Eq. (9)] equals the SRTD [Eq. (10)].

However, in our work, the SWTD is not the same as
the SRTD for asymmetric molecules. The SRTDs shown in
Fig. 3 oscillate around zero for asymmetric molecules, while
the SWTDs given in Fig. 7 remain positive. To reveal the
difference between the SWTD and the SRTD for asymmet-
ric molecules more clearly, we display the SRTD and the
SWTD for the molecule (ZL, ZR) = (0.3, 0.7) in Fig. 9(a).
The obvious difference between the SRTD and the SWTD, as
displayed in Fig. 9(a), indicates that the CC time delay is left-
right asymmetric in photoemission of asymmetric molecules.
The relative left-right CC time delay (τ left

CC − τ
right
CC ) for the

molecule (ZL, ZR) = (0.3, 0.7) is shown in Fig. 9(b). This
relative CC time delay is large at low energies, up to 100 as.
As the photoelectron energy increases, the difference between
the left-right CC time delays τ left

CC and τ
right
CC becomes smaller.

Note that the time delay in RABITT measurements is in-
dependent of where the reference center is located, while the
reference center’s position affects the Wigner time delay and
thus the CC time delay. In our calculation, the reference center
is placed at x = 0 a.u.

In previous theories, the analytic expression of τCC was de-
rived by applying the asymptotic approximation in the lowest-
order perturbation theory [26,27]. This analytic expression in-
dicates that τCC is universal, only depending on the momenta
of two continuum states in the two-photon transition and the

ionic Coulomb potential [26]. However, recent calculations
and experiments demonstrated that the actual CC time delay is
nonuniversal [27]. It depends on angular momenta [30,44,63]
and is heavily influenced by the partial wave interference char-
acteristic [64]. The angular momentum dependence of τCC is
attributed to the centrifugal-potential effect on the scattering
phase in CC transitions [44]. For asymmetric molecules, the
CC transition probes the potential landscape at large distances
where the potential ∼ 1

r2 (which is anisotropic for the asym-
metric molecular potential) is non-negligible. Therefore, the
CC time delay in photoionization of asymmetric molecules
depends on the emission direction of photoelectrons.

IV. CONCLUSION

We have calculated the time delay of diatomic molecules
in reconstruction of attosecond beating by interference of
two-photon transitions (RABITT) measurements by solving
the time-dependent Schrödinger equation (TDSE). Our re-
sults show that for asymmetric diatomic molecules, the stereo
RABITT time delay (SRTD) fluctuates as a function of pho-
toelectron energy. This fluctuation is due to the oscillating
stereo Wigner time delay (SWTD), which is traced to the in-
terference between the electron wave packets launching from
two molecular nuclei. For extremely asymmetric diatomic
molecules, the electron wave packet predominantly launches
from one nucleus of the molecule and thus the interference
effect is negligible. In this case, the SWTD could be inter-
preted by the shifted mean position of electrons at the moment
of birth. Furthermore, for asymmetric diatomic molecules,
there is a difference between the SWTD and the SRTD, which
reveals the left-right difference of the continuum-continuum
(CC) time delays. This asymmetric CC time delay indicates
that the CC transition probes part of the ∼ 1

r2 potential land-
scape, which is anisotropic for the heteronuclear molecular
potential.

Our one-dimensional model shows a dip in the stereo time
delay in the photoionization of heteronuclear molecules. We
believe this dip exists in full-dimensional calculations and is
experimentally observable. Moreover, in real molecules, mul-
tielectron effects and the nuclear motion may affect the details
of the stereo time delay, which requires more sophisticated
studies.
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