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In multiphoton ionization of atoms, elliptical dichroism may arise in the photoelectron angular distributions
due to the interference of the possible ionization pathways. We here consider the interaction of atoms with an
elliptically polarized biharmonic (ω + 2ω) field which simultaneously allows one- and two-photon ionization
of the atoms. The interference between these two ionization pathways introduces contributions to the elliptical
dichroism in addition to the dichroism that arises from the two-photon ionization alone. We show that these
additional dichroism contributions can lead to a stronger dichroism in comparison to the one arising from two-
photon ionization only. We present a relativistic analysis of the corresponding photoelectron angular distributions
and discuss individual contributions to the dichroic phenomena. Detailed computations have been performed for
biharmonic ionization of neutral helium atoms.
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I. INTRODUCTION

Biharmonic ionization of atoms is often used to refer to
the photoionization by light beams that consist of two co-
propagating components with frequencies which are integer
multiples of some fundamental frequency ω, i.e., nω + mω.
In biharmonic ionization, therefore, nω and mω multiphoton
ionization may both result in the same final state of the pho-
toelectron (and ion). The photoelectron wave function is then
composed of the contributions of both ionization paths as well
as their interference.

Biharmonic ionization has been extensively studied at low
frequencies in the so-called strong-field regime, especially for
the ionization of atoms by counter-rotating circularly polar-
ized light, which, similarly, is often referred to as bicircular
ionization [1–6]. In the strong field regime, the interaction
of atoms with biharmonic fields was utilized to control the
ionization process by changing the polarization properties as
well as energy of the beams. For example, biharmonic ioniza-
tion can be used to create and control electron vortices [7–9],
to generate circularly polarized high-order harmonic fields
[10] and high-order harmonic beams with well-defined orbital
angular momentum [11], or to carry our phase-of-the-phase
spectroscopy measurements [12].

Biharmonic beams at XUV photon energies can nowadays
be generated by free-electron lasers due to the (coherent) su-
perposition of the beams generated at such facilities. The first
pioneering experiments were carried out for the ionization
of helium and neon by linearly polarized biharmonic beams
and showed that this process can be used to characterize the
phase and amplitude of the biharmonic light beam [13–15].
While the majority of free-electron lasers presently pro-
vide linearly polarized beams, several facilities already allow

control of the polarization or will make this possible in
planned future upgrades [16,17]. The experimental possibil-
ities of the production of biharmonic beams at XUV energies
also sparked theoretical efforts. In particular, the photo-
electron angular distributions of biharmonic ionization with
linearly and circularly polarized beams which comprise a fun-
damental frequency and its second harmonic (ω + 2ω) were
studied extensively [18–20] including the influence of ultra-
short pulse length in the ionization process [21]. Recently, it
was shown that the photoelectron angular distribution can be
experimentally controlled by the intensities and phase of two
circularly polarized beam components in biharmonic ioniza-
tion of arbitrary order (i.e., nω + mω) [22].

Another interesting phenomenon occurs in the interac-
tion of atoms with elliptically polarized light. In contrast to
pure circular photon polarization states, the interaction of
unpolarized atoms with elliptically polarized light gives rise
to dichroic phenomena. Already in multiphoton ionization
of atoms by monochromatic light, the sensitivity to light
handedness can be observed in the photoelectron angular dis-
tributions [23–29]. The dependence of these distributions on
the handedness of the ionizing light is called elliptical dichro-
ism, and its origin as well as maximum were described in
detail for two-photon ionization of neutral atoms [30]. While
in monochromatic ionization of s electrons by elliptically
polarized light the dichroism arises from a single contribution
(within electric dipole approximation) to the photoelectron
angular distributions, in biharmonic ionization (e.g., ω + 2ω)
the dichroism becomes (much) more complex. In addition
to the contribution arising from the two-photon ionization,
the interference between the one- and two-photon ionization
introduces additional contributions to the dichroism. The aim
of this paper is to analyze and characterize these contributions
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and show that they can enhance the elliptical dichroism in
comparison to the pure two-photon ionization process.

The paper is organized as follows. In Sec. II, we pro-
vide a relativistic description of biharmonic ionization within
second-order perturbation theory. To disentangle the contri-
butions to the elliptical dichroism clearly, we reduce the
theoretical approach to the nonrelativistic limit. Section III
presents our main results and demonstrates the dependency of
elliptical dichroism in photoelectron angular distributions on
the beam parameters such as the energy as well as the intensi-
ties of the beam components. Finally, a summary of this paper
with an outlook on further progress is provided in Sec. IV.
Relativistic units (h̄ = c = m = 1) are used throughout the
paper unless otherwise stated.

II. THEORY

A. General theory

The vector potential of a biharmonic beam consisting of
two components with a fundamental frequency ω and its sec-
ond harmonic copropagating along the quantization axis k̂||ẑ
can be written as

A(r, t ) = A(ω)
0 A(ω)(r, t ) + ei�A(2ω)

0 A(2ω)(r, t ), (1)

where each individual vector potential takes the form

A(nω)(r, t ) = ε(nω)e−inωt+ik(nω)r, (2)

where A(nω)
0 is the amplitude of the vector potential of each

component that is directly proportional to the flux of the com-
ponent F (nω) = (A(nω)

0 )2 and to the intensity I (nω) = nωF (nω).
The phase shift between the two beam components is given
by �. The polarization of each component is denoted by ε(nω),
which can be expressed in terms of the ellipticity γ (nω) and the
basis vectors in helicity representation ε±1 as

ε(nω) = ε−1[1 − γ (nω)] − ε+1[1 + γ (nω)]√
2[1 + (γ (nω) )2]

. (3)

The ellipticity can take values in the range −1 � γ (nω) � 1,
where γ (nω) = −1 corresponds to left-circularly, γ (nω) = 0
to linearly, and γ (nω) = 1 to right-circularly polarized light.
The interaction of the biharmonic field composed of a fun-
damental frequency and its second harmonic (1) with an
atom in an initial many-electron state |αiJiMi〉 can lead to
the ionization of the atom by absorption of one photon with
energy 2ω or two photons with energy ω; see Fig. 1. After
the interaction, the system (ion + photoelectron) is left in a
final state |α f J f M f , peme〉. The atomic states are described by
the total angular momentum J , its projection M, and further
quantum numbers α which are necessary to uniquely describe
the atomic state. The photoelectron wave function is char-
acterized by its momentum pe and spin projection me. The
ionization proceeds via one- and two-photon ionization into
a final state with identical energy. It has been shown before
that the ionization of atoms by long pulses, as they are often
produced by the current free-electron laser facilities, can be
well described with the assumption of infinitely long pulses
[15,31,32]. Since we focus on ionization at such facilities,
we will adopt the long pulse approximation. The one- and

FIG. 1. Schematic representation of biharmonic ionization of
atoms by elliptically polarized light. Energy scheme diagram of ω +
2ω biharmonic ionization (right). The biharmonic beam is composed
of two co- or counter-rotating components with energy ω as well as
its second-order harmonic with energy 2ω and their corresponding
fluxes F (ω) and F (2ω). The photoelectron angular distributions of
ionization of atoms by such a biharmonic field are detected in the
polarization plane (θ = π/2) as functions of the azimuthal angle
φ. The azimuthal angle is measured from the linear part of the
polarization vector, which coincides for both beam components. Two
example distributions are shown and correspond to the ionization of
atoms by beams of opposite handedness. Their difference is used to
define the elliptical dichroism in the polarization plane. To disentan-
gle the two fundamental contributions to the elliptical dichroism, two
dichroism parameters are defined, 	|| and 	×. While the dichroism
	|| is defined as a difference of ionization rates integrated over the
left semiplane, i.e., 0 � φ � π (orange arrow), 	× is defined using
the sum of integrals 0 � φ � π/2 and π � φ � 3π/2 (turquoise
arrows).

two-photon ionization processes can then be described within
lowest order perturbation theory by the transition amplitudes

M (2ω)
MiM f me

= 〈α f J f M f , peme|α · A(2ω)|αiJiMi〉, (4)

M (ω)
MiM f me

=
∑

ν

〈α f J f M f , peme|α · A(ω)|ανJνMν〉

× 〈ανJνMν |α · A(ω)|αiJiMi〉
Ei + ω − Eν

, (5)

respectively, with α being the vector of Dirac matrices and
A(nω) being the photon fields. We here employ the indepen-
dent particle approximation, where the electron wave function
is represented by a single active electron, while all other
electrons are accounted for by a screening potential in the
Hamiltonian of the Dirac equation. Due to the interaction of
the atom with the electromagnetic field, the active electron
from the substate described by the principal na, relativistic
κa, quantum numbers as well as projection of the total an-
gular momentum ma given by |a〉 ≡ |naκama〉 of the atom
is promoted into the continuum, leaving a vacancy in the
atomic substate. The relativistic quantum number κa is re-
lated to the total ( ja) and orbital (la) angular momentum
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quantum numbers as κ = (−1)la+ ja+1/2( ja + 1/2). In the sec-
ond quantization formalism, the final many-electron state can
be described by a Slater determinant wave function with the
use of the electron creation a†

peme
and annihilation operators

anaκama and the Clebsch-Gordan coefficients 〈.., .|.〉.. as

|α f J f M f , peme〉 =
∑
maM

〈 ja − ma, JiM|Jf M f 〉

× (−1) ja−ma a†
peme

anaκama |αiJiM〉. (6)

Together with the independent particle approximation, the
above expression allows us to reduce the many-electron am-
plitudes (4) and (5) to amplitudes which depend only on
one-electron wave functions of the active electron,

M (2ω)
MiM f me

=
∑
ma

〈 ja − ma, JiMi|Jf M f 〉(−1) ja−ma

×〈peme|α · A(2ω)|a〉, (7)

and

M (ω)
MiM f me

=
∑
ma

〈 ja − ma, JiMi|Jf M f 〉(−1) ja−ma

×
∑

n

〈peme|α · A(ω)|n〉〈n|α · A(ω)|a〉
Ea + ω − En

, (8)

where a summation over the complete energy spectrum of
single-electron intermediate states |n〉 is to be carried out. To
evaluate the transition amplitudes numerically, it is convenient
to carry out further expansions. First, the electromagnetic field
A(nω) can be decomposed into spherical tensors with electric
(p = 1) and magnetic (p = 0) components with multipolarity
J using

A(nω) = 4π
∑
JM p

iJ−p
[
ε(nω) · Y (p)∗

JM (k̂)
]
a(p)

JM (r). (9)

Additionally, we also expand the photoelectron wave function
in the spherical basis into its partial wave components

|peme〉 = 1√
Ee|pe|

∑
jm j

∑
lml

il e−iδκ 〈lml , 1/2me| jm j〉

× |Eeκmj〉Y ∗
lml

(θ, φ), (10)

where the electron energy is given by Ee = √
p2

e + 1, the
phases of partial waves by δκ , and the emission direction of
the photoelectron in terms of polar and azimuthal angles θ

and φ by the spherical harmonics Ylml (θ, φ) (see Fig. 1). We
can use these expansions to analyze the one- and two-photon
ionization amplitudes M (2ω)

MiM f me
and M (ω)

MiM f me
and to derive the

associated observables. The explicit forms of the transition
amplitudes after these expansions are provided in Eqs. (A1)
and (A2) of the Appendix for the first- and second-order
transition amplitudes, respectively. These expressions explic-
itly show the dependence on the radial transition amplitudes
Uκ (pJ ) and U (κn )

κ (p1J1, p2J2), which contain the radial inte-
grals of the electronic wave functions and the photon-electron
interaction operator for a given (pair of) multipoles.

Out of the one- and two-photon ionization transition am-
plitudes, it is straightforward to construct and calculate the

ionization rate dW/d for the biharmonic ionization of atoms

dW

d
= 1

[Ji]

∑
MiM f me

∣∣K (ω)M (ω)
MiM f me

+ K (2ω)M (2ω)
MiM f me

∣∣2
, (11)

where [Ji] = (2Ji + 1) and the prefactors for one- and two-

photon ionization are given by K (2ω) =
√

2απ2F (2ω)

ω
and K (ω) =

(2π )3/2αF (ω)

ω
, respectively, and can be derived from the scatter-

ing matrix of the S matrix; see, e.g., Ref. [33]. The transition
rate dW

d
is used to characterize the ionization process, since the

cross section cannot be conveniently defined for a biharmonic
ionization process. This general expression of the transition
rate contains all relativistic effects as well as all multipoles
of the electron-photon interaction. However, in many cases,
the nonrelativistic description within the electric dipole ap-
proximation is not only fully sufficient, but can be analyzed
analytically and provide valuable physical insights.

B. Nonrelativistic limit of biharmonic ionization of s electrons

In order to analyze the dependence of the biharmonic rate
(11) on the physical parameters such as the beam polarization,
photon flux, or the relative phase of the two beam components,
we derived a simplified analytical expression. For example,
we take the quantization ẑ axis along the biharmonic beam
propagation direction k̂ and restrict the electron-photon inter-
action to the electric-dipole approximation by taking J = 1
and p = 1 in (9). Furthermore, although the transition rate
(11) applies generally for the ionization of any atomic shell,
in this work, we will present calculations of biharmonic
ionization of s electrons only. Finally, for many atoms and
ions, the nonrelativistic description of the atomic structure
is fully sufficient [34,35] and enables one to analytically
investigate the properties of the biharmonic ionization. In
the nonrelativistic limit, the radial transition amplitudes are
approximately equal to the (strong) transitions between the
fine-structure levels. Moreover, these radial integrals also take
approximately the same values as their nonrelativistic equiv-
alents, where the electron wave functions are the solutions
of the Schrödinger equation. This allows us to reduce the
description of electron transitions from five relativistic am-
plitudes Uκ (pJ ) and U (κn )

κ (p1J1, p2J2) to only two transition
amplitudes which depend on the orbital angular momen-
tum, Ul (pJ ) and U (ln )

l (p1J1, p2J2), and sum over all allowed
values of the total angular momenta j. In this simplified
nonrelativistic picture, only three possible angular momen-
tum ionization pathways remain. The electron can proceed
via the one-photon ionization transition s → p, represented
by Up(E1) and the associated phase δp, or via two-photon
ionization pathways s → p → s and s → p → d , represented
by U (p)

s (E1, E1) and U (p)
d (E1, E1) with partial wave phases

δs and δd , respectively. For clarity, the spectroscopic notation
for the orbital angular momentum l was employed in the
nonrelativistic notation for the radial amplitudes Ul (pJ ). This
approach allows us to analytically analyze the dependence
of the ionization rate on the degree of linear and circular
polarization of the fundamental and second harmonic beams,
which are given by P(nω)

l = (γ (nω) )2−1
(γ (nω) )2+1 and P(nω)

c = 2γ (nω)

(γ (nω) )2+1 ,
respectively.
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Considering the above-mentioned simplifications, it is pos-
sible to obtain the transition rate for the biharmonic ionization
of s electrons in the nonrelativistic limit. Moreover, to an-
alyze the individual contributions to the final photoelectron
angular distributions, we split the rate into three parts. The
first term dWsym

d
describes the symmetric part of the distri-

bution, which is independent of the sign of the ellipticities
of the ω as well as 2ω beams and is always positive. The
dichroic contribution to the ionization rate dWdich

d
arises from

the interference between different ionization pathways. The
individual terms of the dichroic contribution depend on the
sign of either of the beam helicities γ (2ω) or γ (ω) (via P(nω)

c ).
The last contribution dWasym

d
arises from the interference be-

tween one- and two-photon ionization pathways. It remains
constant upon reversal of the helicities of both beams and
exhibits a sign change upon rotation in the polarization
plane by π/2 radians. The ionization rate contributions are
given by

dWsym

d
= 9πα(F (ω) )2μ2

2ωF0

{|Up|2 sin2 θ
[
1 + P(2ω)

l cos(2φ)
]}

+ 36(F (ω) )2π2α2

ω2

{∣∣U (p)
s

∣∣2(
P(ω)

l

)2 + ∣∣U (p)
d

∣∣2
[(

P(ω)
l

)2 − 3P(ω)
l sin2 θ

(
P(ω)

l + cos(2φ)
)

(12)

+ 9

4
sin4 θ

(
1 + P(ω)

l cos(2φ)
)2

]
+ 2Re

[
U (p)

s U (p)∗
d ei(δs−δd )P(ω)

l

(
P(ω)

l − 3

2
sin2 θ

[
P(ω)

l + cos(2φ)
])]}

,

dWdich

d
= 108(F (ω) )2π2α2

ω2
Re

[
iU (p)

s U (p)∗
d ei(δs−δd )P(ω)

c P(ω)
l sin2 θ sin(2φ)

]

− 18(πα)3/2(F (ω) )2μ√
1 + (γ (2ω) )2ω3/2F 1/2

0

{
2Re

[
UpU

(p)∗
s ei(δp−δs )ei�P(ω)

l γ (2ω) sin(θ ) sin φ
] + Re

[
UpU

(p)∗
d ei(δp−δd )ei�

× (
2P(ω)

l γ (2ω) sin θ sin φ + 3 sin3 θ
[
P(ω)

c cos φ sin(2φ) − γ (2ω) sin φ
(
P(ω)

l − cos(2φ)
)])]}

, (13)

dWasym

d
= −18(πα)3/2(F (ω) )2μ√

1 + (γ (2ω) )2ω3/2F 1/2
0

{
2Re

[−iUpU
(p)∗
s ei(δp−δs )ei�P(ω)

l sin θ cos φ
] + Re

[
iUpU

(p)∗
d ei(δp−δd )ei�

× (−2P(ω)
l sin θ cos φ + 3 sin3 θ

[
γ (2ω)P(ω)

c sin φ sin(2φ) + cos φ
(
P(ω)

l + cos(2φ)
)])]}

, (14)

where μ =
√

F (2ω)F0/F (ω) expresses the relative flux between
the two beam components with F0 being the relativistic unit
of flux and where the notation Ul = Ul (E1) and U (ln )

l =
U (ln )

l (E1E1) was used for the sake of brevity. The sum of the
symmetric, asymmetric, and dichroic contributions gives the
rate of biharmonic ionization

dW

d
= dWsym

d
+ dWdich

d
+ dWasym

d
. (15)

The ionization rate for biharmonic ionization of s electrons
(15) readily reveals the origin of the elliptical dichroism and
describes the contributions of one- and two-photon ionization
to the dichroism. The various contributions to the distributions
are graphically represented in Fig. 2. The first row depicts
the symmetric contribution given by Eq. (12), which is inde-
pendent of the sign of the beam ellipticities γ (ω) and γ (2ω).
The second row emphasizes the different contributions to the
dichroism due to the one- and two-photon ionization of atoms.
These contributions to the angular distribution of photoelec-
trons or the angle-differential ionization rate are constructive
(green) and destructive (red). The two plots in the second
row correspond to two distinct dichroic terms of Eq. (13).
The first term arises from the interference of the two two-
photon ionization pathways (s → p → s and s → p → d). It
possesses a twofold rotational symmetry in the polarization
plane and is graphically represented by the right figure of the
second line of Fig. 2. The second dichroic term arises from the

interference of the one- and two-photon ionization pathways
and exhibits one-fold rotational symmetry. It is shown on
the left side of the second line of Fig. 2. The positive and
negative values of the dichroic contributions swap upon a
reversal of the handedness of the biharmonic beam. From the
two plots, it becomes clear that these two dichroic contribu-
tions may add up, resulting in stronger dichroism than arises
from two-photon ionization alone (upper semiplane in Fig. 2),
or counteract each other (lower semiplane). The third row
of Fig. 2 shows the up-down asymmetry which arises from
the interference between the one- and two-photon ionization
pathways and is analytically described by Eq. (14). This con-
tribution is invariant upon the simultaneous reversal of the
handedness of both beams. The last row shows an example of
the photoelectron angular distribution of biharmonic ioniza-
tion which is given by the sum of all above-listed contributions
and corresponds to Eq. (15).

III. RESULTS

To analyze the dichroic properties of the photoelectron an-
gular distributions properly, we define two elliptical dichroism
parameters 	|| and 	× in accordance with Fig. 1. In general,
a dichroism parameter can be defined as

	 = W (γ (ω), γ (2ω) ) − W (−γ (ω),−γ (2ω) )

W (γ (ω), γ (2ω) ) + W (−γ (ω),−γ (2ω) )
, (16)
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FIG. 2. The angle-differential biharmonic ionization rate (15)
can split into symmetric, dichroic, and asymmetric contributions,
from top to bottom corresponding to Eqs. (12)–(14), respectively.
Contributions arising from interference between different ionization
pathways can be either constructive (or positive, full green) and
destructive (or negative, dashed red), while the symmetric and final
distributions are always positive-valued. The dichroic contribution
can be further split into two fundamentally different parts, one with
one-fold rotational symmetry within the polarization plane (second
line, left) and one with two-fold rotational symmetry (second line,
right). The asymmetric term is shown in the third line. The to-
tal distribution (fourth row) results from the sum of all the above
contributions.

where, for clarity, we explicitly include the dependence on
the respective ellipticities and handedness of the two beam
components via ±γ (nω) and where

W (γ (ω), γ (2ω) ) =
∫ φ2

φ1

dφ
dW

d
(γ (ω), γ (2ω) ), (17)

with the integrand given by Eq. (15). The dichroism param-
eters 	|| and 	× are defined in the polarization plane, i.e.,
for θ = π/2. More precisely, the parameter 	|| is then given
by Eq. (16) with the integration of the ionization rate carried
out in the left half of the angular distribution, φ1 = 0 and
φ2 = π . On the other hand, 	× is obtained from the integral
of the ionization rate from φ1 = 0 to φ2 = π/2 in Eq. (16)
plus the integral from φ1 = π to φ2 = 3π/2. This distinction
of two dichroism parameters is visualized in Fig. 1 and it is
both convenient and necessary in order to effectively disentan-
gle the two distinct contributions to the elliptical dichroism.
Explicitly, due to the partial cancellation in the angular inte-
gral, the parameter 	× arises from the two-photon ionization
process and expresses only the contributions of the first term
of Eq. (13), i.e., the right plot in the second line of Fig. 2.
The parameter 	|| arises from the interference between one-
and two-photon ionization processes and evaluates only the
contributions of the second term of Eq. (13), i.e., the left plot
in the second line of Fig. 2.

In the following discussion of these dichroism parameters,
we will concentrate on the specific example of the biharmonic
ionization of neutral helium atoms in their ground state and
for the fundamental photon energy lower than the one-photon
ionization threshold. Due to its routine use in experiments
at free-electron laser facilities [36,37] and its consideration
in previous theoretical treatments of bichromatic ionization
[30,38], helium is a reasonable choice for our considerations.
However, we expect that our main findings extend to other
atomic targets as well. In addition to the target, we will fix the
ellipticities of both beam components to |γ (ω)| = |γ (2ω)| =
0.42. For these values, the results presented below are most
pronounced; however, they are also present if phase and ellip-
ticities are altered.

The total ionization cross section for pure two-photon ion-
ization (relative flux μ = 0) of helium is shown in Fig. 3 (top
panel) as a function of photon energy ω. Here, a 1s electron
is raised to the continuum via a (virtual) intermediate state
and the resonant enhancement of the total cross section due
to the 1s2 → 1s2p and 1s2 → 1s3p transitions can be seen at
ω = 21.2 and ω = 23.1 eV. In the lower two panels on the
left of Fig. 3, we show the elliptical dichroism parameters
defined above for a fixed relative phase � = π/2 of the two
beam components. As was discussed in detail in Ref. [30],
the dichroism in pure two-photon ionization can always be
maximized by tuning the photon energy such that the inter-
mediate state lies between two such resonances. This fact can
be observed in the orange dashed curves in the figure, which
were computed from the theory outlined in Sec. II with the
second harmonic beam turned off. Since the parameter 	||
always vanishes in this case, the elliptical dichroism can be
fully characterized using the parameter 	×, which exhibits the
mentioned maximum and minimum to the right of the 1s2p
resonance. In between the extrema, 	× flips its sign due to a
zero crossing of the transition amplitude U (p)

d in the dichroic
part of the transition rate (13), around which l → l − 1 transi-
tions are favored, contrary to the well-known propensity rules
[30,39]. A similar dependence of the dichroism on the photon
energy can also be seen around the 1s3p resonance.

In the pure two-photon ionization (μ = 0), this dichroic
behavior arises from the single term in the first line of the
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FIG. 3. Dependence of the elliptical dichroism on the fundamental photon energy ω. Left: Total photoionization cross section as function
of ω (top). The middle and bottom panels show the elliptical dichroism parameters 	|| and 	× as functions of ω and for two values of the

relative flux μ =
√

F (2ω)F0
F (ω) of the two counter-rotating beam components. Right: Photoelectron angular distributions for relative flux μ = 5000.

and two different photon energies. All results were computed for biharmonic ionization of helium with counter-rotating beam components
and the following parameters: ellipticities |γ (ω)| = |γ (2ω)| = 0.42, intensity I = 1014 W/cm2 of the fundamental beam, and relative phase
� = π/2 between the beam components.

transition rate (13) or, in other words, only from the dichroic
contribution shown on the right in the second row in Fig. 2.
Let us now turn to the biharmonic ionization, where we will
focus on the case of two counter-rotating beam components.
If the second-harmonic beam is turned on (μ �= 0), further
contributions shown in Fig. 2 become relevant. In particular,
the asymmetric contributions due to the interference of one-
and two-photon ionization pathways alter the symmetries of
the photoelectron angular distributions. As a consequence,
the distributions computed for the biharmonic ionization now
possess an up and down asymmetry, shown on the right
of Fig. 3. Quantitatively, when compared to the pure two-
photon ionization, for the biharmonic ionization the elliptical
dichroism parameter 	× exhibits a similar dependence on
the fundamental photon energy (blue curve in the bottom left
panel of Fig. 3). Again, close to the 1s2p and 1s3p resonances,
it reaches its extremal values and crosses through zero. This
overall behavior is, as before, largely determined by the zero
crossing of the amplitude U (p)

d in the transition rates (12)–(14).
The angular distributions for which the elliptical dichroism
parameter 	× is maximized are displayed in Fig. 3.

Most importantly for us is the change in dichroic behavior
as one goes from pure two-photon ionization to biharmonic
ionization. A comparison of the two curves shown in the bot-
tom left panel of Fig. 3 suggests that the elliptical dichroism
is reduced due to the presence of the second-order harmonic
beam. In fact, however, this can be attributed to our choice
of dichroism parameters. Indeed, the parameter 	|| exhibits a
markedly different behavior: While it vanishes for all photon

energies for μ = 0, it shows a significant amplitude around
the resonances for μ = 5000, as shown in the middle left
panel in Fig. 3. To demonstrate that the elliptical dichroism
in biharmonic ionization is generally significantly increased,
we define an angle-resolved dichroism parameter introduced,
e.g., in Refs. [27,30]. The angle-resolved dichroism is given
by 	φ (θ, φ) = dW (γ (ω),γ (2ω) )/d−dW (−γ (ω),−γ (2ω) )/d

dW (γ (ω),γ (2ω) )/d+dW (−γ (ω),−γ (2ω) )/d
. Within the

polarization plane, the dichroism 	φ (θ, φ) will reach a max-
imum at a certain azimuthal angle(s) φmax, which generally
depends on the beam parameters as well as the chosen target
atom. Figure 4 shows the absolute value of the angle-resolved
elliptical dichroism |	φ (θ = π/2, φmax)| as a function of the
incident beam energy. The dichroism is calculated in the po-
larization plane at φmax for pure two-photon (dashed orange)
as well as biharmonic (solid blue) ionization of helium. The
figure clearly demonstrates that for most incident photon en-
ergies, the angle-resolved dichroism in biharmonic ionization
is greater than in pure two-photon ionization. This holds ex-
clusively true for lower incident photon energies; however,
it can be broken at near-resonant photon energies due to the
dynamic behavior of the transition amplitudes. As the main
result of this work, we can therefore conclude that the ellipti-
cal dichroism is enhanced in the biharmonic ionization when
compared to the pure two-photon ionization.

In order to generate an enhanced dichroism signal due to
the presence of the second-order harmonic beam, its intensity
(or, equivalently, the relative flux μ) needs to be adjusted
correctly. In Fig. 5, we display the dichroism parameters 	×
and 	|| computed as a function of both the fundamental
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FIG. 4. Angle-resolved elliptical dichroism 	φ (θ = π/2, φmax)
in two-photon (dashed orange) and biharmonic (solid blue) of helium
as a function of incident photon energy.

photon energy ω and the relative flux μ between the two
beam components. Here, the relative phase � between the
beam components was always chosen such that the dichroism
parameters are largest for the respective energy ω and relative
flux μ. At μ = 0, the dichroism parameter 	|| = 0, while 	×
is at its maximum value. The values of the parameters for
nonzero values of μ then strongly depend on the fundamental
frequency ω. The ionization becomes dominated by the one-
photon ionization process for large values of the relative flux
and the dichroism becomes less pronounced. However, practi-
cally for all intensities, the elliptical dichroism is present and
can be measured in terms of both dichroism parameters. This
quite strong dependence on the intensity of the second-order
harmonic beam underscores the importance of the coupling of
one- and two-photon ionization mechanisms.

The dependence shown in Fig. 3 may serve as an initial
guideline for experimental control of the different contribu-
tions in Fig. 2 and therefore the elliptical dichroism. While
the intensity of the second-order harmonic beam component
already leads to a significant modification, the phase between
the two beam components offers an additional degree of
freedom that allows a rotation of the dichroic contributions
within the polarization plane in Fig. 2. A proper theoretical
analysis of this influence lies beyond the scope of this work
and provides a natural starting point for future investigations.

IV. SUMMARY

In this work, we theoretically investigated the elliptical
dichroism in the ionization of atoms by an elliptically po-
larized biharmonic laser field composed of a fundamental
frequency and its second-order harmonic. We treated the
process using second-order perturbation theory and indepen-
dent particle approximation. An extension of this formalism
is planned in the frame of the full many-electron open-
source atomic code JAC [40]. Here, we derived a simplified
expression of the biharmonic ionization rate within the nonrel-
ativistic limit and demonstrated how the shape of the angular
distributions arises from the interference of different contribu-
tions of one- and two-photon ionization.

FIG. 5. Elliptical dichroism parameters 	× (top) and 	|| (bot-
tom) as a function of the beam fundamental frequency ω and relative

flux between the two beam components μ =
√

F (2ω)F0

F (ω) . The presented
dichroism was calculated for biharmonic ionization of helium with
the phase difference between the beams �, which leads to the largest
elliptical dichroism. The blue curves on the right show specifi-
cally the μ dependence of the elliptical dichroism at fundamental
frequency ω = 21.75 eV. All other parameters are the same as in
Fig. 3.

Detailed computations have been carried out for the spe-
cific case of the ionization of neutral helium. We found that,
in addition to the dependence of the angular distribution on
the handedness of the elliptically polarized beam in pure
two-photon ionization, such dichroism is also present in the
biharmonic ionization. Most importantly, we showed that
the dichroism can be enhanced by tuning the intensity of the
second-order harmonic beam and the relative phase between
the beams properly.

In the ω + 2ω ionization, the interference between the
two ionization processes only contributes to the photoelectron
angular distribution, while it also affects the total ionization
yield in the ω + 3ω ionization. Although the generation of
ω + 3ω at XUV energies remains a challenge, it will be
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possible in the near future and hence deserves theoretical
attention. We hope that the present work will stimulate both
theoretical and experimental efforts to investigate this inter-
esting physical process.
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APPENDIX: EXPLICIT FORM OF TRANSITION
AMPLITUDES

Using the multipole (9) as well as the electron partial wave
expansion (10) and carrying out the angular integration over
the spatial direction r̂ of the electron wave functions, the tran-
sition amplitudes (7) and (8) can be written in the following
forms:

M (2ω)
MiM f me

= 4π
∑
jm j

∑
lml

(−i)l eiδκ 〈lml , 1/2me| jm j〉Ylml ( p̂e)
∑
JM p

iJ−p
[
ε̂(2ω) · Y (p)

JM

]

×
∑
ma

〈 jm j, JM| jama〉[ j]−1/2(−1) ja−ma〈 ja − ma, JiMi|Jf M f 〉〈 j‖TJ‖ ja〉Uκ (pJ ) (A1)

and

M (ω)
MiM f me

= 16π2
∑
jm j

∑
lml

(−i)l eiδκ 〈lml , 1/2me| jm j〉Ylml ( p̂e)
∑

J1M1 p1

∑
J2M2 p2

∑
jnlnmn

iJ1−p1+J2−p2
[
ε̂(ω) · Y (p1 )

J1M1

]

× [
ε̂(ω) · Y (p2 )

J2M2

]
[ jn, j]−1/2〈 jm j, J2M2| jnmn〉

∑
ma

〈 jnmn, J1M1| jama〉〈 ja − ma, JiMi|Jf M f 〉 (A2)

× (−1) ja−ma〈 j‖TJ2‖ jn〉〈 jn‖TJ1‖ ja〉U (κn )
κ (p1J1 p2J2),

in terms of radial transition amplitudes for one-photon

Uκ (pJ ) = Rκκa (pJ ) (A3)

and two-photon ionization

U (κn )
κ (p1J1, p2J2) =

∑∫
n

Rκκn (p2J2)Rκnκa (p1J1)

εnaκa + ω − εnnκn

. (A4)

The transition amplitudes Uκ (pJ ) and U (κn )
κ (p1J1, p2J2), of

course, depend on the principal quantum numbers of each
involved electronic state; however, this dependence was left
out from the notation for practical purposes. The angular
integration of the space coordinate is given by

〈 j f ‖TJ‖ ji〉 = (−1) ji+ j f −J+1[ ji]
1/2〈 ji1/2, J0| j f 1/2〉�li,l,J ,

(A5)

where �li,l,J = 1 if li + l + J is even and �li,l,J = 0 other-
wise. In the transverse (velocity) gauge, the radial integrals
are explicitly given for the magnetic (p = 0, or pJ = MJ)
transitions

Rκ f κi (MJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr

κi + κ f

J + 1
jJ (kr)

× [Pi(r)Q f (r) + Qi(r)Pf (r)], (A6)

where jJ (x) are the spherical Bessel functions, and the ra-
dial wave functions P(r) and Q(r) are the large and small
components of the radial Dirac wave functions for the orbital
with principal and Dirac quantum numbers ni and κi, respec-
tively. These components are obtained from single-electron
Dirac equation, with a screening potential in the Hamiltonian,
which partially accounts for the interelectronic interaction.

We compared a number of different potential models. The
core-Hartree potential, which reproduces the binding energies
in good agreement with the experimental values, was used to
produce the results presented in this work. For the electric
transitions (p = 1, or pJ = EJ)

Rκ f κi (EJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr

{
−κi − κ f

J + 1

[
j′J (kr)

+ jJ (kr)

kr

]
[Pi(r)Q f (r) + Qi(r)Pf (r)]

+ J
jJ (kr)

kr
[Pi(r)Q f (r) − Qi(r)Pf (r)]

}
. (A7)

In the length gauge, this integral is given by

Rκ f κi (EJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr jJ (kr)[Pi(r)Pf (r)

+ Qi(r)Q f (r)] + jJ+1(kr)

{
κi − κ f

J + 1

× [Pi(r)Q f (r)Qi(r)Pf (r)] + [Pi(r)Q f (r)

− Qi(r)Pf (r)]

}
. (A8)

The presented results were calculated in the velocity gauge;
however, the calculations were performed in both velocity and
length gauges to check the consistency and accuracy of our
calculations.
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