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The electron affinity (EA) of the superheavy element Og is calculated by the use of the relativistic Fock-space
coupled cluster (FSCC) and configuration interaction methods. The FSCC cluster operator expansion includes
single, double, and triple excitations treated in a nonperturbative manner. The Gaunt and retardation electron-
electron interactions are taken into account. Both methods yield the results that are in agreement with each other.
The quantum electrodynamics correction to the EA is evaluated using the model Lamb-shift operator approach.
The electron affinity of Og is obtained to be 0.076(4) eV.
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I. INTRODUCTION

Over the last decades, progress in the synthesis of super-
heavy elements (SHEs) has manifested itself in completing
the seventh period of the periodic table [1,2]. The electronic
structure of these elements at the edge of the periodic ta-
ble poses a challenge for atomic physics. A large number
of electrons coupled with a complex interplay between the
relativistic, correlation, and quantum-electrodynamics (QED)
effects may result in entirely different physical properties of
SHEs compared to their lighter homologous. These assump-
tions were experimentally confirmed for the ground-state
configuration of Lr, which appeared to be different from that
of Lu [3]. Hence, theoretical investigations of the properties of
SHEs become important for experiments on atomic structure
[3–5] and chemical properties [6–11] as well as for the con-
cepts of the periodic-table extension [12–17]. A number of
papers were devoted to calculations of the properties of SHEs
by various methods [18–36]; the reader is also referred to the
reviews on advances in computational methods for electronic
structure of SHEs [37–42] and the general reviews on this
topic [43–45] that address the nuclear aspects of the problem
as well.

Great attention within the theoretical studies is paid to
the increasing impact of the relativistic effects on the elec-
tronic structure of SHEs. An example of the property that
distinguishes SHE from its lighter homologues is established
in Oganesson (Og, Z = 118). The relativistic calculations
within the Dirac-Coulomb-Breit Hamiltonian performed in
Ref. [46] demonstrated that Og has a positive electron affin-
ity (EA), which was evaluated to be 0.056(10) eV. This is
in contrast to the nonrelativistic calculations, which do not
predict any positive EA. In other words, Og, while having
a noble-gas electron configuration, can form a negatively
charged ion, which qualitatively differentiates Og from the

other noble gases. In Ref. [47], the QED contribution to EA
of Og was calculated to be −0.0059(5) eV; together with an
improvement of the electronic correlation result, the EA in
Og was found to be 0.058(3) eV. In the work devoted to the
calculation of the Og excitation spectrum [48], which also
included the QED correction, a value for the EA of 0.096 eV
was obtained. The 40% discrepancy between these two results
has motivated us to reexamine the electronic structure of Og
and provide an independent evaluation of EA.

The main obstacle in the calculations of EA for Og is the
fact that there is no bound state of the Og anion within the
framework of the Dirac-Fock (DF) approach, which is also
referred to as the relativistic Hartree-Fock approach in the
literature. The formation of the bound state of Og− occurs
through a combination of the relativistic and electron-electron
interaction effects beyond the self-consistent field approxima-
tion. In the present work, the EA for Og is calculated using
two conceptually different methods, namely the Fock-space
coupled cluster (FSCC) and configuration interaction (CI)
methods. The effects of interelectronic interaction are taken
into consideration within the Dirac-Coulomb-Breit Hamilto-
nian, whereas the QED corrections are evaluated exploiting
the model QED operator approach. A special procedure to
eliminate the errors associated with the choice of the basis
set in the FSCC method is applied.

The paper is organized as follows. In Sec. II an overview
of the methods and main features of their implementation
are presented. Section III is focused on particular aspects of
the methods as well as the numerical details. In Sec. IV we
discuss the results obtained with the FSCC and CI methods
and compare them with the previous theoretical predictions.
A summary of the results is given in Sec. V. Comprehensive
details of the FSCC calculations are collected in Appendix.

Atomic units are used throughout the paper.
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II. METHODS

In the present work, the electronic structure of Og is stud-
ied by means of two approaches: FSCC and CI. For the FSCC
calculations we mainly use the DIRAC program [49]. A part of
the correlation effects beyond the level provided by DIRAC is
computed using the EXP-T package [50]. The implementation
of the CI method in the basis of the Dirac-Fock-Sturm orbitals
(CI-DFS) [51–54] is used. Hereafter, we give a brief descrip-
tion of the methods and introduce the notations.

A. FSCC method

The FSCC method implies the construction of an effective
Hamiltonian in a model space (MS) defined by the choice of
“valence” one-electron functions. The MS is decomposed into
sectors according to the number of holes or particles relative to
a certain closed-shell configuration. The closed-shell config-
uration forms a one-dimensional subspace of the MS, which
corresponds to the sector 0h0p. Single-particle states relative
to the sector 0h0p form a sector 0h1p. The CC-correlated
wave function is constructed subsequently for each sector
starting from the sector 0h0p. EA in the FSCC method is
defined as the lowest eigenvalue of the effective Hamiltonian
in the 0h1p sector. We adopt the notation ε for EA.

The cluster operator includes single (S), double (D), and
eventually triple (T) excitations (FSCC-SD or FSCC-SDT).
The innermost DF spinors are normally kept frozen at the
FSCC stage of calculations whereas the highest-energy vir-
tual spinors are fully rejected; we shall use the term “active
space” (AS) for the linear space spanned by the remainder
DF spinors. These spinors are obtained as solutions of the DF
equations in a basis of primitive Gaussian functions.

We employ four different Hamiltonians throughout the
FSCC calculations. (1) Four-component Dirac-Coulomb
Hamiltonian HDC,

HDC = �+

⎡
⎢⎣

N∑
i=1

hD
i +

N∑
i=2,

j<i

V C
i j

⎤
⎥⎦�+, V C

i j = 1

ri j
, (1)

where hD is the one-electron Dirac Hamiltonian which in-
cludes the interaction with the nucleus with the nuclear charge
density modeled by a Gaussian distribution, N is the total
number of electrons, ri j is the distance between the ith and
jth electrons, and �+ is the projector on the positive-energy
states of the Dirac-Fock Hamiltonian hDF. (2) Two-component
Dirac-Coulomb Hamiltonian with the generalized relativistic
effective core potential (GRECP) HGRECP,

HGRECP =
N∑

i=Nc+1

(
hS

i + V GRECP
i

) +
N∑

i=Nc+1,

j<i

V C
i j , (2)

where hS is the Schrödinger Hamiltonian of a free electron,
V GRECP

i is the GRECP operator from Ref. [42] which models
the interaction of a valence or outercore ith electron with the
inner-core electrons and the nucleus, and Nc is the number
of the inner-core electrons; the GRECP operator effectively
takes into account the Breit interaction. (3) Two-component
Hamiltonian HX2Cmmf [55], the one-electron part of which
exactly reproduces the positive-energy spectrum of the parent

hDF Hamiltonian, and the two-electron part is represented by
the Coulomb operator V C. (4) Hamiltonian HG

X2Cmmf , which
differs from HX2Cmmf by the addition of the correction arising
from the Gaunt interaction operator V G,

V G
i j = − (αi · α j )

ri j
, (3)

where α is a vector incorporating the Dirac matrices to the
one-electron part of the Hamiltonian written in normal order
with respect to the Fermi vacuum (i.e., to the Fock opera-
tor). The difference of the energies obtained with these two
Hamiltonians allows us to estimate the effect of the Gaunt
interaction at the FSCC level. For the EA this correction
reads as

δεG = εG
X2Cmmf − εX2Cmmf , (4)

where εG
X2Cmmf and εX2Cmmf are the values of the EA calculated

with the HG
X2Cmmf and HX2Cmmf Hamiltonians, respectively.

B. CI-DFS method

The essence of the CI method consists in determination of
the lowest eigenvalue(s) of the Dirac-Coulomb-Breit Hamil-
tonian

HDCB = �+

⎡
⎢⎣

N∑
i=1

hD
i +

N∑
i=2
j<i

(
V C

i j + V G
i j + V R

i j

)
⎤
⎥⎦�+, (5)

with

V R
i j = −1

2

[
(αi · ri j )(α j · ri j )

r3
i j

− (αi · α j )

ri j

]
(6)

being the retardation interaction operator, in the many-
electron basis of configuration-state functions (CSFs). Each
CSF is represented as a linear combination of the Slater deter-
minants and is an eigenfunction of the operator J2. The active
space in the CI-DFS method is constructed according to the
restricted active-space (RAS) scheme from the eigenfunctions
of hDF [which also determines the �+ projector in Eq. (5)]
defined in a combined basis of the DF and Dirac-Fock-Sturm
(DFS) orbitals, where ϕDF are orbitals for the occupied states
and ϕDFS are orbitals for the virtual ones, see Refs. [51–53].
The orbitals are found as numerical solutions of the DF and
DFS equations. We obtain the EA within the CI-DFS method
as

εCI = ECI(Og) − ECI(Og−), (7)

where ECI(Og) and ECI(Og−) are the CI energies calculated
for Og and Og− configurations, respectively.

Additionally, the DF and DFS equations can be modified
by incorporating a local polarization potential V pol into the
self-consistent procedure. This modification is motivated by
the fact that the DF equations for the Og− configuration yield
no solution for the 8s orbital ϕDF

8s . To construct ϕDF
8s at the DF

level for the subsequent use in the CI-DFS procedure, we add
to hDF, defined for the frozen core of neutral Og, the polariza-
tion potential, which represents an attractive interaction of the
loosely bound 8s electron with the induced dipole moment
of the valence shell(s) and partially takes into account the
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correlation effects at the one-electron level. There are many
possible choices of the polarization potential V pol [56–58], see
also Ref. [59]. In the present work we adopt the most widely
used form of the polarization potential proposed in Ref. [60]

V pol
8s = − αd

2
(
r2 + r2

cut

)2 , (8)

where αd is determined as the dipole polarizability and rcut is
an adjustable cutoff parameter, which is related to the average
radius of the valence shell. This potential is included into the
DFS equations for the virtual orbitals as well. Then, hDF with
V pol introduced is diagonalized in the basis of ϕDF

8s and virtual
orbitals by holding the orthogonality to the core. We stress
that the occupied orbitals in Og are not affected by inclusion
of the polarization potential.

To evaluate the QED correction to the EA we use the QED
operator approach [33,61–64]. We incorporate the model
QED operator (QEDMOD) V QED

mod presented in Refs. [64,65]
into the many-electron Hamiltonian HDCB and perform two
series of the calculations: one with V QED

mod included into the
Hamiltonian and the other without it. The corresponding QED
correction to the EA is

δεQED = ε
QED
CI − εCI, (9)

where ε
QED
CI is the EA calculated with the inclusion of the

operator V QED
mod into the CI-DFS equations.

III. COMPUTATIONAL DETAILS

A. FSCC details

Standard basis sets optimized for neutral species cal-
culations are inappropriate for describing small electron
affinities due to the lack of diffuse functions. For instance,
the FSCC calculations with the Dyall’s basis set AAE4Z [66]
(36s36p25d18 f 12g6h2i) for Og do not yield positive EA
value; therefore, this basis set is needed to be customized and
augmented for the problem. In particular, the basis augmenta-
tion employed in the present work consists in the successive
optimization of the number of the primitive Gaussian function
and their parameters with respect to the change in the total
EA value. The stability of the EA results on the number of
the basis functions and their parameters is considered to be
the criterion of the optimization-procedure convergence. A
similar procedure was proposed in Ref. [67]; thorough details
of the current implementation of the basis optimization proce-
dure can be found in the Appendix.

Briefly, the results of the optimization are formulated as
follows. In Table I, we present the results for the EA calculated
with the GRECP Hamiltonian and the FSCC-SD method for
the basis set subsequently optimized. The EA value mono-
tonically increases with basis functions for the higher angular
momenta L being optimized. The uncertainty for each L is
defined as a maximum deviation between the EA obtained
with the suggested optimized basis set and the basis sets
which additionally include the primitive Gaussian function
with different values of the parameter ζ . The total uncertainty
is evaluated by summing quadratically the uncertainties for
the individual L. The most noticeable change in the EA values,
which is �εSD

FSCC = 0.00232(68) eV, occurs when the g-type

TABLE I. EA for Og calculated with the FSCC-SD method
depending on the number of the optimized angular momenta in the
basis (eV). The notation χλ, where λ = s, . . . , i, means the basis
set, which includes the optimized functions with the orbital quantum
number L up to λ.

Optimized basis EA

χ s 0.0678(2)
χ p 0.0685(3)
χ d 0.0691(5)
χ f 0.0698(6)
χ g 0.0722(13)
χ h 0.0726(14)
χ i 0.0725(14)

basis functions are added to the set. This is due to the fact
that they are the most important for describing the polarization
effect of the atom as well as the fact that there were no such
functions at the previous optimization stages. The value of the
EA evaluated with the fully optimized basis set for HGRECP is
0.0725(14) eV.

After the basis set has been optimized employing the
HGRECP Hamiltonian, we consider different Hamiltonians to
verify the stability of the results. In Table II, the EA val-
ues obtained within the FSCC-SD method with the basis
set χ i for the HGRECP, HX2Cmmf , and HDC Hamiltonians are
presented. The same number of the correlated electrons and
virtual orbitals as in the optimization procedure is used in
all calculations. The difference between the EA calculated
with the HGRECP Hamiltonian and that evaluated with the HDC

Hamiltonian is 0.002 eV. The exact two-component Hamilto-
nian HX2Cmmf yields EA between the results obtained with the
HGRECP and HDC Hamiltonians. We note that the deviation of
the results for the different Hamiltonians is within the uncer-
tainty due to the incompleteness of the basis set, which we
estimate to be about 0.002 eV, see the discussion in Sec. IV.

The correction to the EA associated with the Gaunt in-
teraction δεG is calculated in accordance with Eq. (4) using
the HX2Cmmf Hamiltonian with the optimized basis set. Ta-
ble III presents the results of the calculations of the Gaunt
interaction correction to EA. It shows the dependence of the
ground-state energy of the atom and the EA calculated with
and without the Gaunt interaction on the number of correlated
electrons and the number of the virtual DF orbitals included
into AS. The quantum numbers of the correlated electrons are
presented in the first column, the maximum energy of the DF

TABLE II. EA for Og calculated with the FSCC-SD method
exploiting various Hamiltonians (eV). The optimized basis set from
the calculations with the HGRECP Hamiltonian is used. The electrons
6s6p5 f 6d7s7p are correlated. AS includes the virtual DF orbitals
with energies εDF < 40 a.u.

Hamiltonian EA

HGRECP 0.0725
HX2Cmmf 0.0717
HDC 0.0707
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TABLE III. The ground-state energies E 0h0p
G and E 0h0p calculated at the FSCC-SD level with and without the Gaunt interaction, respec-

tively; the electron affinities εG
X2Cmmf and εX2Cmmf evaluated with and without the Gaunt interaction, respectively; and the correction to EA

from the Gaunt interaction, δεG, depending on the quantum numbers of the electrons included into the correlation problem and the maximum
energy of the virtual DF orbitals, εDF

max, included into AS. The energies E 0h0p
G , E 0h0p, and εDF

max are in a.u., whereas the electron affinities εG
X2Cmmf ,

εX2Cmmf , and δεG are in eV.

Electrons εDF
max (a.u.) E 0h0p

G (a.u.) E 0h0p (a.u.) εG
X2Cmmf (eV) εX2Cmmf (eV) δεG (eV)

6s . . . 7p 40 −54732.65683 −54842.50513 0.07160 0.07165 −0.00006
5d . . . 7p 80 −54732.78035 −54842.63163 0.07093 0.07099 −0.00006
4 f . . . 7p 170 −54733.16953 −54843.02129 0.07068 0.07074 −0.00006
4d . . . 7p 270 −54733.53866 −54843.39065 0.07089 0.07095 −0.00006
4s . . . 7p 500 −54733.68575 −54843.53806 0.07070 0.07076 −0.00006
3d . . . 7p 980 −54734.29637 −54844.14919 0.07083 0.07089 −0.00006
3s . . . 7p 2000 −54734.50493 −54844.35852 0.07077 0.07083 −0.00006
2s . . . 7p 6200 −54735.05391 −54844.90824 0.07076 0.07082 −0.00006

orbital included into the active space εDF
max is in the second

column, the ground-state energy of the atom calculated with
and without V G is given in the third and fourth columns, the
EA calculated with and without V G operator is shown in the
next two columns, and the correction to the EA from the Gaunt
interaction is given in the last column.

Although the Gaunt interaction increases the ground-state
energy of the atom E0h0p by about 90 a.u., it also shifts the
energy of the anion by the same value. Therefore, the resulting
correction from the Gaunt interaction to EA, δεG, calculated
with the HX2Cmmf Hamiltonian at the FSCC-SD correlation
level amounts to about −0.0001 eV. This correction does not
depend on the active-space size since the inclusion of the
2s . . . 7p electrons into the correlation problem and adding the
virtual states with energies up to the 6200 a.u. into AS do not
change the value of δεG. Though, the energies of the atom
and anion change by about −3 a.u. compared to the calcu-
lation where only the 5d . . . 7p electrons are correlated and
the virtual states with energies εDF < 40 a.u. are included into
AS. The calculated correction δεG is an order of magnitude
smaller than the uncertainty associated with the basis set.

Proceeding with the analysis, we estimate the correction
to the EA from highly excited virtual states and strongly
bound core electrons. The difference between EA, calculated
with the 6s . . . 7p electrons correlated and the virtual states
with εDF < 40 a.u. included into the active space, and EA,
calculated with the 2s . . . 7p electrons correlated and the vir-
tual states with εDF < 6200 a.u. included into AS, is about
0.0008 eV. The same difference where the second term is cal-
culated with the 5d . . . 7p electrons correlated and the virtual
states with εDF < 80 a.u. included into AS is 0.0002 eV. We
conclude that the uncertainty of the EA value associated with
the correlation correction from the 1s . . . 4 f electrons is about
0.0005 eV, which is three times less than the uncertainty due
to the incomplete basis set.

The correction to the EA from the full iterative triple
(T) excitations, which is defined as δεT = εSDT

FSCC − εSD
FSCC, is

evaluated using the EXP-T program [50]. Since the FSCC-
SDT equations are much more complicated compared to the
FSCC-SD ones, some additional reductions of the problem
have been made. Instead of constructing an optimized basis
for solving the FSCC-SDT problem, we use the basis which
was optimized for the FSCC-SD calculations. We also employ

the HGRECP Hamiltonian while dealing with the T excitation
correction. We study the dependence of δεT with respect to
the AS size and our final result for the δεT correction is
0.008(3) eV.

B. CI-DFS details

To obtain the bound-state solution for the 8s orbital at the
DF level, we introduce the polarization potential V pol

8s into
the DF and DFS equations. According to the generalized
Koopmans theorem, the energies of the DF orbitals corre-
spond to the EA values in the DF approximation taken with
the opposite sign. Therefore, first, we adjust the parameter
rcut in Eq. (8) to reproduce qualitatively the DF energy of
ϕDF

8s at a given value of the parameter αd = 58.5 a.u. The
employed value for the parameter rcut is 3.3 a.u. The value
αd = 58.5(15) a.u. is calculated in the present work using the
finite-field approach in the framework of the CC-SD method.
Our value of αd is in good agreement with the results of
the authors of Refs. [16,32]. Having obtained the physically
justified ϕDF

8s orbital and constructed the basis of virtual DFS
orbitals, we proceed to the CI correlation problem.

In the CI-DFS method, the EA is defined according to
Eq. (7) as the energy difference of the two charge states of
Og. The total energies of Og and Og− in absolute magnitude
are larger than 50 000 a.u., though their difference is only a
tenth of eV. Varying the scheme of constructing the virtual
orbitals and/or the many-electron basis for an individual state,
we can obtain a lower total energy for this state. However,
the difference between the two large energies can be unstable
with respect to the parameters of the employed configuration
spaces for Og and Og−. Therefore, we focus on constructing
such a basis set that describes in a balanced manner the
difference of the energies, and we consider the stability of
the results for the EA as a primary criterion for the basis-
set choice. Having this remark kept in mind, we exploit the
anionic set of the occupied and virtual orbitals for both Og
and Og− calculations since it results in the more accurate can-
cellation of the core-core and core-valence correlation effects
in the energy difference.

In contrast to the FSCC calculations of the EA, the calcu-
lations within the CI-DFS method are more challenging since
one must not only control the independence of the final results
on the parameters of the virtual orbitals but also deal with a
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TABLE IV. The contributions to εCI from the SD, [T] and [Q]
excitations (eV). The [T] excitations are the dominant part of all T
ones and correspond to the simultaneous D excitations from 7p and
S excitations from 8s. On the other hand, the [Q] excitations are the
dominant part of all Q ones and correspond to the simultaneous T
excitations from 7p and S excitations from 8s. The last row shows
the sum of all considered contributions to εCI.

Contribution Value, eV

εSD
CI 0.008(2)

ε
[T]
CI 0.046(3)

ε
[Q]
CI 0.016(10)

εCI 0.070(10)

complicated problem of the configuration-space construction.
Throughout the calculations, we consider the orbital 7p, as
well as 8s for the case of Og− as the active-occupied ones. We
separate the contributions from the SD and partially from the
T and quadruple (Q) excitations to the EA and study them
individually with respect to the basis set enlargement. The
contribution to the EA from the SD excitations is defined as

εSD
CI = ESD

CI (Og) − ESD
CI (Og−). (10)

Not all the T excitations were taken into account, but only the
most important part of them for the problem under consider-
ation, which corresponds to the simultaneous D excitations
from 7p and S excitations from 8s to the virtual orbitals.
We denote them as [T]. In this particular case, when we are
dealing with the charged states of Og and Og−, the inclu-
sion of these excitations can partly restore the size-extensivity
property, which is absent in the truncated CI-SD method. The
contribution from the [T] excitations to the EA is then

ε
[T]
CI = ESD[T]

CI (Og) − ESD[T]
CI (Og−) − εSD

CI . (11)

The quadruple excitations, denoted as [Q], are also included in
an analogous way as [T] and correspond to the simultaneous
triple excitations from 7p and S excitations from 8s. The
contribution from the [Q] excitations to the EA reads as

ε
[Q]
CI = ESDT[Q]

CI (Og) − ESDT[Q]
CI (Og−) − ε

[T]
CI − εSD

CI . (12)

In Table IV, the results for the contributions from the
excitations of different types to the εCI value are collected.
The virtual DFS orbitals are included into the AS for each L
successively until the desired convergence is achieved. The
uncertainty has a purely numerical origin. It is due to the
convergence of the results with respect to the number of the
virtual orbitals and is determined by extrapolating the results
to the infinite number of virtual orbitals. The contributions ε

[T]
CI

and ε
[Q]
CI are evaluated with a smaller number of virtual orbitals

compared to the εSD
CI value. Meanwhile, these contributions

turn out to be several times more important than the SD
contributions. The main source of the uncertainty arises from
the evaluation of the [Q] excitations.

In the CI-DFS calculations, the Gaussian model for the
nuclear-charge distribution is also employed. Additionally,
we repeated the calculations with the Fermi nuclear-charge
distribution model. It is found that the dependence of the EA

on the model for the nuclear-charge density is several orders
of magnitude smaller than the uncertainty associated with the
evaluation of the [Q] excitations.

Within the framework of the CI-DFS method we also
calculated the contributions to the EA from the Gaunt and
retardation corrections defined by Eqs. (3) and (6), respec-
tively. The Gaunt correction coincides with the corresponding
FSCC result presented in Table III. The evaluated retardation
effect amounts to about −0.0003 eV. The QED correction to
the EA is calculated according to Eq. (9). As in the case of
the calculations of εCI, we separated the SD, [T], and [Q]
excitation contributions to ε

QED
CI and studied the convergence

of the result with respect to the number of virtual orbitals, see
the related discussion in Sec. IV.

IV. RESULTS AND DISCUSSION

Using the optimized basis set, obtained in accordance with
the procedure described in the Appendix, we perform the
FSCC-SD calculations of the EA for Og with the HDC Hamil-
tonian. In these calculations, the 5s . . . 7p electrons were
correlated and the virtual states with the energies εDF < 80
a.u. were included into AS. The obtained value for the EA
is εSD

FSCC = 0.070(2) eV. The uncertainty has a purely nu-
merical origin and is found by analyzing the results of the
basis-optimization procedure. The uncertainty is estimated by
comparing the EA value obtained with the optimized basis set
and the result obtained with an additional basis function (with
different values of ζ ) incorporated to the set. The correction
from the T excitations is calculated with a smaller basis using
the rigorous solution of the FSCC-SDT equations for the sec-
tors 0h0p and 0h1p by means of the EXP-T program [50]. As a
result, this correction is obtained to be δεT

FSCC = 0.008(3) eV.
Thus, we consider our final value for EA, evaluated with the
FSCC method, to be εFSCC = 0.078(4) eV, with the basis-set
incompleteness providing the main source of the uncertainty.

Using the CI-DFS method in accordance with the pro-
cedure discussed in Sec. III B, we obtained the value εCI =
0.070(10) eV. However, as compared to the FSCC result, in
our CI-DFS calculations the excitations beyond SD, [T], and
[Q] are absent and only the 7p8s electrons are correlated. In
contrast, in the FSCC calculations, the 5d6s6p5 f 6d7s7p8s
electrons were correlated, and more types of the excitations
were included due to the CC ansatz. Having studied the cor-
rection from the inclusion of the 5d6s6p5 f 6d7s electrons
into the FSCC-SD correlation problem, we found that this
correction does not exceed 0.002 eV and, thereby, is covered
by the uncertainty of εCI. Therefore, we believe that the main
reason for the deviation of our CI-DFS results from the FSCC
ones is the absence of the fully T and higher-order excitations
in the CI-DFS calculations. Although the εCI and εFSCC values,
obtained in the present work within the conceptually different
methods, are in reasonable agreement with each other, we
consider our FSCC results to be more reliable.

The QED correction is obtained using the model QED op-
erator [64,65] and is extracted from our CI-DFS calculations.
The operator V QED

mod was included into the DF and DFS equa-
tions, which define the occupied and virtual orbitals employed
in the CI procedure, as well as into the HDCB Hamiltonian.
The resulting value is δεQED = −0.002(1) eV. It was found
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TABLE V. Comparison of EA for Og and the QED contribution
to EA calculated with the CI-DFS and FSCC methods in the present
work with results of Refs. [46–48] (eV). In Ref. [48], a combination
of CI with the many-body perturbation theory is used.

Reference εCI εFSCC δεQED εTotal

Present work 0.070(10) 0.078(4) −0.002(1) 0.076(4)
Eliav et al. [46] 0.056(10)
Goidenko et al. [47] 0.064(2) −0.0059(5) 0.058(3)
Lackenby et al. [48] 0.096

that the correction δεQED is more stable than the individual
contributions ε

QED
CI and εCI. Therefore, the numerical uncer-

tainty associated with the convergence of the correction δεQED

with respect to the AS enlargement is also smaller than that
for the individual ε

QED
CI and εCI terms. In addition, the domi-

nant contribution to the δε
QED
CI correction comes from the SD

excitations, but not from the [T] ones, as it takes place for
the individual terms. The uncertainty of δεQED given above
includes not only the part associated with the convergence of
the result with respect to the number of the virtual orbitals
and the size of AS but also a conservative estimate of the
higher-order QED effects, which are beyond the model QED
operator approach. The same value for the QED correction
to the EA was obtained within the framework of the coupled
cluster theory using the very recent implementation of the
model QED operator for calculations of electronic energies
in molecular systems [68]. The results for the EA of Og
obtained in the present work and the corresponding results
from Refs. [46–48] are presented in Table V.

The main difference between our results and those from
Refs. [46,47] is due to the choice of the basis set. In
Refs. [46,47], a universal (with the same parameters of the
basis functions for all elements) Gaussian basis set was ex-
ploited, which turned out to be rather inappropriate for this
particular problem. Moreover, in contrast to Refs. [46,47],
we rigorously evaluated the correction from the triple exci-
tations. Overall, our FSCC-SD value, which is 0.070(2) eV,
is in reasonable agreement with the result found in Ref. [47].
However, the obtained QED correction is three times smaller
than that reported in Ref. [47].

To identify the origin of the later discrepancy, we also
estimate δεQED as the expectation value of the operator
V QED

mod for the 8s spinor associated with the attached electron.
This spinor should be constructed with a proper account
of the electron-electron correlation (let us recall that the
corresponding DF spinor would correspond to a scattered
electron state, provided that the basis is flexible enough).
The simplest approximation for the bound-state 8s spinor
is obtained by converting the lowest-energy eigenvector of
the FSCC effective Hamiltonian in the 0h1p sector into
the single determinant, Pasϕ̃8s�0, where Pas stands for the
antisymmetrizer, �0 denotes the Fermi vacuum state, and ϕ̃8s

is a linear combination of “valence” DF s spinors. A better
approximation can be obtained as

N
(
1 + T 0h1p

1

)
ϕ̃8s, (13)

where T 0h1p
1 is the single-excitation part of the cluster operator

in the 0h1p sector and N stands for the normalizing factor.
The expectation value of V QED

mod for the spinor (13) tends to
−0.002 eV, thus being consistent with our δεQED. In contrast,
evaluating its counterpart only with ϕ̃8s for restricted MS, in
other words, neglecting the contributions of higher-energy
DF s spinors to the shape of the 8s natural spinor, one can
readily reproduce the results found in Ref. [47].

At last, we also separately compared the self-energy (SE)
and vacuum-polarization (VP) contributions with the corre-
sponding corrections presented in Ref. [47]. For this purpose,
we evaluated the expectation value of the SE and VP parts of
the model QED operator with the function ϕ̃8s. The VP correc-
tion was additionally decomposed into a sum of the Uehling
(Ue) and Wichmann-Kroll (WK) terms since in Ref. [47] only
the Ue potential was considered. The expectation values of the
SE and Ue parts of the operator V QED

mod were compared with the
related values from Ref. [47]. The comparison shows a similar
trend: when a small MS is considered and the second term in
Eq. (13) is absent, then our Ue and SE expectation values are
close to the ones reported in Ref. [47]. Nevertheless, when
both terms in Eq. (13) are considered, our expectation values
for SE and VP become several times smaller, resulting in
−0.002 eV for the sum of them. Therefore, we guess that
the primary source of the discrepancy between our QED cor-
rection and that given in Ref. [47] is caused by a small MS
employed in that work.

Our total EA value also deviates from that obtained in
Ref. [48]. The reason for this deviation is not clear to us
since the work [48] does not contain any discussion of the
uncertainty of the EA calculations.

V. SUMMARY

In the present work, the electron affinity of Og is calculated
using two different methods: FSCC which is implemented
in the DIRAC [49] and EXP-T packages [50] and CI which is
implemented in the CI-DFS code [52–54]. The FSCC equa-
tions with single, double, and triple excitations are solved in
the specially optimized basis set with the help of the EXP-T

package, and the correction from the triple excitations to the
EA of Og is rigorously evaluated. This correction turns out to
be significant and amounts to 11% of the FSCC-SD value.

Both FSCC and CI-DFS methods exploited in the present
work yield the results which are in reasonable agreement with
each other. The QED correction to the EA of Og is calculated
employing the QEDMOD operator [64,65] within the CI-DFS
method. This correction turns out to be three times smaller
than the previous value from Ref. [47] and comparable with
the uncertainty associated with the electronic-correlation ef-
fects. The total value of the EA for Og amounts to 0.076(4)
eV, which includes the correlation effects calculated by the
FSCC-SDT method and the QED correction evaluated by
means of the CI-DFS method combined with the QEDMOD
operator.
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APPENDIX: FSCC BASIS OPTIMIZATION

We begin the optimization of the Dyall’s basis set AAE4Z
[66] by adding new functions one-by-one to the set start-
ing from the s-type basis functions. We vary the parameters
of the added functions tracking the change of the EA in
the FSCC-SD calculations. To save the time and computa-
tional resources, we apply three simplifications of the problem
during the basis-set optimization procedure: (i) the GRECP
operator is used, which for the case of Og replaces 92
electrons with their pseudopotential leaving us overall with
a problem for the 6s26p66d107s27p6 configuration; (ii) the
FSCC-SD correlated electrons are 6s6p6d7s7p and AS in-
cludes virtual DF orbitals with energies εDF < 40 a.u.; (iii)
the basis functions with the orbital quantum number L > 3
are removed from the basis set and are to be optimized later.

The optimization procedure is similar to that proposed in
Ref. [67] and is as follows. Let us denote the initial basis
set we are working with as χ0. We add the s-type basis
function with a parameter ζ , γ s

1 (ζ ), to the set χ0 and perform
the calculations using the FSCC-SD method for some range
of the parameter ζ ∈ [ζmin; ζmax]. The basis function γ s

1 (ζ1),
which inclusion to the set leads to the largest shift of EA,
compared to the related result without this function, is per-
manently incorporated into the basis set χ0 + γ s

1 (ζ1) ≡ χ s
1.

The procedure continues unless the change of the EA with
the addition of the k + 1th basis function to the basis set χ s

k is
less than the acceptable uncertainty of EA. The resulted basis
set now contains the k additional optimized basis functions
of the s type and is denoted as χ0 + ∑k

m=1 γ (ζm) ≡ χ s. The
same procedure is repeated for the p-type basis functions,
while the parameters of the basis functions from the previous
stage remain unchanged. The basis set with the k-optimized
s-type and k′-optimized p-type basis functions is now χ s +∑k′

m=1 γ
p

m (ζm) ≡ χ p. The optimization procedure of the next
L-type basis functions continues until the desired balance
between the computational cost and the required accuracy
is reached, leaving us with the optimized basis set denoted
as χLmax .
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FIG. 1. The EA for Og calculated with the HGRECP Hamiltonian
by means of the FSCC-SD method exploiting the basis set χ0 + γ s

1

versus the parameter ζ of the basis function γ s
1 (ζ ) (eV).
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FIG. 2. The EA for Og calculated with the HGRECP Hamiltonian
by means of the FSCC-SD method for the subsequently enlarged
basis sets χ s
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3, and χ s

4 versus the parameter ζ of the basis functions
γ s(ζ ) (eV). The basis set χ s

1 includes one optimized s-type basis
function obtained on the previous stage of the optimization.

In Fig. 1, the very first step of the optimization procedure
for the s-type basis functions is pictured. The negative EA
means that the addition of the localized function γ s

1 (ζ ) with
ζ ∈ [10−2; 10−1] contributes more to the correlation energy
of the atom rather than the anion. However, the addition of
γ s

1 (ζ ) with ζ ∈ [10−3; 10−2] to the initial basis set χ0 yields a
bound state for Og− with a maximum positive EA ≈0.060 eV.
This corresponds to the increased quality of the basis set in
the spatial region where the 8s electron is localized. With the
addition of the basis functions with the parameter ζ < 10−3

the EA tends to 0. This is due to the fact that such delocal-
ized functions do not affect the atomic binding energy, while
for the anion they provide an orbital which is similar to the
continuum-spectrum one with zero energy. As a result, the
total anionic energy tends to the total atomic energy. To sum
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FIG. 3. The EA for Og calculated with the HGRECP Hamiltonian
by means of the FSCC-SD method for the subsequently enlarged
basis sets χ i

1, χ i
2, χ i

3, and χ i
4 versus the parameter ζ of the basis

functions γ i
k (ζ ), k = 1, . . . , 4 (eV). The basis set χh includes the

optimized functions for all L up to h.
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TABLE VI. The parameters of the primitive Gaussian exponents for each orbital quantum number L used in the present calculations (a.u.).
The values without asterisks (*) correspond to the exponent parameters adopted from Dyall’s AAE4Z basis set [66] for Og. The values with
asterisks correspond to the parameters of the exponent optimized within the FSCC-SD calculations of the EA.

n\L 0 1 2 3 4 5 6

1 5.248547e + 07 8.958529e + 07 1.714652e + 06 4.247997e + 04 3.039195e + 00∗ 1.887392e + 00∗ 2.395027e + 00∗
2 1.394958e + 07 3.922311e + 07 3.900284e + 05 8.105505e + 03 5.860511e − 01∗ 5.736153e − 01∗ 7.278954e − 01∗
3 4.737659e + 06 1.685997e + 07 1.192066e + 05 2.575204e + 03 1.645172e − 01∗ 1.743329e − 01∗ 2.212216e − 01∗
4 1.776254e + 06 7.406247e + 06 4.289880e + 04 1.059723e + 03 8.531679e − 02∗
5 7.291009e + 05 3.322794e + 06 1.730112e + 04 4.977359e + 02
6 3.163808e + 05 1.519636e + 06 7.624044e + 03 2.543138e + 02
7 1.447529e + 05 7.067226e + 05 3.610152e + 03 1.367126e + 02
8 6.885912e + 04 3.337368e + 05 1.811132e + 03 7.626082e + 01
9 3.401607e + 04 1.599213e + 05 9.511913e + 02 4.329829e + 01
10 1.734171e + 04 7.775943e + 04 5.190892e + 02 2.493649e + 01
11 9.125927e + 03 3.836921e + 04 2.920402e + 02 1.437338e + 01
12 4.953351e + 03 1.922222e + 04 1.681175e + 02 8.171953e + 00
13 2.800749e + 03 9.790577e + 03 9.850639e + 01 4.618910e + 00
14 1.708285e + 03 5.080579e + 03 5.815360e + 01 2.586348e + 00
15 1.217335e + 03 2.692405e + 03 3.434649e + 01 1.395727e + 00
16 8.629433e + 02 1.460238e + 03 2.051604e + 01 6.393273e − 01
17 5.649666e + 02 8.117739e + 02 1.220361e + 01 2.631477e − 01
18 3.581401e + 02 4.620810e + 02 7.105813e + 00 1.216541e − 01
19 2.258802e + 02 2.684654e + 02 4.099431e + 00 4.520354e − 02∗
20 1.472899e + 02 1.594447e + 02 2.316607e + 00
21 9.823299e + 01 9.671000e + 01 1.273892e + 00
22 6.446182e + 01 5.903061e + 01 6.770111e − 01
23 4.105745e + 01 3.654426e + 01 3.403248e − 01
24 2.726352e + 01 2.304639e + 01 1.482861e − 01
25 1.811401e + 01 1.432394e + 01 5.723958e − 02
26 1.214604e + 01 8.731887e + 00 1.743329e − 02∗
27 7.451008e + 00 5.301978e + 00
28 4.490582e + 00 3.167777e + 00
29 2.953476e + 00 1.857508e + 00
30 1.838925e + 00 1.063035e + 00
31 1.161665e + 00 5.899139e − 01
32 6.754258e − 01 3.133610e − 01
33 3.669952e − 01 1.604587e − 01
34 1.854794e − 01 7.936765e − 02
35 8.136339e − 02 3.753376e − 02
36 2.700955e − 02 1.698424e − 02
37 2.043360e − 02∗ 4.893901e − 03∗
38 4.893901e − 03∗
39 1.172102e − 03∗

up, according to the algorithm described above, γ s
1 (ζ ) with

ζ ≡ ζ1 ≈ 4.89 × 10−3 is added to χ0.
The complete basis-set optimization procedure for the s-

type functions is shown in Fig. 2. The value of the EA
calculated with the basis set χ s

1 is shown with the bottom
dashed line. The value of the EA evaluated with the addi-
tional basis function γ s

2 (ζ ) is pictured with the red solid (with
squares) line. The maximum deviation in the EA for the basis
set χ s

1 + γ s
2 (ζ ) compared to the results obtained without the

function γ s
2 (ζ ) lies in the vicinity of ζ ≡ ζ2 ≈ 1.17 × 10−3

and indicates the further improvement of the 8s electron cor-
relation energy in this spatial region. The basis function with
this parameter is permanently added to the basis set. Proceed-
ing, the green solid (with triangles) line shows the next step of

the optimization and corresponds to the EA values calculated
with the χ s

2 + γ s
3 (ζ ) basis set. Compared to the χ s

2 value, the
largest contribution to the EA comes from the additional basis
function γ s

3 (ζ ) with ζ ≡ ζ3 ≈ 2.04 × 10−2. The contribution
to the EA from γ s

3 (ζ3) is several times smaller than that from
γ s

2 (ζ2). At last, the blue solid (with circles) line represents the
contribution to EA, with γ s

4 (ζ ) being added to the set χ s
3. Ac-

cording to the calculations, this additional basis function has
a negligible contribution to EA. This contribution is included
into the total uncertainty for EA. Finally, we conclude that
χ s

3 ≡ χ s contains the most important s-type basis functions
needed for the calculation of the EA in the FSCC-SD model.
One may argue that the parameters and the number of the basis
functions γ s(ζ ) are not optimal since the initial basis χ0 does
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not include the diffuse p-, d-, f -type functions as well as any
g and higher-L-type basis functions. We will turn back to this
question below, when the optimal basis set which includes the
optimized higher-L-type basis functions is constructed, and
verify that adding the basis function γ s

4 (ζ ) does not contribute
to the EA value.

In Fig. 3, the final stage of the basis-set optimization
procedure is presented. The basis set χh, which includes all
optimized basis functions with L up to h, is considered as
the starting point. The value of the EA obtained in the χh

basis set is shown with the dashed line. Adding γ i
1(ζ ) to the

basis set χh results in several extremes for EA. Here, it should
be noted that there is an approximate additive property of
the contributions to the EA from various γ i(ζ ). The calcu-
lations with the three optimized i-type basis functions, i.e.,
with the basis set χ i

3, yields a contribution of −0.00011 eV
to the value of EA, whereas the sum of the contributions
to the EA calculated with the basis functions γ i

1(ζ1), γ i
2(ζ2),

and γ i
3(ζ3), taken separately, amounts to −0.00009 eV. Since

the change in the EA value with adding the i-type functions
became comparable with the uncertainty, it was decided to
stop further optimization of the basis set. To ensure that the
addition of the g-, h-, and i-type basis functions does not spoil
the optimal parameters found for the basis functions with the
lower L we perform the additional calculations with the basis
set χ i + γ s

4 (ζ ). The absolute difference of the results with and
without γ s

4 (ζ ) is found to be an order of magnitude less than
the current uncertainty.

At last, for the basis set χ0 it was verified that the GRECP
approximation does not affect the optimal parameters for the
basis functions. It turns out that the functions determining the
dependence of the EA on ζ , evaluated with the HGRECP and
HDC Hamiltonians for the basis set χ0 + γ s

1 (ζ ), have extremes
at the same values of ζ . Thus, we extend the uncertainty asso-
ciated with the GRECP optimized basis set to the calculations
based on the other Hamiltonians. For convenience, the param-
eters of the exponents of the optimized basis set are presented
in Table VI.
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