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Pump-probe photoemission simulated in real time: Revealing many-particle signatures
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We simulate the photoemission from an electronically excited system by computing the escape of electron
density in real space using time-dependent density functional theory in real time. We show that for a one-
electron system, the angular resolved photoemission after an initial excitation can be interpreted as the mapping
of a previously unoccupied orbital. For the molecule perylene-3,4,9,10-tetracarboxylic dianhydride, the angular
resolved photoemission (ARPES) calculated after a preceding pump pulse reveals signatures of the many-particle
character of the first electronic excitation: The photoemission results from more than one time-dependent orbital,
and comparing the ARPES pattern to a particle-hole analysis of the first electronic excitation confirms that the
excitation does not just correspond to one electron having been moved into a previously empty orbital, but is a
superposition of several single-particle excitations.
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I. INTRODUCTION: PROBING ELECTRONIC
STRUCTURE BY PHOTOEMISSION

Photoemission spectroscopy is one of the important tech-
niques for obtaining insight into the electronic structure
of condensed matter. For the simplest case of an atom or
molecule in the gas phase, its basic principle is conveyed by
the equation

Ekin = p2

2m
= h̄2k2

2m
= h̄ω − |EB| (1)

that expresses the measured kinetic energy Ekin of the emit-
ted electron as the difference between the known energy
of the exciting photon of frequency ω and the initially
unknown electron binding energy EB. Here, h̄ is Planck’s
constant, m is the electron mass, and p denotes the elec-
tron’s momentum. In practice, photoemission experiments
are often interpreted by relating the photoemission peaks to
single-particle eigenvalues and orbitals. This amounts to iden-
tifying EB with a single-particle eigenvalue. In the context
of Hartree-Fock theory, this approach rests on Koopman’s
theorem [1]. In density functional theory (DFT), the ques-
tion of the physical interpretability of the Kohn-Sham or
generalized Kohn-Sham eigenvalues can depend strongly on
the chosen exchange-correlation approximation [2–6]. Yet,
the DFT-based single-particle interpretation of photoemission
experiments has been very successful, especially for organic
semiconductors [7–22].

Not withstanding this success, it is well known that
the physical interpretation of the density of states from
single-particle theories is intrinsically of approximative na-
ture [23,24], as condensed matter systems consist of interact-
ing particles. Many-body interaction (W) effects can be taken
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into account, e.g., by Green’s function (G) methods [25]. The
GW method [26] in different variants [27–29], specifically
quasiparticle self-consistent GW [30], is widely used to calcu-
late photoemission observables. Green’s function approaches
that go beyond the GW approximation have also been demon-
strated to capture exciton physics and allow one to calculate
time-resolved and angle-resolved photoemission [31].

The Dyson orbital is a formally exact quantity related to
photoemission. Signatures of the differences between molec-
ular orbitals and Dyson orbitals have been found even for oth-
erwise benevolent organic semiconductor molecules such as
perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) [32].
The question in how far photoemission can be interpreted
in terms of single-particle concepts, and when many-particle
effects are so prominent that they cannot be ignored, is there-
fore not only of interest from a theoretical point of view, but
is also of importance for the proper interpretation of exper-
imental data. The present paper aims at contributing to this
understanding from the perspective of time-dependent density
functional theory (TDDFT).

The particular focus of our work is on photoemission in
a pump-probe setup, i.e., a photoemission process in which a
system is excited by a first electromagnetic pulse that does not
lead to ionization, and then by a second pulse, which leads to
ionization. Experimentally this situation has been realized in
different ways, and we refer to Refs. [33–35] for just a few
exemplary references for solid state, atomic, and molecular
realizations, respectively. Different approaches, often using
model Hamiltonians, have been developed to theoretically de-
scribe this situation; Refs. [36,37] serve to point out again just
two well-known examples from a vast range of publications.

Our work here is about the first-principles simulation
of such processes using TDDFT in the real-time approach.
Real-time simulations of photoemission are attractive be-
cause no fitting of model parameters to experimental data
is required, i.e., the approach is first principles and thus
has predictive power. At the same time, real-time TDDFT
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can be made computationally efficient [38–53] so that
simulations for systems with many electrons are possible. Dif-
ferent methods have been proposed to simulate photoemission
with TDDFT [42,54–60] and have revealed, e.g., that such
calculations can accurately predict even difficult observables
such as circular dichroism signals [61], which are of increas-
ing interest experimentally [62]. In the present paper we use
real-time TDDFT to simulate photoemission from excited
systems in the above-mentioned pump-probe scenario.

In Sec. II, we explain our simulation method. Section III is
devoted to a proof of principle. By solving the time-dependent
Schrödinger equation for a one-electron system we demon-
strate that the real-time ARPES simulation allows us to map
excited states. In Sec. IV, we then compute pump-probe pho-
toemission from the PTCDA molecule, a frequently studied
model organic semiconductor. We show that here, photoemis-
sion from the excited molecule shows signatures of more than
one molecular orbital. This is in line with interpreting the
many-particle excitation as a superposition of several single-
particle contributions. The result demonstrates that the notion
of one electron being emitted from one orbital has its limits,
that TDDFT in real time allows us to go beyond this single-
particle interpretation of photoemission, and that ARPES can
reveal such features. We offer conclusions in Sec. V.

II. REAL-TIME TDDFT SETUP FOR SIMULATING
PHOTOEMISSION FROM ELECTRONICALLY

EXCITED SYSTEMS

We calculate photoemission as a dynamical process in real
time. The key elements of the process are captured in a single
calculation that simulates the excitation and ionization dy-
namics that eventually lead to the emission and angle-resolved
detection of the photoelectrons.

First, we calculate the ground state of the N-electron sys-
tem self-consistently. Starting from that ground state, we solve
the time-dependent Kohn-Sham (KS) equations in real time,
i.e., we find the solutions of the equations

ih̄
∂

∂t
ϕ j (r, t ) =

[
− h̄2

2m
∇2 + vKS(r, t )

]
ϕ j (r, t ) (2)

by numerical propagation for j = 1, . . . , N . Here, ϕ j denotes
the jth KS orbital, i the imaginary number, and vKS(r, t ) the
local KS potential

vKS(r, t ) = vH(r, t ) + vxc(r, t ) + vext(r) + vdip(r, t ) (3)

that consists of the Hartree vH, exchange correlation (XC) vxc,
and the external potential. For clarity, we split the latter in
the contribution from the nuclei vext, which we assume to be
static, and the time-dependent potential vdip that represents the
light field in the dipole approximation. Direct ionization out
of the ground state can be simulated using one electric field
represented by the potential

vdip(r, t ) = e sin(ωt ) f (t )E0 · r. (4)

Here, e denotes the elementary charge, E0 is the (constant)
laser polarization, ω is the frequency of the radiation, and f (t )
describes the temporal pulse shape, which in our simulations
was chosen as detailed in Appendix B, Eq. (B1). One obtains

the time-dependent density n(r, t ) from the sum

n(r, t ) =
N∑

j=1

|ϕ j (r, t )|2. (5)

From the time-dependent orbitals one can compute the
approximate probability of finding a photoelectron at a spe-
cific point in space, denoted as the detection point RD. This
approach has first been put forward pragmatically [55]. In
later work, it has been justified in more detail [57–59]. As
the previous derivations differ to some extent, we shortly
summarize our view of the theory in the following.

Under the action of the time-dependent potential vdip, an
occupied orbital ϕ j (r, t ) of Eq. (2) can evolve such that parts
of it become an outgoing wave packet. At a point RD that is far
away from the system’s center, one can write this wave packet
as a superposition of plane waves

ϕ j (RD, t ) =
∫

c j (k)ei(k·RD−ωkt ) d3k. (6)

The plane wave expansion is valid under the assumption that
the ionizing dipole field has either been switched off by the
time that the wave packet arrives at RD, or that the field
strength is negligibly small. In this case, k and ωk are related
by the dispersion relation for free particles,

ωk = h̄

2m
k2. (7)

As the plane waves are the eigenstates of the momen-
tum operator, |c j (k)|2 is the probability of detecting the
momentum h̄k in the outgoing wave packet. For obtaining
the coefficient c j (k) one performs a Fourier transform of
ϕ j (RD, t ) to the frequency domain:

ϕ j (RD, ω) =
∫ ∞

−∞
eiωt dt

∫
c j (k)ei(k·RD−ωkt ) d3k

=
∫

c j (k)eik·RD d3k
∫ ∞

−∞
ei(ω−ωk )t dt

= 2π

∫
c j (k)eik·RDδ(ω − ωk ) d3k. (8)

The Dirac δ on the right-hand side indicates that only one
specific value of ωk contributes to the wave packet at RD. Via
the dispersion relation Eq. (7) this relates to one unique value
of k > 0. Furthermore, far from the system’s center the plane
waves will be purely outgoing in the radial direction, i.e., the
direction of k is fixed by the direction of the detection point
RD, k/k = RD/RD. The vector k is thus uniquely specified.

This analysis of Eq. (8) shows that ϕ j (RD, ω) is propor-
tional to c j (kω ), with kω = √

2mω/h̄. One can convert the
probability from frequency to kinetic energy units via

|ϕ j (RD, ω)|2 = |ϕ j (RD, Ekin/h̄)|2. (9)

Under the assumption that Kohn-Sham particles can be iden-
tified with electrons, the total probability for detecting an
electron with momentum h̄k at the point RD is given by
summing up the probabilities for all outgoing wave packets,
i.e., summing the contributions from all occupied Kohn-
Sham orbitals. Therefore, a measure for the total probability
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I (RD, Ekin ) of finding a photoelectron with kinetic energy Ekin

at RD is

I (RD, Ekin ) ∝
N∑

j=1

|ϕ j (RD, Ekin/h̄)|2. (10)

Before we proceed to discuss how Eq. (10) is used in
practice, we discuss its theoretical foundations. Interpreting
the occupied Kohn-Sham orbitals is an approximation, but
one that can well be justified: Chong et al. [2] have shown
that the occupied Kohn-Sham eigenvalues resulting from an
accurate XC potential are very good approximations to ioniza-
tion potentials. It has further been argued that for systematic
reasons [11,63], DFT eigenvalues can well approximate re-
laxed ionization energies. For molecules with a complicated
electronic structure, e.g., orbitals localized on different length
scales, this may require advanced functional approxima-
tions [4,14]. (For our study here, we explain further down
why our XC approximations are justified.) It has also been
argued on general grounds that DFT orbitals can approximate
Dyson orbitals [32,64], and photoemission experiments have
confirmed such interpretations [9]. Thus, the DFT-based inter-
pretation of photoemission is an approximate but nevertheless
powerful point of view that complements the perspective of
traditional quasiparticle theory. Practical implementations of
the latter, e.g., in the form of the GW approximation, come
with their own set of approximations, leading to different
variants of GW with potentially differing results [26–29,65–
67]. The common basis and unifying perspective can be seen
in the Dyson equation. Especially the generalized Kohn-Sham
formalism, which for orbital-dependent XC functionals leads
to a nonmultiplicative potential, establishes a formal similarity
to the nonlocal self-energy of traditional many-particle the-
ory (see, e.g., Refs. [6,14] for recent overviews focusing on
molecules and organic semiconductors).

Equation (10) is our basis for computing ARPES spec-
tra and their relative intensities. The molecule of interest is
subjected to a time-dependent dipole field that liberates some
density. Numerically, we assure that this liberation is possible
by representing the time-dependent orbitals on large numer-
ical grids in real space. The time-dependent Kohn-Sham
orbitals are recorded as functions of time on a set of spatially
fixed detection points {RD} placed on a hemisphere around the
system’s center. Carefully tailored absorbing boundaries make
sure that reflections at the grid boundaries are minimized (see
Appendix B) and thus do not contribute noticeably to the
recorded signals. The recorded values of ϕ j (RD, t ) are numer-
ically Fourier transformed into the frequency domain and the
photoemission intensity at each point RD on the hemisphere is
calculated via Eq. (10).

In the present study we want to simulate photoemission
from an excited system, and therefore extend the above-
described scheme in the following way. We first determine
the dipole-allowed electronic excitation energies of the system
that we want to study in a separate, initial linear response
calculation. Any linear response technique can be used here,
e.g., one could resort to the well-known Casida [68] or
Sternheimer [69,70] TDDFT methods. In this work, we stay
with the real-time approach also for this task and use the
well-established boost excitation [38]. The resulting linear-

response signal is evaluated with the advanced technique that
has been described in full detail in Ref. [51]. From it we obtain
the excitation energies and the corresponding transition dipole
moments and transition densities accurately.

We then start the actual simulation of the pump-probe
photoemission process by exciting the system, which initially
is in its ground state, with a first potential

vpump(r, t ) = e sin(ωL,1t ) f1(t )E0,1 · r. (11)

The frequency h̄ωL,1 is chosen such that it corresponds to
the first dipole allowed excitation energy of the system. This
models the pump excitation. We are using low enough inten-
sities so that the plane-wave approximation of Eq. (6) is well
justified [57]. After a waiting time, which we realize via a
delayed ramp-up function f2(t ) we turn on a second potential

vprobe(r, t ) = e sin(ωL,2t ) f2(t ) E0,2 · r. (12)

We deliberately chose a frequency ωL,2 that only allows the
ionization from the excited system, i.e., we chose h̄ωL,2 <

|εHOMO|, where εHOMO is the energy of the highest occupied
ground state orbital ϕHOMO. Thus, the total time-dependent
external field is given by (see Appendix B for details and a
plot)

vdip(r, t ) = vpump(r, t ) + vprobe(r, t ), (13)

and we then record and evaluate the propagated Kohn-
Sham orbitals with angular resolution as described above, cf.
Eq. (10).

This is the general setup for the pump-probe TDDFT simu-
lations. The approach can be realized with different numerical
implementations of the real-time Kohn-Sham equations. For
the calculations in this paper we used the real-space real-time
technique of the BTDFT program package that has been de-
tailed in Ref. [51]. It is numerically efficient and parallelizes
well so that large grids can be used. Appendix B gives an
overview of related numerical details.

Regarding the evaluation of the photoemission signals we
note that on the one hand summing Eq. (10) over all detection
points RD yields the total kinetic energy spectrum (KES) of
the photoemission process, as shown, e.g., in Fig. 1. In such
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FIG. 1. KES of a one-electron Na atom in the pseudopotential
approximation. The intensity weighted mean peak position Ekin =
(0.93 ± 0.03) eV is indicated by the vertical black line. The theo-
retically expected peak position is Ekin = h̄ωL,2 − |εp| = 4.00 eV −
3.08 eV = 0.92 eV. See main text for details.
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FIG. 2. Intensity momentum map for photoemission from the
one-electron pseudoatom obtained from two different approaches.
Left (a): Real-time simulation in the pump-probe setup with h̄ωL,1 =
2.23 eV and h̄ωL,2 = 4.00 eV as described in the main text. The map
corresponds to the angle-resolved evaluation for the kinetic photo-
electron energy interval of Ekin ∈ [0.82, 1.04] eV centered around
the main peak of the respective KES of Fig. 1. Right (b): Map for
the p1 orbital as obtained from Fermi’s golden rule with a plane-
wave final state and a photon energy of h̄ω = 4.00 eV and a kinetic
energy Ekin = 0.92 eV. Intensities have been normalized to ease the
comparison.

spectra we determine the mean peak position by weighting
the energy with the intensity. The uncertainty in this mean
value is estimated by choosing different energy intervals that
all include the main peak, see Appendix B for a detailed
explanation of this weighting procedure and for comments
on further numerical details, e.g., regarding the background
intensity.

On the other hand, we visualize ARPES spectra in the form
of intensity maps for the photoelectron’s momentum p = h̄k,
where k is the wave vector, as shown, e.g., in Fig. 2. In order to
obtain these maps, we proceed in the following way. For eval-
uating the ARPES signal that corresponds to a certain single
peak in the KES, one could in principle evaluate the spectrum
at the kinetic energy that corresponds to the peak maximum.
In practice, we evaluate Eq. (10) in an energy window around
that peak, i.e., for a certain interval of frequencies, in order to
increase the accuracy, cf. Appendix B. For a given frequency
the magnitude of the momentum |p| can be calculated from
Eq. (1) via |p| = √

2mEkin. The vectorial components of p
are directly determined by the photoelectron emission angle,
which can be inferred from the detection point’s position. This
means that each position RD relates to a specific emission di-
rection (p/|p|). Thus, the (relative) intensity of finding p(Ekin)
is revealed by the kinetic energy spectrum I (RD, Ekin ) at the
respective individual detection point RD. This evaluation is re-
peated for each kinetic energy in the aforesaid interval and the
signals are then summed up over the interval. In Appendix B
we elaborate on the more technical details of this real-time
ARPES detection scheme and explain it in detail.

III. VERIFYING THE REAL-TIME PUMP-PROBE
SCHEME: ONE-ELECTRON TEST CASE

We first demonstrate the general concept of the real-time
pump probe scheme and its suitability for calculating photoe-
mission from excited states in a proof-of-concept calculation

for a transparent model system. In choosing the model, we
are guided by two considerations. First, in order to eliminate
uncertainties due to the exchange-correlation approximation,
we chose a one-electron system. Second, for clarity of the
analysis it is advantageous to look at a system in which
transitions between well-specified states can be triggered. For
the latter reason we chose the Na atom in the pseudopotential
approximation. The latter also offers the third advantage that
it can be conveniently represented on a real-space grid.

We would like to stress that the aim of this section is just a
one-electron proof-of-principle calculation that the real-time,
grid-based detection point scheme works for the pump-probe
setup. Such a calculation could have been done with any
one-electron potential. The Na pseudoatom is just a choice
that can be conveniently realized in the grid-based code and
that is numerically transparent. As we are looking at a one
electron system, Eq. (2) can be turned into the time-dependent
Schrödinger equation by setting the Hartree and XC potential
to zero. The pseudopotential then just serves as the external
potential of this one-electron system.

For this one-electron system we then follow the proce-
dure described in Sec. II. First, we compute the ground state
ϕs(r) of the one-electron pseudoatom. It is of s type and the
ground state eigenvalue is εs = −5.31 eV. Here and in all
the following cases, bound states have negative eigenvalues.
We also calculate the lowest unoccupied orbitals ϕpk (r). They
are of p type, threefold (k = 1, 2, 3) degenerate orthonormal
and with eigenvalues εp = −3.08 eV. Due to our numerical
setup on a Cartesian grid with a finite spacing, the p-type
orbitals preferentially align along specific spatial directions,
as detailed below.

Next, we calculate the dipole-allowed excitation energies.
The first excitation occurs at an energy of Eexc = 2.23 eV,
which accurately relates to the eigenvalue difference �ε =
εp − εs, and thus, to the dipole-active transition s → p.

We then solve the one-electron Schrödinger equation with
the ground state as the initial state and the potential vdip(r, t )
of Eq. (13) with the parameters h̄ωL,1 = Eexc and h̄ωL,2 =
4.00 eV. The latter choice ensures that the p states can be
ionized, but that there is no direct ionization from the ground
state, since |εp| < h̄ωL,2 < |εs|. By judiciously choosing the
polarization E0,l of both the pump and probe lasers to match
the orientation of one of the p orbitals, we can predominantly
excite to and ionize from one specific p orbital. In the follow-
ing discussion we focus on p1, which is oriented in the (1,1,1)
direction, i.e., the space diagonal of the Cartesian grid.

Figure 1 depicts the thus obtained KES, i.e., it results from
the time evolution of what initially was the s orbital. The
spectrum shows one clear peak at Ekin = (0.93 ± 0.03) eV
(vertical black line in Fig. 1). The peak value matches Eq. (1),
corresponding to a theoretical kinetic energy Ekin = h̄ωL,2 −
|εp| = 0.92 eV for the ionization from the excited p state.
This is the first confirmation that our simulation captures the
desired pump-probe process s → p → continuum.

A second and more detailed confirmation that our simula-
tion correctly describes the pump-probe photoemission is seen
in Fig. 2. Figure 2(a) shows the ARPES intensity momentum
map I (kx, ky) corresponding to the kinetic energy interval of
[0.82, 1.04] eV that encompasses the peak from Fig. 1. The
map features two intensity spots, which are centered around
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(kx, ky) ≈ ±(0.3, 0.3) Å−1. In order to demonstrate that this
intensity map correctly reflects photoemission from the p1

orbital, we also compute I (kx, ky) for photoemission from the
p1 orbital in an independent, second approach using perturba-
tion theory and Fermi’s golden rule. For an electromagnetic
field in the dipole approximation and under the assumption
that the emitted electron’s final state is a plane wave, the
ARPES intensity I is given [9,32] by the Fourier transform
of the initial orbital ϕ̃in(k) from which the electron is emitted,
evaluated at the value

|k| =
√

2m(h̄ω − |EB|)/h̄ (14)

determined by the energy conservation Eq. (1), i.e.,

I (kx, ky) ∝ |A · k|2|ϕ̃in(k)|2k=const . (15)

The vector potential A describes the electromagnetic field
corresponding to the photon energy h̄ω and k is the wave
vector of the plane-wave final state. This line of thinking leads
to the famous “visualization of orbital densities in reciprocal
space” interpretation of ARPES patterns [9].

The ARPES intensity momentum map from the golden
rule Eq. (15) can be compared to the one obtained from the
real-time simulation along the following lines: When one sub-
stitutes the Fourier transform ϕ̃p1 (k) and binding energy εp of
the respective p1 state into Eq. (14) and Eq. (15), and ensures
that the vector potential A and photon energy h̄ω correspond
to the polarization (E0,2) and energy of the probe laser (h̄ωL,2)
of the real-time simulation (where E = −∂A/∂t), then the
two momentum maps should show the same relative intensity
pattern if the real-time simulation describes photoemission
from the p1 orbital.

The right panel, Fig. 2(b), shows the intensity map that
one obtains by evaluating Eq. (15) for the p1 orbital as just
described. When comparing Figs. 2(a) and 2(b), one can see
small differences, e.g., evaluating Eq. (15) leads to slightly
higher intensity towards the k-space origin. Small deviations
are to be expected, e.g., because the real-time simulation goes
beyond the plane-wave final state approximation [61]. How-
ever, it is very reassuring to see that overall the two intensity
maps are very similar and feature the same characteristic
bright spots at (kx, ky) ≈ ±(0.3, 0.3) Å−1. For completeness
we mention that we repeated this procedure for the other two
pk orbitals (k = 2, 3) in separate calculations. This leads to
identical findings.

Finally, as a further test, we also calculated the direct
ionization from the s ground state. To this end, we repeated
the calculations using only one laser (h̄ωL = 6.23 eV > |εs|).
Figure 3 shows that the resulting ARPES intensity momentum
map clearly differs from the one seen in Fig. 2, i.e., emission
from the s and the p orbitals can clearly be distinguished from
each other. Furthermore, comparing the left and the right panel
in Fig. 3 shows that again the signal from the time-dependent
calculation (evaluated around the main peak at 0.92 eV in the
interval [0.82, 1.04] eV) on the one hand, and from Fermi’s
golden rule evaluated at the same energy on the other, are
very similar and correspond to the emission that one expects
from an s ground state. We also note that we verified explicitly
that using LDA and ALDA in these calculations does not
change the figures noticeably. This proof-of-principle study

FIG. 3. Intensity momentum map for for direct photoemission
from the s-orbital ground state of the one-electron pseudoatom. Left
(a): Real-time simulation using a single probe laser with energy
h̄ωL = 6.23 eV evaluated around the main peak at 0.92 eV. Right
(b): Map for the s orbital as obtained from Fermi’s golden rule with a
photon energy of h̄ω = 6.23 eV at the kinetic energy Ekin = 0.92 eV.

thus shows that our setup allows us to simulate the pump-
probe process and to visualize the excited state.

IV. MANY-PARTICLE SIGNATURES IN THE
PHOTOEMISSION FROM PTCDA

We proceed by studying the PTCDA molecule, which is
of interest because it is a model organic semiconductor that
forms well-defined films on, e.g., silver surfaces, and pho-
toemission signals can be obtained with high accuracy. It has
frequently been studied both experimentally and theoretically
[7,11–15,17–20,61,71–75].

Being a many-electron system, the question of which XC
approximation to use now becomes relevant. For our study, we
benefit from previous work in which the electronic structure
of PTCDA and how its depends on the XC approximation
has been analyzed in great detail [4,6,7,11,12,76]. The finding
that is decisive in the present context is that the molecular
orbitals of PTCDA can be divided into two groups: Ones that
are delocalized over the entire molecule and others that are
more localized on the side groups. An overall correct descrip-
tion of, e.g., the orbital ordering, can only be reached with
advanced functionals such as, e.g., the optimized effective
potential self-interaction correction. The delocalized orbitals,
however, are reasonably well described even by inexpensive
approximations such as the LDA. As we point out in the
following and also discuss in Appendix A, the process that we
study here involves predominantly delocalized orbitals, and
we can therefore reach a qualitatively correct description with
the LDA.

Our study proceeds in the same way as in the previous sec-
tion, with the only difference that we are now investigating a
molecule with 140 valence electrons instead of a one electron
system. We first calculate the ground state with LDA. The cor-
responding frontier eigenvalues are listed in Table I. Next, we
calculate the dipole-allowed excitation energies with the adia-
batic LDA (ALDA) and find the first at Eexc = 2.14 eV, with a
transition dipole moment in the direction of the long molecu-
lar axis. Experimentally, the optical gap is Eexc = 2.6 eV [72].
Thus, ALDA quantitatively underestimates the first excitation
energy. However, we calculated the first excitation also with
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TABLE I. Eigenvalues for the two lowest-unoccupied (l) and eleven highest-occupied (h) KS eigenvalues from an LDA DFT ground state
calculation, in eV.

ϕl+3 ϕl+2 ϕl+1 ϕl ϕh ϕh-1 ϕh-2 ϕh-3 ϕh-4 ϕh-5 ϕh-6 ϕh-7 ϕh-8 ϕh-9 ϕh-10

−3.17 −3.66 −3.71 −5.08 −6.57 −7.16 −7.17 −7.70 −7.71 −7.83 −8.03 −8.04 −8.09 −8.64 −8.71

the hybrid functional B3LYP [77,78], which has been shown
to yield an eigenvalue spectrum that compares well to the
photoemission experiment [7]. We compared the character of
the first excitation that we find with the ALDA to the one
from the B3LYP functional, see Appendix A for details. This
comparison shows that both functionals describe the structure
of the first excitation very similarly. In both cases, the exci-
tation is dominated by a transition from the highest-occupied
molecular orbital (HOMO) to the lowest-unoccupied molecu-
lar orbital (LUMO), but also shows contributions from other
orbitals. Also the difference between the density of the first
excitation and the ground state density is extremely similar
in the ALDA and the B3LYP calculation. Thus, although
ALDA underestimates the first excitation energy, it correctly
captures the main character of the first electronic excitation of
PTCDA. Therefore, we can proceed with the ALDA, which
can efficiently be evaluated on the large real-space grids that
are needed for the real-time calculation of the photoemission.

Following our pump-probe photoemission protocol, we
start a real-time propagation from the ground state and subject
the molecule to a first excitation with a frequency that we
chose to match the first excitation energy, i.e., h̄ωL,1 = Eexc.
After 10 fs we switch on the second pulse that triggers the
photoemission and chose h̄ωL,2 = 6.00 eV. This choice pre-
vents direct ionization from the ground state HOMO (εh =
−6.57 eV). The laser polarization direction E0,l/|E0,l | is cho-
sen along the long molecular axis, i.e., in the direction of the
above-mentioned transition dipole moment.
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FIG. 4. KES of PTCDA obtained from the real-time pump-probe
simulation. The spectrum corresponds to a pump and probe photon
energy of h̄ωL,1 = 2.14 eV and h̄ωL,2 = 6.00 eV, respectively. The
total signal is computed from the detection of the eleven highest
occupied time-dependent KS orbitals. The intensity weighted mean
position of the main peak Ekin = (1.54 ± 0.04) eV is indicated by
the vertical black line. The main peak predominantly results from
the detection of the HOMO and HOMO-9 orbitals.

Figure 4 depicts the KES that results from the detection
of the 11 highest-occupied KS orbitals; with lower orbitals
not contributing noticeably to the emission. We focus on
the kinetic energies between approximately 1 eV and 3.5 eV,
since our numerical setup is designed to represent this part
of the spectrum. There is a dominant peak around Ekin =
(1.54 ± 0.04) eV, followed by some smaller intensity struc-
tures. An orbital-by-orbital analysis of the signal reveals that
the main peak results not just from one orbital, but from
the contributions of two orbitals, the time-dependent HOMO
and the time-dependent HOMO-9. This is intriguing, because
as discussed in Sec. I, in the standard interpretation of PES
from organic semiconductor molecules, one peak is typically
associated with one orbital. Furthermore, in previous TDDFT
simulations of the direct photoemission from PTCDA, i.e.,
emission from the ground state, there was a one-to-one cor-
respondence between peaks and orbitals [61]. We note that
direct photoemission out of HOMO-9 to the continuum is
energetically not possible even if the energy of both lasers was
absorbed at once, since Ekin = h̄ωL,1 + h̄ωL,2 + εh−9 < 0, cf.
Appendix A.

In order to elucidate the situation further, we analyzed the
emission in the form of an ARPES intensity momentum map
I (kx, ky) according to Eq. (10). Figure 5(a) shows the result.
It depicts the total momentum distribution corresponding to
the kinetic energy interval [1.44, 1.64] eV, i.e., to the main
peak seen in Fig. 4. Figure 4(b) shows the contribution from
the time-dependent HOMO and Fig. 4(c) the one from the
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FIG. 5. Intensity momentum map of PTCDA calculated for a
pump-probe scenario as explained in the main text. The long molec-
ular axis of PTCDA coincides with the x axis. Left (a): Total signal
from the real-time detection of the eleven highest occupied KS or-
bitals. Top right (b): Signal from the time-dependent HOMO. Bottom
right (c): Signal from the time-dependent HOMO-9. Intensities are
in arbitrary units and normalized to the intensity maximum 0.0021
of (a).
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FIG. 6. (a) Fourier transform of the LUMO, (b) LUMO + 1,
(c) and the LUMO + 3 evaluated at 1.54 eV. See main text for
discussion.

time-dependent HOMO-9 according to Eq. (9). Comparing
the left- and the right-hand sides shows that a superposition
of the signatures from the two time-dependent orbitals on the
right can explain the dominant features of the total signal
seen on the left. Thus, the real-time simulation of the ARPES
process after an initial excitation shows without doubt that
more than one time-dependent orbital is involved.

It is highly instructive to look at these results also from
another perspective. The first excitation of PTCDA out of
which the photoemission takes place after the second pulse
can also be analyzed using Casida’s formulation of linear-
response TDDFT based on perturbation theory [79,80]. From
the point of view of the Casida formalism, a many-particle
excitation is a superposition of one-electron excitations that
go from occupied to unoccupied (virtual) single-particle or-
bitals that are the eigenstates of the time-independent, ground
state Hamiltonian. The percentage with which each of the
electron-hole pair excitations contributes to the true, many-
particle system excitation can readily be computed. We found,
cf. Appendix A, that in the ALDA the HOMO to LUMO
transition contributes 96.4% to the first dipole-allowed excita-
tion, but there are also contributions from other electron-hole
pairs. The second and third highest contribution stem from the
pair HOMO-8 to LUMO + 1 and HOMO-5 to LUMO + 3,
respectively.

Thus, if one thinks about pump-probe ARPES in the pertur-
bation theory picture, then the first pulse leads to an excitation
that can predominantly be understood as a superposition of
LUMO, LUMO + 1, and LUMO + 3, and the second pulse
then leads to emission from this superposition. Figure 6
shows the Fourier transform of the LDA LUMO [Fig. 6(a)],
LUMO + 1 [Fig. 6(b)], and LUMO + 3 [Fig. 6(c)] evaluated
at 1.54 eV. In the straightforward interpretation of ARPES
signals based on the single-particle picture and a plane-wave
final state [9,32], one expects that the ARPES signal after
the second pulse be dominated by these signatures. Since we
do not know whether the different virtual orbitals will react
differently to the second, ionizing pulse, we cannot predict
how strongly each of these virtual orbitals contributes to the
ARPES signal. Yet in any case, comparing Fig. 6 to Fig. 5(a)
shows that, qualitatively, also this interpretation is in agree-
ment with the ARPES signal that the real-time pump-probe
simulation shows. We note, e.g., that the superposition of
Fig. 6(b) and Fig. 6(c) reveals features that are seen in panel
Fig. 5(c), e.g., the vertical intensity lines at ≈ kx = ±0.3 Å−1.

V. CONCLUSION

In this paper we demonstrated that one can simulate
photoemission from an excited system quantitatively with
real-time TDDFT. Our approach unites the key elements of
the process—excitation, ionization, and detection—in a single
calculation.

We first studied a one electron system as a proof of concept.
In our simulation, an electron is excited from the ground state
by a first pulse and the system is then ionized with a second
pulse. For this one-electron case, the ARPES pattern closely
corresponds to the pattern that one expects for an electron
emitted out of the first excited orbital, i.e., out of the orbital
that is the LUMO or one of the LUMOs, respectively, in the
ground state calculation.

Then we investigated the same situation for the PTCDA
molecule, which is a paradigm test system for photoemission
and a many-particle system with 140 valence electrons. Our
calculations rely on the ALDA to ease the numerical burden,
which is high due to the need for large real-space grids to
numerically capture the emission process far away from the
molecule’s center. Using the ALDA somewhat limits the ac-
curacy of our calculations, but we have carefully evaluated
its trust range and confirmed its reliability for the observables
that we report here.

We subjected the PTCDA molecule to a first pulse whose
frequency was chosen to match the energy difference between
the ground state and the first excitation. A second pulse then
leads to the emission of electrons. The resulting ARPES signal
clearly shows contributions from two time-dependent orbitals,
the time-dependent HOMO and the time-dependent HOMO-
9. This means that the total electronic process cannot be
understood as a single electron being excited to an unoccupied
orbital and then ionized by the second pulse. Instead, the
process must be considered as a many-electron process. We
have verified this by repeating the analysis from the comple-
mentary perspective of first-order perturbation theory in the
Casida linear-response formalism. From this point of view, the
first excitation is dominantly a superposition of three electron-
hole pairs, one involving the LUMO and the others the
LUMO + 1 and LUMO + 3, respectively. Correspondingly,
the ARPES signal can also be interpreted as a superposition
of the signals from the time-independent LUMO, LUMO + 1
and LUMO + 3 orbitals. Thus, our calculations have demon-
strated that real-time propagation and linear-response theory
offer complementary views of the same physical reality. In
both cases, the photoemission from PTCDA after an initial
excitation shows clear signatures of the many-particle charac-
ter of the first excitation and cannot be interpreted in a simple
one-orbital picture. Extending the simulations to surface sit-
uations, e.g., by including parts of the substrate in addition
to the active molecule, is a worthwhile task for future work.
Time-dependent simulations of the type that we presented
here can help to understand time-dependent experiments, e.g.,
of the type that was recently presented in Ref. [81].
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APPENDIX A: DETAILED ANALYSIS OF THE
ELECTRONIC EXCITATION OF PTCDA

In this Appendix we give additional information about the
calculations for PTCDA. First, we report in Table I the LDA
ground state eigenvalues from the real-space grid calculation.
We have also checked the character of the orbitals. The or-
bitals that contribute decisively to the physics that we discuss
in the main text, i.e., HOMO, HOMO-9, LUMO, LUMO + 1,
and LUMO + 3, are all delocalized and, therefore [4], repre-
sented qualitatively correct in the LDA calculation.

Second, we report details about the explicitly linearized
TDDFT calculations in the Casida formalism [79,80]. In the
latter, excitations energies are computed by solving a matrix
equation that is defined in the basis of KS electron-hole pairs.
Hence, the contributions of the latter to the many-particle ex-
citation are obtained straightforwardly. For these calculations
we used the TURBOMOLE [82] code and the def2-TZVP basis
set.

First, we employed the ALDA. It yields the first dipole-
allowed excitation (optical gap) at ELR

exc = 2.16 eV. This
confirms the real-space excitation energy, and the small dif-
ference of ±0.02 eV is within the range that one expects
due to numerical differences such as basis set limitations.
The Casida coefficients for the ALDA electron hole pairs are
listed in the left half of Table II. From these coefficients we
see that the LUMO, LUMO + 1, and the LUMO + 3 orbitals
contribute the strongest to the first excitation energy. The next
lower electron-hole contributions are 0.1 % or less, and are
therefore neglected. We did a corresponding calculation with
the B3LYP [77,78] functional, which was successfully used in
previous studies of PTCDA [7]. Our result ELR

exc = 2.38 eV is
close to the optical gap reported in Ref. [14], with a difference
of only ±0.03 eV). The right-hand side of Table II reports the
Casida coefficients for the B3LYP calculation.

We further confirm the many-particle nature of the first
excitation energy by an analysis of the transition density. The
transition density of an excitation of a many-particle system

TABLE II. Casida linear response first excitation energy in eV
(first column) and electron-hole pair contributions from HOMO-
j → LUMO+k, notated as j,k., in percent, for the first three
electron-hole pairs that contribute most, for two different XC
approximations.

LDA (0,0) (8,1) (5,3) B3LYP (0,0) (6,1) (1,3)

2.16 96.4 2.5 0.5 2.38 98.1 0.9 0.4

FIG. 7. Left (a): Transition density of the first dipole-allowed
excitation (Eexc = 2.14 eV) of PTCDA obtained from a real-time
TDDFT calculation with ALDA. Right (b): Transition density of the
single-particle KS transition HOMO → LUMO calculated from the
corresponding stationary orbitals via 
LUMO

HOMO(r) = 〈ϕLUMO| n̂ |ϕHOMO〉
with LDA. Blue and orange colors correspond to positive and nega-
tive values, respectively.

can directly be obtained accurately in a real-time calcula-
tion [51]. For an excitation that is purely of one-electron
character going from one occupied to one unoccupied or-
bital, the transition density would be just the product of
the occupied and the unoccupied orbital. We calculated the
single-particle KS transition densities 
k

j (r) = 〈ϕk| n̂ |ϕ j〉 for
the 11 highest-occupied and 15 lowest-unoccupied stationary
orbitals, where n̂ denotes the density operator. The transition
density of the single-particle transition HOMO → LUMO
shows the largest similarity to the many particle transition
density. However, Fig. 7 shows that there are differences be-
tween the full transition density ρ(r; Eexc) [Fig. 7(a), left] and
the single-particle 
LUMO

HOMO(r) [Fig. 7(b), right]. These plots, as
well as the ones shown in Fig. 8 and Fig. 9, used an isovalue
of 0.0001 a−3

0 . Thus, the transition density analysis confirms
the conclusion from the Casida coefficients, i.e., the first exci-
tation of PTCDA, although dominated by the HOMO-LUMO
transition, differs noticeably from a single-particle excitation.

This conclusion can be further confirmed also in other
ways. One can compare the density that corresponds to the
first excitation n(r; Eexc) (as output by TURBOMOLE) to the
density that is associated with the single-particle transition
HOMO → LUMO. The latter can be calculated straightfor-
wardly as nLUMO

HOMO = n0 − |ϕHOMO|2 + |ϕLUMO|2, where n0(r)
is the ground state density of PTCDA. The difference between

FIG. 8. Difference between the density of the first excitation
(with ALDA) and the excited state density that corresponds to the
single-particle transition from the ground state HOMO to the LUMO
(LDA) of PTCDA. See text for details.
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FIG. 9. Difference density of the first excitation and the ground
state of PTCDA with (a) ALDA and (b) B3LYP. See main text for
discussion.

n(r; Eexc) (ALDA) and nLUMO
HOMO(r) (LDA) is shown in Fig. 8.

The notable differences again confirm that the first excitation
of PTCDA cannot be explained solely by the dominant single-
particle transition of HOMO → LUMO.

In order to check whether the ALDA represents the deci-
sive features of the density of the first excitation faithfully we
have calculated the difference density of the first excitation
and the ground state with both the ALDA and the B3LYP
functional. The results are shown in Fig. 9. The difference
density from the ALDA [Fig. 9(a), left] and from B3LYP
[Fig. 9(b), right] are in very good qualitative agreement.

Finally, we computed the direct ARPES from the ground
state of the PTCDA molecule in the gas phase with the ALDA
as a crosscheck and reference for the pump-probe results dis-
cussed in the main text. We used a single ionizing pulse with
h̄ωL = 8.14 eV > |εh| = 6.57 eV and with the same polariza-
tion E0 along the long molecular axis as in the pump-probe
scenario. Figure 10 shows the corresponding KES. Each peak
results from the (real-time) detection of either one or several
KS orbitals. In contrast to the pump-probe process in Sec. IV,
however, the multiple contributions here are simply due to the
(quasi)degeneracy of the corresponding orbitals in the initial
state, cf. Table I. This can be seen from the peak positions of
the individual orbital signals in Fig. 10, as they correspond to a
direct ionization from the corresponding ground state orbitals,
i.e., the peak positions

Ekin, j = h̄ωL − |ε j | , (A1)

can be explained from the occupied KS eigenvalues, cf.
Table I.

It is instructive to compare the ARPES pattern due to emis-
sion from the HOMO in the direct process here to the emission
from the HOMO in the pump-probe process of Sec. IV. The
peak at Ekin ≈ 1.57 eV in Fig. 10(a) results from the detection
of only the HOMO. Other lines and Fig. 10(b) depict other
orbital contributions. Figure 11 shows the HOMO contribu-
tion to the ARPES intensity momentum map in the direct
photoemission from the ground state of PTCDA. The map
corresponds to a kinetic energy interval Ekin ∈ [1.44, 1.64]
that encompasses the peak in Fig. 10(a) that results from
the HOMO detection. The comparison of Fig. 5 and Fig. 11
shows significant differences, and thus confirms that in the
pump-probe process one does not just see the initial ground
state.
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FIG. 10. KES of the direct ARPES of PTCDA. The spec-
trum results from the detection of the eleven highest occupied
time-dependent KS orbitals. For better visualization, (a) shows the
significantly contributing orbitals HOMO, HOMO-1, and HOMO-2
to the total spectrum and (b) separately shows the contributions of
HOMO-3, HOMO-4, and HOMO-8. See main text for details.

APPENDIX B: NUMERICAL DETAILS

We used the real-space and real-time code BT-TDDFT [51],
whose implementation of pseudopotentials originated in the
PARESC code [83]. In the calculations for this paper we used an
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FIG. 11. Intensity momentum map of PTCDA obtained from a
real-time TDDFT ARPES simulation using a single ionizing pulse
with energy h̄ωL = 8.14 eV. The map results from the detection of
the KS HOMO and corresponds to the angle-resolved evaluation for
the kinetic photoelectron energy interval of Ekin ∈ [1.44, 1.64] eV
that encompasses the KES peak from the HOMO contribution at
≈1.57 eV shown in Fig. 10.
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FIG. 12. The pulse profile f j (t ) sin[ωL, j (t − t0, j )] used for
the PTCDA calculation (pump: h̄ωL,1 = 2.14 eV, t0,1 = 0, probe:
h̄ωL,2 = 6.00 eV, t0,2 = 10 fs) for the first 20 fs. The delay of 10 fs
between the pump and probe pulse is indicated by the vertical black
line. After the ramp-up phase of 0.5 fs, both the pump and probe
pulse keep oscillating with sin[ωL, j (t − t0, j )]. See main text for
details.

equidistant grid with a spherical boundary. The grid spacing
was �r = 0.5 a0 and �r = 0.38 a0, and the boundary sphere
radius was R = 55 a0 and R = 60 a0, for the calculations in
Sec. III and Sec. IV, respectively. The atomic cores were
described by norm-conserving Troullier-Martins [84] pseu-
dopotentials with the following cutoff radii: H 1.39 a0 (s), C
1.09 a0 (s and p), O 1.10 a0 (s and p), and Na 3.09 a0 (s, p, and
d). Considering only the valence electrons explicitly is well
justified as the excitation energies in our simulations fall in
the regime of VIS (pump laser) and UV-B up to UV-C (probe
laser), respectively, and thus do not liberate core electrons.

The time evolution of the KS orbitals, cf. Eq. (2), was done
with a Crank-Nicolson [51,85,86] propagator, a time step of
�t = 0.002 fs and a total propagation time of T = 50 fs. We
used the following pulse shape f j (t ) ( j = 1, 2) in all ARPES
simulations:

f j (t ) =

⎧⎪⎨
⎪⎩

0, t < t0, j

(t − t0, j )/tr, t0, j � t < t0, j + tr

1, t � t0, j + tr

, (B1)

where t0, j specifies the time at which the pulse is switched
on and tr is the duration of the linear ramp up. The functions
f j (t ) in the classical dipole fields of Eqs. (11) and (12) were
chosen to ramp up within tr = 0.5 fs to a constant intensity
I0, cf. Eq. (B1). In the pump-probe simulations, we chose a
delay of 10 fs between the pump and probe pulse, i.e., t0,1 = 0
and t0,2 = 10 fs. Figure 12 shows the pulse profile used in the
pump-probe simulation of PTCDA.

The magnitude of the laser polarization |E0| and intensity
I0 are related via I0 = ε0c

2 |E0|2; c is the speed of light in vac-
uum and ε0 the vacuum permittivity. We use a laser intensity
of 5 × 108 W/cm2 for both the pump and the probe laser in
Sec. III, and an intensity of 5 × 109 W/cm2 for the calcula-
tions for PTCDA. If one wants to model a specific experiment,
one can choose for the simulation the same intensity as in
the experiment. In the absence of experiments, it is prudent
to choose the intensity according to the following guidelines:

On the one hand, low intensities are beneficial for the reasons
mentioned in the context of Eq. (6) in Sec. II, for keeping
higher-order effects small, and a low rate of density escape
avoids overstraining the absorbing boundary. On the other
hand, higher intensities lead to higher density emission and
thus increase the numerical accuracy of the observation-point-
based ARPES detection scheme. In practice, our experience
is that the decisive ARPES features are rather robust. As
an example we mention the small peak around 2.14 eV in
Fig. 4, which is related to numerical noise at the frequency
of the pump pulse (which was long in our simulation to get
clear orbital signatures), and which does not interfere with
accurately evaluating the main peak signal.

In Sec. III, we utilize the laser polarization ê0, j =
E0,( j)/|E0,( j)| to control which of the degenerate pk (k =
1, 2, 3) orbitals is accessed in the process s → pk →
continuum. We maximize the excitation and ionization to
one of the pk orbitals by choosing the laser polariza-
tion direction of both the pump and probe laser such
that it coincides with the fictitious line that connects
the centers of the dumbbells of that orbital. We calcu-
late that direction ê0(pk ) from d pk = ∫

rϕpk (r)d3r, which
reveals the centers of the dumbbells of the stationary
orbital ϕpk . In our Cartesian grid setup the directions
are p1: ê0,1(p1) = ê0,2(p1) ≈ (0.5904, 0.5746, 0.5668); p2:
ê0,1 = ê0,2 ≈ (−0.7894, 0.5575, 0.2571); p3: ê0,1 = ê0,2 ≈
(0.1682, 0.5992,−0.7827). In the calculations for PTCDA,
the polarization direction of the pulses always coincides with
the long molecular axis of PTCDA, which is oriented along
the x axis in our coordinate system.

In our angle-resolved real-time detection scheme we use
a set of ND equally distributed points {RD}D=1,...,ND on a
hemisphere with radius RD = |RD|. RD must be sufficiently
large so that the interaction between the emitted density and
the remaining ionized system is negligible at RD. RD = 40 a0

and Nd = 6400 in all calculations shown in this paper, with
the initial system being in the coordinate system’s center.
Recording photoemission signals on the upper hemisphere is
sufficient in this study due to the symmetry of the one-electron
system and the planar PTCDA molecule, respectively.

The vectorial components of the photoelectron’s momen-
tum p = h̄k can be written as (Ekin = h̄2k2

2m )

h̄kx =
√

2mEkin cos φ sin θ (B2)

h̄ky =
√

2mEkin sin φ sin θ (B3)

h̄kz =
√

2mEkin cos θ (B4)

using spherical coordinates for the description of the photo-
electron’s emission angles (φ, θ ). We derive the latter from
the angular position of the detection point at which the wave
packet is recorded. The resolution of the intensity momentum
maps I (p(Ekin)) that we construct depends on the surface
density of the detection points {RD}.

We determine the momentum intensity maps not only for a
single kinetic energy, but for an energy interval via

I (p; [Emin, Emax]) =
∫ Emax

Emin

I (p(Ekin)) dEkin. (B5)
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In choosing the interval of frequencies that we associate with
a single peak, we proceed in the following pragmatic way: In
the case of nonoverlapping peaks, that interval extends until
the intensity has significantly vanished, e.g., (approximately)
at the first intensity minimum to the left and right of the single
peak. For overlapping peaks or closely spaced signatures, the
interval is chosen to be narrower, approximately between the
full width at half-maximum and these latter minima, to reduce
interfering signals. In the numerical implementation using
a discrete-time fast Fourier transform FT for calculating
FT {ϕ j (t ; RD)}, the interval [Emin, Emax] is a discontinuous
sequence and consequently, the integral in Eq. (B5) becomes
a sum. We express the ARPES intensity maps in terms of
the components k as I (kx, ky) of the wave vector evaluated
in the above-mentioned energy interval ([Emin, Emax]). Speci-
fying (kx, ky) also determines kz, which is positive due to the
detection of outgoing wave packets,

kz =
√

2mEkin

h̄2 − k2
x − k2

y . (B6)

The ARPES detection scheme is numerically demanding. Fig-
ure 1 nicely exemplifies some of the consequences. There are
small kinetic energy signals before and after the main peak,
e.g., around Ekin ≈ 1.45 eV, which we consider to be numeri-
cal noise. These can result from our ground state and real-time
calculations being subject to finite convergence criteria, such
as the discrete grid spacing and the finite numerical accuracy
with which the ground state orbitals are computed. The latter
limitation can be more noticeable in the propagation than in
usual ground state calculations because we need to use large
grids in order to be able to place the detection points far away
from the ionized molecule’s center. The exponential decay of
the ground state orbitals leads to very small numerical values

on far outlying grid points, which are difficult to represent
numerically accurately. Under propagation with an ionizing
pulse, numerical limitations can lead to noticeable numerical
noise intensity at low kinetic energies.

After the angle-resolved detection, we absorb the outgoing
density to prevent reflections at the numerical boundaries.
This is achieved with a complex potential as described in
Refs. [87–89] and in the form, which has been explicitly de-
tailed in Eq. (1) in the Supplemental Material of Ref. [61]. For
both the one electron and the PTCDA calculations the onset
of that potential is at RS = 40 a0 and a shift of � = 3 a0 relo-
cates the singularity of the potential outside of the numerical
sphere.

Finally, we list the details for the propagation calculations
with which we determine the transition energies and densi-
ties of the initial, neutral systems. Following the procedure
described in Ref. [51], we calculate the dipole-allowed elec-
tronic excitation energies and transition densities by fitting the
data from the numerical propagation to the analytical form of
the electronic dipole response to a dipolelike boost excitation
applied to the system’s ground state. All calculations are per-
formed on a spherical grid with an equidistant grid spacing.
For calculating the dipole spectrum in Sec. III we use a time
step of �t = 0.01 fs, a total propagation time of T = 50 fs and
a boost strength of 0.0001 Ry. We choose a spherical grid ra-
dius of R = 30 a0 with a spacing of �r = 0.5 a0. For PTCDA
we used a time step of �t = 0.01 fs, a total propagation time
of T = 50 fs and a boost strength of 0.0001 Ry in combination
with a grid radius R = 40 a0 and grid spacing �r = 0.38 a0.
After determining the energetic position of the first excitation
in the dipole spectrum of PTCDA, we obtain the transition
density of the former from a separate calculation employing
the same numerical setup.
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