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Structure and electron dynamics of planetary states of Sr below the Sr+ 7d and 8p thresholds
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In a combined experimental and theoretical study we investigate the 7dnl and 8pnl (n � 11, l = 9–12) doubly
excited planetary states of Sr. The experimental spectrum was obtained using a five-photon resonant excitation
scheme. The method of configuration interaction with exterior complex scaling was used to compute the
energy-level structure and dynamics of the two highly excited electrons from first principles. Good quantitative
agreement was obtained with the spectra we recorded, and the theoretical calculations shed light on their complex
structure and the signatures of electron correlations therein. The two-electron probability densities we calculated
reveal the strongly correlated angular motion of the two electrons in the 7dnl and 8pnl planetary states, and
confirm quantitatively the predictions of the frozen-planet approximation describing electron dynamics as the
polarization of the fast inner electron by the electric field of the outer “frozen” electron.
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I. INTRODUCTION

Electronic states of atoms and molecules in which two
electrons are excited to Rydberg states, the so-called double
Rydberg states, have been extensively used to study in great
detail many aspects of the three-body quantum-mechanical
problem [1,2]. Because Rydberg electrons spend most of their
time far away from the residual doubly charged ion core, cor-
relations between the two Rydberg electrons evolving in the
Coulomb field of the core are magnified compared to residual
interactions with the core electrons. Combined with the large
density of accessible states, this makes electronic motion in
double-Rydberg states rich and complex [2–4] and may give
rise to strongly correlated dynamics in which each of the three
Coulomb interactions plays an essential role, as is the case for
the frozen-planet states theoretically predicted in the helium
atom [5].

Strontium atoms, along with the other alkaline-earth
metals, are well suited to study double Rydberg states ex-
perimentally because they possess only two valence electrons
which can be photoexcited with conventional visible and ul-
traviolet lasers. Asymmetric double Rydberg states, in which
the (approximate) principal quantum numbers associated with
the two electrons are significantly different (n1 � n2), have
been experimentally studied and characterized in Sr for a
broad range of angular momentum values [6–14]. Because
they lie above the first ionization threshold, double-Rydberg
states can decay rapidly by autoionization. Planetary configu-
rations [15], in which autoionization is suppressed and the two
electrons orbit the nucleus in a solar-system-like manner, have
been obtained [4,9,16–18]. In addition to their fundamental
role in the development of multichannel theories [1,19], core-
excited Rydberg states, in which one of the two electrons is in
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a low-lying excited state of the ion core, recently gained par-
ticular interest in the context of quantum optics and quantum
simulation [20–25]. The possibility to manipulate the valence
electron of the residual ion core within the Rydberg electron
orbit offers a number of exciting perspectives to, e.g., detect
[23], image [20], or trap [26] Rydberg atoms.

As the degree of excitation of both electrons increases (n1

and n2 large), spectra associated with double-Rydberg series
becoming increasingly complex because the density of states
increases and Rydberg-series interactions become ubiquitous.
Several electrostatic models were developed to qualitatively
describe the energy-level structure and two-electron wave
functions of the high angular momentum double-Rydberg
states measured in alkaline-earth-metal atoms [9,10,17,
27–31]. They describe the correlations between the two Ry-
dberg electrons of such systems as the polarization of the fast
inner electron by the electric field of the slow outer electron,
the so-called frozen-planet approximation [9]. However, in
contrast with the numerous studies carried out for the helium
atom [2,32–40], no quantitative theoretical information is
available for alkaline-earth-metal atoms to date, in particular
concerning the complex photoexcitation spectra recorded in
the experiments. With one exception [41], no attempt was
made to calculate doubly excited Rydberg states of Sr from
first principles. With the development of the method of con-
figuration interaction with exterior complex scaling (CI-ECS),
accurate calculations that treat the interaction between the two
electrons to all orders everywhere are now feasible [42]. It
offers the possibility to (i) quantitatively analyze and assign
experimental spectra, (ii) assess the validity of the afore-
mentioned models, and (iii) investigate correlated electron
dynamics in regions of phase space where these models are
not applicable.

We present a joint experimental and theoretical study of
planetary states of Sr located below the Sr+(7d ) and Sr+(8p)
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limits. Experimental photoexcitation spectra were recorded
from 5d5/216(l2 ∼ 10) states prepared by isolated-core excita-
tion (ICE) [7], as presented in Sec. II. The large-scale CI-ECS
approach we then used to calculate doubly excited Rydberg
states of Sr is described in Sec. III, along with the procedure
employed to simulate experimental spectra. Experimental and
theoretical spectra are presented and analyzed in Sec. IV.
In the light of their good mutual agreement, reliable elec-
tronic densities derived from the CI-ECS calculations are then
used to investigate electronic correlations and describe the
two-electron collective motion in the planetary states under
scrutiny. These results are further discussed in Sec. V and an-
alyzed in the light of existing models and theories describing
planetary states.

II. EXPERIMENT

The experimental setup and the resonant multiphoton laser
excitation scheme used in the present experiment are iden-
tical to the ones described in Ref. [11]. Strontium atoms in
the ground state emanating from a resistively heated oven
are excited in the presence of a constant electric field to a
5s16k (m = 0) Stark state by two excimer-laser-pumped dye
lasers, which are parallel linearly polarized. m is the magnetic
quantum number and k indicates a particular Stark state. After
the excitation, the electric field is switched off adiabatically
within 1.5 μs and the Stark state is ideally converted into a
single angular momentum eigenstate 5s16(l2 ∼ 10) [43]. As
will be discussed in Sec. III B nonadiabatic effects effectively
result in an admixture of neighboring angular momentum
states. Applying the ICE technique, Sr atoms in the 5s16l2
state are further excited via the 5p3/216l2 to the 5d5/216l2
state by another two dye lasers pumped by a second excimer
laser. The two dye lasers are also parallel linearly polarized
to ensure �m = 0 transitions only. Due to the high angular
momentum involved, autoionization of the intermediate states
is largely suppressed. A fifth dye laser is scanned in the energy
range of the 7d5/2n′l ′ and 8p3/2n′′l ′′ series. The doubly excited
atoms either autoionize or are directly photoionized by the
fifth dye laser. As detailed in Sec. III B the resulting excited
Sr+ ions are further photoionized, or ionized by a strong static
electric-field pulse to yield Sr2+ ions, which are detected in
our experiment. The Sr2+ spectrum displayed in Fig. 1 is
obtained by recording the Sr2+ ion yield as a function of the
wavelength of the fifth laser. Calibration of the wavelength has
been achieved by means of an optogalvanic Ar spectrum and
using the known transition energies of Sr+ ionic lines which
appear in the spectra. In our time-of-flight spectrometer the
static pulsed field serves also to sweep the Sr2+ ions to the
multichannel plate ion detector.

III. THEORY

A. Configuration interaction with exterior complex scaling

The CI-ECS method [42,44] was used to calculate the
energies, widths, and complex-scaled wave functions of the
relevant Sr doubly excited states, and to determine the pho-
toionization cross sections and electronic densities presented
in Sec. IV. We sketch below the parts of the method relevant

FIG. 1. Experimental Sr2+ spectrum recorded from
[5d5/216(l2) j2 ]J states. The vertical lines on the top horizontal
axis indicate the wave numbers of the Sr+(5d5/2 − 7d5/2)
dipole-forbidden isolated-core resonance, of the Sr+(7dj=3/2,5/2)
ionization thresholds, and of the Sr+(5d5/2 − 8p3/2) isolated-core
resonance, respectively. The labels (a)–(c) indicate the wave
numbers of the one-photon ionic transitions Sr+(6s1/2 − 7p1/2)
and Sr+(6s1/2 − 7p3/2), and of the two-photon ionic transition
Sr+(5p3/2 − 7p3/2).

to the present paper. Atomic units are used throughout the rest
of the section unless stated otherwise.

Within the CI-ECS approach, the two valence electrons of
Sr are explicitly treated whereas the influence of the elec-
trons of the closed-shell Sr2+ core is accounted for by an
�-dependent empirical model potential V�(r), the parameters
of which were adjusted to reproduce the energies of the Sr+

ion [1]. Singly and doubly excited Rydberg states of Sr are
thus described by the effective two-electron Hamiltonian

Ĥ (r1, r2) = − 1

2
∇2

1 − 1

2
∇2

2 + Vl1 (r1) + Vl2 (r2) + 1

r12

+ V SO
s1l1 j1 (r1) + V SO

s2l2 j2 (r2) + V (2)
pol (r1, r2). (1)

The two electrons have positions with respect to the nucleus
given by r1 and r2, and are described by the independent-
electron orbital-, spin-, and total angular momentum quantum
numbers �, s, and j. The distance between the two electrons is
given by r12 = |r1 − r2|. V SO

s� j (r) is the spin-orbit interaction
between a valence electron and the screened nucleus and
V (2)

pol (r1, r2) represents bielectronic core polarization. Their
expressions are given, e.g., in Ref. [42].

The time-independent Schrödinger equation associated
with the Hamiltonian in Eq. (1) is solved, in a CI manner,
using a large basis of two-electron functions built from anti-
symmetrized products of two one-electron spin orbitals of the
Sr+ ion. Continuum states and resonances are accounted for
with exterior complex scaling [45], following which the radial
coordinate of each electron is rotated into the complex plane
after a certain ECS radius r0:

r →
{

r if r < r0,

r0 + (r − r0)eiθ if r � r0.
(2)
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TABLE I. FEM-DVR parameters used in the present calcula-
tions. The ith element spans radial distances from ri to ri+1 and
contains Ni grid points. The complex-scaling angle in this element
is θi.

Element i = 1 i = 2 i = 3

[ri, ri+1] [0, 10] a0 [10, 150] a0 [150, 1350] a0

Ni 70 60 80
θi 0 0 10◦

As a result of ECS, the wave functions associated with res-
onances, which are not square integrable for real r values,
become exponentially damped at large distances and the entire
spectrum of bound and resonance radial wave functions can be
represented by a discrete set of square-integrable functions.

In practice, the numerical one-electron radial functions
used to build the two-electron CI wave functions are cal-
culated along the ECS contour (2) using a finite-element
discrete-variable-representation (FEM-DVR) method [46].
The calculation parameters are listed in Table I, and were
chosen as described in Ref. [42]. Because, in a doubly ex-
cited state, only one of the two electrons can autoionize,
the description of the second electron can be limited to a
relatively compact set of bound one-electron orbitals of Sr+.
This dramatically reduces the computational cost of solving
the two-electron Schrödinger equation and makes it possible
to treat accurately high-lying doubly excited states. In the
present calculation, approximately 80 000 two-electron wave
functions were built from (i) all spin orbitals with energies
lower than the Sr+(11s) state and (ii) the complete set of spin
orbitals associated with the 208 radial functions generated by
the FEM-DVR calculation. The ECS radius r0 = 150 a0 is
chosen such that the amplitudes of the radial functions of all
states below the Sr+(11s) state are negligible at r0 and beyond.

The complex-scaled two-electron Hamiltonian matrix is
constructed using the large CI basis set and iteratively diago-
nalized in the relevant energy region with a Lanczos algorithm
adapted to complex-symmetric matrices. Resonances associ-
ated with doubly excited states have complex eigenvectors
and eigenvalues E − i�/2 giving the energies E and au-
toionization widths � of these states. We ensured that all
relevant eigenvalues are converged to better than 0.5 μhartree
(0.1 cm−1) with respect to the number of grid points, the
number of basis functions, and the complex-scaling angle.

The present calculations take into account the spin-orbit
interaction for both electrons and are carried out using the j j
coupling scheme. For the planetary states considered in the
present paper, the spin-orbit interaction for the outer electron
is very small and these states are commonly described using
the jK coupling scheme. The transformation between the j j
and jK coupling schemes is given by [47]

〈l1s1 j1l2K (s2J )|l1s1 j1l2s2 j2J〉

= (−1) j1+l2+s2+J
√

(2K + 1)(2 j2 + 1)

{
j1 l2 K
s2 J j2

}
.

(3)

Total photoionization cross sections are calculated from the
CI-ECS wave functions following the procedure of Rescigno

and McKoy [48] (see also Ref. [44]). The initial Sr(5dn2l2)
states are already autoionizing resonances lying above the
first ionization threshold, but are treated as nondecaying states
because of their low autoionization rates (<2 × 10−9 a.u.,
i.e., lifetimes >12 ns). Partial photoionization cross sections
were calculated from the complex-scaled wave functions in
the interior region (r � r0) using an approach proposed by
Carette et al. [49] and Mihelič [50]. We start from the driven
Schrödinger equation,

[E0 + ω − Ĥ (r1, r2)] |�1〉 = D̂ |�0〉, (4)

where |�0〉 is the wave function of the initial state with energy
E0, ω is the photon angular frequency, and D̂ is the transition
dipole operator. In the length gauge, used in the present paper,
D̂ = −ε̂ · (r1 + r2) where ε̂ is the polarization vector. The
solution to Eq. (4) within the ECS framework is given by

∣∣�θ
1 (ω)

〉 =
∑

i

|iθ 〉 〈iθ |D̂|�0〉
E0 − E θ

i + ω
, (5)

where the summation runs over all ECS states |iθ 〉 obtained
by diagonalization of the complex-scaled two-electron Hamil-
tonian. Within the interior region (r < r0), r is real and the
wave function |�θ

1 (ω)〉 is identical to the one without com-
plex scaling. In the exterior region (r � r0), r possesses an
imaginary component such that the physical significance of
|�θ

1 (ω)〉 and its use to extract physically relevant information
are significantly complicated. Therefore, partial cross sections
are best obtained from |�θ

1 (ω)〉 in the interior region just
before r0, where we assume that it has already reached its
asymptotic, Coulomb-type behavior. The function |�θ

1 (ω)〉
is projected onto channel functions, which describe all but
the radial motion of the photoelectron [1], yielding the ra-
dial function Pα (r2; ω). α stands for the quantum numbers
n1, �1, j1, �2, j2, J , and M which define a channel. Provided
that r0 is sufficiently large, Pα (r2; ω) can be represented for
r2 � r0 by a linear combination of regular F E

�2
and irregular

GE
�2

Coulomb functions:

Pα (r2; ω) ∼ Aα (ω)
[
F E

�2
(−1/k, kr2) + iGE

�2
(−1/k, kr2)

]
, (6)

where k and E are the photoelectron wave number and kinetic
energy, respectively. The imaginary part of the right-hand side
of Eq. (6) is fitted to Im(Pα ), calculated from the CI-ECS wave
function, in a linear least-squares fit with the amplitude A(ω)
as a fit parameter. The partial cross section σα (ω) at a photon
angular frequency ω is then obtained from A(ω) using

σα (ω) = 4ω

c
|Aα (ω)|2. (7)

Electronic correlations are investigated in their finest de-
tails by computing and analyzing the two-electron density
(see, e.g., Refs. [33,51]). Because of ECS, the radial coor-
dinates are rotated into the complex plane and the density
cannot be straightforwardly computed from the complex-
scaled two-electron wave function everywhere. Deducing the
real-r wave function from its complex-rotated counterpart,
a process known as backscaling, is possible for standard
complex scaling (r0 = 0) but suffers from severe numerical
instabilities [52]. It is also unclear whether it can be extended
to ECS. Instead, just as for computing partial photoionization
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cross sections, we use the fact that for r � r0 the radial coor-
dinates are real and the functions |iθ 〉 can be identified to their
non-complex-scaled versions. Provided that we restrict our-
selves to r1, r2 � r0, the electronic density ρ(r1, r2) can thus
be calculated as usual. Integration of ρ over the Euler angles
describing the orientation the electron-electron-nucleus trian-
gle reduces the six-dimensional coordinate space to the three
internal variables r1, r2, and θ12 relevant for electron-electron
correlations. θ12 is the interelectronic angle. The correspond-
ing reduced two-electron density is calculated as

ρi(r1, r2, cos θ12)

= 〈iθ |δ(r1 − r′
1)δ(r2 − r′

2)δ(cos θ12 − cos θ ′
12)|iθ 〉 , (8)

where δ(x) are Dirac delta functions. The expansion of
δ(cos θ12 − cos θ ′

12) in terms of Legendre polynomials [53] is
used for the calculations.

B. Simulation of experimental spectra

To reproduce the experimental spectra, the production
dynamics of Sr2+ ions following excitation to doubly ex-
cited states must be elucidated. First, [7dj1′ n2′ (l2′ ) j2′ ]′J or
[8p j1′ n2′ (l2′ ) j2′ ]′J states are photoexcited from [5d5/216(l2) j2 ]J

states. Sr2+ ions are then detected following, predominantly,
(i) autoionization and subsequent photoionization of the resid-
ual Sr+ ion or (ii) photoionization of the core electron and
subsequent field ionization of the Sr+ ion in a Rydberg series.
In process (i), the final state of the ion after autoionization
is important. If it is energetically too low [� Sr+(6d5/2)], the
photon energy is not sufficient to photoionize the ion and Sr2+
ions are not detected. The photoionization cross section is also
different for each Sr+ final state. To assess the importance
of these effects, we calculated partial photoionization cross
sections to each Sr+ final state and weighted them by the
corresponding Sr+ photoionization cross section. The cor-
responding spectra are very similar to the spectra obtained
including all Sr+ final states and without weighting (see red
and black dotted lines in Fig. 3). Process (ii) was studied in
detail by Rosen et al. [54]. Within the independent-electron
approximation, the photoionization of the core electron is
independent of the state of the Rydberg electron, and the field
ionization of the Sr+ Rydberg ion is also independent of the
particular Rydberg state for sufficiently large field strengths.

The competition between processes (i) and (ii) depends in
a complicated manner on the photoexcitation and autoion-
ization dynamics. For the sake of simplicity, the theoretical
spectra presented below are thus obtained from the total
photoionization cross section of [5d5/216(l2) j2 ]J states unless
stated otherwise.

The calculated photoionization cross sections are con-
volved by a Gaussian function with a full width at half
maximum of 0.25 cm−1 to account for the finite laser
bandwidth in the experiment. Theoretical spectra are obtained
from the convolved cross section σc(ω) using

S(ω) =
∑

i

Pi
{

ln
[
psatσ

i
c (ω)

] + γ − Ei
[ − psatσ

i
c (ω)

]}
, (9)

where the coefficients Pi are the populations of the various
[5d5/216(l2) j2 ]J initial states. γ is the Euler constant, Ei(x)
is the exponential integral function, and psat is a parame-
ter adjusted to visually reproduce experimental spectra. This
formula accounts exactly for both saturation and interaction-
volume effects in the case of a Gaussian laser beam and a large
atomic beam [55].

In the experiment, Sr atoms are prepared in [5d5/216(l2) j2 ]J

states by ICE from bound singlet 5s16(l2) Rydberg states,
for which the LS coupling scheme is appropriate. In order
to reproduce experimental spectra, the relative populations
Pi of the various [5d5/216(l2) j2 ]J states must be estimated. A
complete description of the preparation process using CI-ECS
is computationally very demanding, since many eigenvalues
and eigenvectors must be obtained from the large Hamiltonian
matrix. Instead, we obtained an initial estimate using the ICE
approximation [56] which relies on the independent-electron
approximation. We treated the 5p3/216l2 and 5d5/216l2 weakly
autoionizing doubly excited states as nondecaying states, i.e.,
we neglected the admixture of any continuum state, because
as mentioned in Sec. III A their autoionization rates are small
on the timescale of the experiment.

The initial 5s16(l2) singlet states are projected onto the
j j-coupled [5s1/216(l2) j2 ]J ′′=l2 states using standard angular
momentum algebra [47]. The photoexcitation cross section
from an initial |n1l1 j1n2l2 j2JM〉 state can be written, in the
ICE approximation, as

σICE(ω) = 4π2ω

c
[J, J ′, j1, j′1]

(
J ′ 1 J

−M ′ q M

)2{ j2 j′1 J ′

1 J j1

}2{l ′
1 1/2 j′1
j1 1 l1

}2

× |〈n′
1l ′

1 j′1|ε̂ · 	r1|n1l1 j1〉|2|〈n′
2l2 j2|n2l2 j2〉|2Al2 j2J ′

n′
1l ′1 j′1

(ω), (10)

where ω is the photon angular frequency and c is the speed
of light. We use the standard notation [ j] = 2 j + 1. The first
term on the second line is the square of the transition dipole
moment for the excitation of the bare Sr+ ion from the n1(l1) j1
state to the n′

1(l ′
1) j′1 state. The second term describes the over-

lap between the initial and final Rydberg-state wave functions,
and is well approximated by the sinc2-type function [56]

|〈n′
2l2 j2|n2l2 j2〉|2 = 4(n′

2n2)4

n3
2(n2 + n′

2)2
sinc2(n′

2 − n2). (11)

The last term in Eq. (10) is the spectral density of the
n′

1(l ′
1) j′1 (l2) j2 J ′ doubly excited Rydberg series. In the ab-

sence of electron correlations, it is given by a series of
narrow Lorentzian functions located at the energies of the
Rydberg states. Because l2 is large, the interaction between
the two electrons during the preparation process is very
small and, in particular, the quantum defects are assumed
to be small (n′

2 
 n2 and En′
2

 En2 ). Consequently, the last

two terms are nonzero only when ω corresponds to the
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FIG. 2. Theoretical (a), (b) and experimental (c) Sr2+ spectra from [5d5/216(l2) j2 ]J states (l2 = 9–12) in the vicinity of the Sr+(5d5/2 −
7d5/2) transition (vertical chained line). The contributions of initial states with different l2 values to the total spectrum are shown in panel
(a), where they have been offset vertically by arbitrary amounts for clarity. The asterisks in the lower panel denote the Sr+(6s1/2 − 7p1/2,3/2 )
resonances. Effective principal quantum numbers relative to the Sr+(7d5/2) threshold are shown on the upper horizontal axis. The circles in
the upper panel show the position of states with effective principal quantum numbers starting from 10.8 and converging to the Sr+(7d3/2)
threshold.

n1l1 j1 − n′
1l ′

1 j′1 transition frequency of the bare Sr+ ion, and
are independent of the values of n2, l2, and j2. In other
words, we assume that the Rydberg electron is a specta-
tor of core excitation and does not undergo shake-up or
shake-down. Under these assumptions, the relative excitation
efficiencies from, first, the [5s1/216(l2) j2 ]J ′′=l2 states to the
[5p3/216(l2) j2 ]J ′ states and, second, the [5p3/216(l2) j2 ]J ′ states
to the (5d5/216(l2) j2 )J states can be directly computed using
Eq. (10). Because lasers with parallel linear polarizations were
used, M = q = 0. The CI-ECS calculations show that the
[5d5/216(l2) j2 ]J states possess in fact small nonzero quantum
defects (μ < 0.02) and, in particular, that for a given l2 value
the [5d5/216(l2)l2−1/2]l2+2 and [5d5/216(l2)l2+1/2]l2−2 states
systematically lie ≈ 0.5 cm−1 higher than the other states.
The excitation-lasers detunings are thus different for the two
spectrally separated groups of states, which affects the relative
excitation efficiencies. In the experiment, the wavelengths
of the third and fourth dye lasers driving the inner-electron
transitions 5s to 5p3/2 and 5p3/2 to 5d5/2 were tuned to the
respective ionic resonances and manually slightly adjusted
to maximize the Sr2+ signal when all lasers were present.
We empirically took this into account when calculating the
theoretical spectra by visually fitting the ratio of excitation
efficiencies to the two different groups of states to the exper-
imental spectra. Optimal results were obtained when dividing

the excitation efficiencies to the [5d5/216(l2)l2−1/2]l2+2 and
[5d5/216(l2)l2+1/2]l2−2 states by a factor of 4.

Because of nonadiabatic effects during Stark switching, the
atoms are not necessarily prepared in a 6s16(l2) state with
a single value of l2. For 7p5/2n′

2l ′
2 states with low n′

2 values
(n′

2 � 14) and for 8p3/2n′
2l ′

2 states around n′
2 = 15, the groups

of lines associated with different initial l2 values are partially
resolved in the experimental spectra. We have used these lines
to estimate the relative populations of the initial states with
different l2 values by visually fitting the calculated data to
the experimental spectra (see, e.g., Fig. 2). We carried out
calculations for a number of l2 values and added them to
obtain the total spectrum, with weights corresponding to the
respective l2 populations. The l2 weights are summarized in
the lower part of Table II.

TABLE II. Populations of the various [5d5/216(l2) j2 ]J initial states.

J = l2 − 2 J = l2 J = l2 + 2

[5d5/216(l2)l2−1/2]J 0.13 0.15 0.18
[5d5/216(l2)l2+1/2]J 0.16 0.16 0.21
l2 = 9 l2 = 10 l2 = 11 l2 = 12
0.44 0.4 0.08 0.08
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IV. RESULTS

A. Photoionization spectra

The experimental Sr2+ overview spectrum we recorded is
shown in Fig. 1. The regions below and above the Sr+(7d )
ionization threshold are discussed separately in the follow-
ing. The theoretical and experimental Sr2+ spectra in the
first region, where 7dnl doubly excited states can be ex-
cited, are compared in Fig. 2. The contributions of initial
states with different l2 values are also shown. The theoret-
ical spectrum is truncated to Rydberg states with n � 24,
corresponding to the highest n value accurately described by
our basis set. The spectrum was displaced along the hor-
izontal axis by the difference between the calculated and
experimental [57] wave numbers of the Sr+(5d5/2 − 7d5/2)
transition (26.42 cm−1). In the experiment, the l2, j2, and J
substructure of the [5d5/216(l2) j2 ]J initial states is not well
resolved, which results in small mismatches between the pho-
ton energies of the third and fourth lasers used to prepare the
various [5d5/216(l2) j2 ]J states and the exact ICE energies. The
resulting offset between the experimental and theoretical wave
numbers for the fifth laser is estimated to be ≈ −0.8 cm−1

overall and was corrected by shifting the theoretical spectrum
along the horizontal axis accordingly. Overall, the agreement
between theory and experiment is very good considering the
complexity of the experiment. Discrepancies can be attributed
to uncertainties in the modeling of the Sr2+ production (see
Sec. III B), variations of the laser pulse energy or of the
detection efficiency in the experiment, inaccuracies of the
calculation and in particular of the model potential, missing
initial states, or inaccurate initial populations. In many cases a
quantitative level of agreement is reached, which is significant
for such high-lying doubly excited states [41].

The spectra show a regular Rydberg-series progression,
with an associated quantum defect of ≈ 0.2, converging
to the Sr+(7d5/2) threshold. A weaker series with approxi-
mately the same quantum defect and converging to the other
spin-orbit component (7d3/2) is marked by the circles. For
singly excited Rydberg states and core-excited Rydberg states,
the quantum defects of high-l Rydberg series (l = 9–12 in
the present case) are very small. The interaction between the
core and Rydberg electrons is indeed strongly reduced by the
large centrifugal barrier which prevents the penetration of the
Rydberg electron in the core region. Conversely, the large
(≈ 0.2) quantum defects observed in the present spectra in-
dicate much stronger correlations between the two electrons,
which will be analyzed in more detail in Sec. IV B. Corre-
lations are in fact fully responsible for the spectra shown
in Fig. 2. In an ICE scheme, where electron correlations
are neglected, the excitation of [7dj′1 n′

2(l ′
2) j′2 ]J ′ states from

[5d5/216(l2) j2 ]J states is forbidden because dipole selection
rules prevent the 5d → 7d core excitation. Huang et al. ob-
served a similar violation of ICE predictions for higher l
states (l = 13, 15) [11], which was also observed in CI-ECS
calculations [42]. In the present case, inspection of the CI
coefficients reveals that, for example, states with predominant
[7d5/2n′

2(10) j′2 ]J ′ character are mixed at the level of 1% with
[8p3/2n′′

2 (9, 11) j2 ]J ′ and [6 f7/2n′′
2 (9, 11) j2 ]J ′ states. ICE to the

two latter states is allowed by dipole selection rules and, be-
cause the transition dipole moment from the 5d5/2 state of Sr+

FIG. 3. Experimental (full line) and theoretical (dotted lines)
Sr2+ spectra in the region of 7d3/2,5/212(l ′

2) resonances. The red
dotted line corresponds to a spectrum calculated from the partial pho-
toionization cross section to states energetically higher than Sr+(6d )
only, whereas the black dotted line was obtained from the total cross
section. The theoretical spectra were offset by −0.2 along the vertical
axis and scaled by a factor of 2 for clarity.

to the 6 f7/2 state is much larger, it is the [6 f7/2n′′
2 (9, 11) j2 ]J ′

character that provides the major intensity contribution to the
photoexcitation spectrum.

Line intensities in the spectra show a significant decrease
around 21 250 cm−1, a region where the principal quantum
number of the outer electron is approximately conserved upon
excitation (n′

2 ∼ 16, see upper horizontal axis in Fig. 2). This
fact was already observed and explained by Huang et al.
[11]. If we consider an initial state described by a single
configuration [5d5/216(l2) j2 ]J , the largest contributions to the
transition dipole moments to [7d5/216(l ′

2) j′2 ]J ′ states come
from the mixing of the latter states with configurations in
which the Rydberg electron is in the same configuration
as the initial state but the core-electron configuration has
changed, e.g., [6 f7/216(l2) j2 ]J ′ or [8p3/216(l2) j2 ]J ′ . If one
assumes that the Rydberg electron is well described by a
hydrogenic wave function, a rather good approximation for
high-l2 states, then electrostatic interactions coupling the two
configurations vanish for n2 = n′

2 = 16 [58]. This means that,
in first approximation, the [7d5/216(l ′

2) j′2 ]J ′ states possess only
little [6 f7/216(l2) j2 ]J ′ or [8p3/216(l2) j2 ]J ′ character and thus
cannot be efficiently excited. This is no longer the case for
noninteger values of n2 and n′

2 or n2 �= n′
2, which explains why

the line intensities do not completely vanish around n′
2 ∼ 16

and why lines away from the n′
2 ∼ 16 region are more intense.

Each n′
2 band in the spectra possesses a complex sub-

structure. A detailed view of the n′
2 ∼ 12 region is shown

in Fig. 3. The agreement between theory (black dotted line)
and experiment (full line) is very good and permits the as-
signment of each line to one or a few states with predominant
[7dj′1 12(10 − 11) j′2 ]J ′ character. The spin-orbit interaction for
the Rydberg electron is very small and levels with differ-
ent j′2 values but identical quantum numbers otherwise are
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FIG. 4. Theoretical (top) and experimental (bottom) Sr2+ spectra from [5d5/216(l2) j2 ]J states (l2 = 9–12) in the vicinity of the Sr+(5d5/2 −
8p3/2) transition. The vertical chained line in the upper panel shows the position of the Sr+(5d5/2 − 8p3/2) transition. The asterisk in the lower
panel denotes the Sr+(5p3/2 − 7p3/2) two-photon resonance. Effective principal quantum numbers relative to the Sr+(8p3/2) threshold are
shown on the upper horizontal axis. The dashed gray line in the lower panel shows a typical prediction of the ICE model.

degenerate on the scale of the figure. Therefore, states were
labeled in jK coupling using Eq. (3), as shown by the assign-
ment bars. States with l ′

2 = 9 are broad and do not yield clear
spectral features in the spectrum.

The theoretical and experimental Sr2+ spectra recorded
from [5d5/216(l2) j2 ]J states and for photon energies above
the Sr+(7d ) threshold, a region where 8pnl doubly excited
Rydberg states are excited, are compared in Fig. 4. As for the
7dnl region, the theoretical spectrum was displaced along the
horizontal axis by the difference between the calculated and
experimental wave numbers of the Sr+(5d5/2 − 8p3/2) transi-
tion (22.0 cm−1, see paragraph below) and by an additional
−0.8 cm−1. Agreement between theory and experiment is
satisfactory. The line positions are well reproduced by theory,
however lines tend to be broader in the experimental spectrum.
This may be caused by inaccuracies of the model potential,
by the truncation of the basis set, or by the fact that initial
states with lower l2 values are populated by nonadiabatic
effects in the experiment. The latter possibility would result
in 8pnl ′

2 states with lower l ′
2 values being excited, which

possess larger autoionization rates and would give rise to
broader spectral lines. The peak corresponding to an effective
principal quantum number of n′

2 ∼ 16.2 is heavily saturated
under the present experimental conditions.

Rydberg series with a negative quantum defect of ≈ −0.2
are observed in Fig. 4 and converge to the Sr+(8p3/2) thresh-
old. The position of this threshold obtained by extrapolation of
the Rydberg formula to n → ∞ is 75 335.7(7) cm−1 relative
to Sr+(5s), a value 23.9 cm−1 higher than the reference data
from NIST [57]. Discrepancies of similar magnitudes were
observed earlier by Lange et al. for Sr+(7p1/2,3/2) [59]. We
therefore used, in the present paper, the value determined from
our spectra.

The rich substructure of the n′
2 ∼ 15 band is shown in

Fig. 5. Agreement between theory and experiment is very
good and allows us to assign each peak to one or a few
[8p3/215(9 − 12) j′2 ]J ′ states. As for the 7d12l ′

2 region, the
spin-orbit splitting of the Rydberg electron is negligible and

states were labeled in jK coupling. The energy differences
between different K states of a given l ′

2 manifold are large, and
in fact often larger than the energy difference between states
belonging to different l ′

2 manifolds. Thus, l ′
2 is no longer even

an approximately good quantum number. Inspection of the
CI coefficients shows that, for example, states with predom-
inant 8p3/215(l ′

2 = 9) character are mixed with states with
l ′′
2 = 7, 10, 11, and 12 and core configurations 7d3/2,5/2, 8p1/2,

and 6(5)9/2,11/2.
The signal computed from the partial photoionization cross

section to Sr+(7d3/2,5/2) states only is shown by the dotted
red line in Fig. 5, and appears very similar to the signal

FIG. 5. Experimental (full line) and theoretical (dotted lines)
Sr2+ spectra in the region of 8p3/215(l ′

2) resonances. The red dotted
line corresponds to the signal calculated from the partial photoioniza-
tion cross section to the Sr+(7d ) states only, whereas the black dotted
line was obtained from the total cross section. The vertical dotted line
indicates the position of a 8p3/215(l ′

2) state with zero quantum defect.
The theoretical spectra were scaled by a factor of 3 for clarity.
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calculated from the total cross section (black dotted line).
Therefore, the doubly excited 8p3/215(l ′

2)K states autoionize
predominantly into 7dεl continua. The kinetic energy ε of the
ejected electron is relatively small because the 8p3/215(l2)K

states are energetically close to the Sr+(7d3/2,5/2) thresh-
olds (≈ 200 cm−1). In contrast, autoionization of the 7dnl
states observed in Fig. 2 yields higher electron energies be-
cause these states are more than 4000 cm−1 higher than
the closest-lying Sr+(7p, 5 f ) thresholds. Autoionization typi-
cally becomes less efficient the larger the momentum transfer
between the Rydberg and core electrons [24,44], which trans-
lates into the fact that, as observed in the spectra, the overall
widths of 7dnl states are narrower than the 8pnl ones.

Let us now investigate the intensity distribution of the lines
in the spectra shown in Fig. 4. In contrast with the 7dnl
region shown in Fig. 2, ICE from the 5d5/2 state to the 8p3/2

state is allowed by dipole selection rules. We calculated the
typical predictions of the independent-electron ICE model
[7,56] considering an isolated Rydberg series with a quantum
defect of −0.21 and linewidths given by 50 × 103/n3 cm−1,
as shown by the dashed gray line in the lower panel of Fig. 4.
The strongest transition around 21 970 cm−1 corresponds to
the situation where the principal quantum number of the
outer electron is approximately conserved upon photoexcita-
tion (n′

2 ∼ n2 ∼ 16). Shake-up and shake-down of the outer
electron are possible and the intensity of the corresponding
satellite lines decreases following the sinc2 law in Eq. (11).
The ICE model reproduces the overall intensity behavior of
the spectrum, however closer inspection reveals that the lines
in the theoretical and experimental spectra do not decay as
rapidly as the ICE predictions, in particular in the low-wave-
number side. It is possible that such a discrepancy is caused by
variations of the laser pulse energy with the wave number or
changes in the detection efficiency with the principal quantum
number of the Rydberg electron. However, the low-wave-
number region also corresponds to low principal quantum
numbers of the outer electron, where the strongest correla-
tions with the core electron are expected and thus where the
largest deviations from ICE should occur. The continuous
background in the experimental and theoretical spectra is not
reproduced by the ICE model and corresponds to direct ion-
ization into 7dεl continua. It is in fact the continuation of the
Rydberg series observed in Fig. 2 to positive electron energies.

B. Electronic correlations

Electron correlations responsible for the complex struc-
tures observed in the experimental and theoretical spectra
presented above can be investigated in their full extent with
the aid of the two-electron density ρ(r1, r2, θ12), calculated
from the CI-ECS wave functions as described in Sec. III.
We will focus in the following on the [7d5/212(10) j′2 ]J ′ and
[8p3/213(11) j′2 ]J ′ states, however we verified that similar con-
clusions apply to other states as well.

Let us first investigate radial correlations. To do so, we
integrate the three-dimensional two-electron density over the
angular coordinate cos θ12:

ρ̃(r1, r2) =
∫

d (cos θ12) ρ(r1, r2, cos θ12). (12)

FIG. 6. Radial electronic density ρ(r1, r2) of the
[7d5/212(10)21/2]8 state. Radial densities integrated over r2 and
r1 are shown in the top and right panels, respectively. The blue
line in the right panel shows the sum of a Coulomb potential and a
centrifugal potential for l = 10.

It yields the radial density shown in Fig. 6 for the
[7d5/212(10)21/2]8 state, which is associated with a K value
of 15/2 in jK coupling. Further integration over r1 yields
the one-dimensional density the real (full line) and imaginary
(dotted line) parts of which are shown in the right panel.
Integration over r2 gives the density shown in the top panel.
The blue line in the right panel shows the sum of a pure
Coulomb potential and a centrifugal potential for l = 10.
Complex rotation is applied from r1,2 = 150 a0 onward, at
which point the densities calculated from the CI-ECS wave
functions do not necessarily follow the usual probabilistic
meaning of Hermitian quantum mechanics. Due to exchange
symmetry, ρ̃(r1, r2) presents the same behavior for r1 and r2

reversed. This is not shown for clarity.
The radial density in Fig. 6 reveals that radial electronic

correlations [60] are weak. Indeed, the total density is essen-
tially the product of two independent one-electron densities:
one associated with the outer electron density, which resem-
bles the norm squared of the radial function of a n = 12,
l = 10 Rydberg electron; the other associated with the density
of the core electron, which resembles the norm squared of the
Sr+(7d5/2) wave function. The absence of radial correlations
is not surprising since the two electrons occupy largely differ-
ent regions of the radial phase space. As shown in the right
panel of Fig. 6, the radial density associated with the outer
electron is confined to r � 50 a0 by the large centrifugal bar-
rier it experiences, whereas the inner electron density vanishes
at r ∼ 40 a0 and beyond.

Angular correlations [60], on the other hand, are far from
negligible. Figure 7(a) shows the conditional density of the
core electron when the outer electron is fixed at r2 = 85 a0,
corresponding to the first maximum of the outer-electron dis-
tribution in the right panel of Fig. 6. One notices that the
inner electron preferentially sits at θ12 = 180◦, i.e., on the
side of the nucleus opposite to the outer electron. Comparison
with the conditional density calculated using the independent-
electron approximation, shown in Fig. 7(b), reveals that the
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FIG. 7. Conditional density ρ(r1, θ12|r2 = 85a0 ) of the
[7d12(10)21/2]8 state in the presence (a) and absence (b) of electron
correlations. Panel (c) shows the difference between the two
densities. The black arrow shows the direction along which θ12 = 0◦.

strong polarization of the core-electron density is caused
by its interaction with the outer electron. In order to make
correlation-induced changes in the core-electron density more
apparent, we also calculated the difference between the con-
ditional densities with [Fig. 7(a)] and without [Fig. 7(b)]
correlations, as shown in Fig. 7(c).

The differences between the conditional densities
ρ(r1, θ12|r2 = 85 a0) with and without correlations are
shown in Fig. 8 for the various 7d5/212(10)K states. In all
cases, the inner-electron density is significantly distorted by

FIG. 8. Difference between the conditional probability densities
ρ(r1, θ12|r2 = 85a0 ) with and without electronic correlations for the
various 7d5/212(10)K states. The black arrow shows the direction
along which θ12 = 0◦.

FIG. 9. Difference between the conditional probability densities
ρ(r1, θ12|r2 = 120 a0 ) with and without electronic correlations for
the various 8p3/213(11)K states. The black arrow shows the direction
along which θ12 = 0◦.

its interaction with the outer electron. The densities for the
different K values can be grouped in three categories with
K = 15/2 and 25/2, K = 17/2 and 23/2, and K = 19/2 and
21/2, respectively. They are characterized by the presence of
zero, one, and two minima in the conditional density along
the θ12 direction in the [ π

2 ,−π
2 ] half plane, respectively. In

the limit where the radial motion of the outer electron can be
adiabatically decoupled from that of the inner electron, these
three categories correspond to different projections of the
total orbital angular momentum of the core electron onto an
adiabatic quantization axis defined by the distance between
the nucleus and the outer electron (r2).

Figure 9 shows the differences between the conditional
densities ρ(r1, θ12|r2 = 120 a0) with and without correla-
tions for the various 8p3/213(11)K states. Contrary to the
7d5/212(10)K states, the core-electron density is polarized
toward θ12 = 0◦, as is particularly visible for K = 19/2. The
inner electron thus preferentially resides on the same side
of the nucleus as the outer electron. The densities can be
grouped into K = 19/2 and 25/2, and K = 21/2 and 23/2,
characterized by the presence of zero and one minima along
the θ12 direction in the [−π

2 , π
2 ] half plane, respectively.

V. DISCUSSION

Because the effective principal quantum number of the
outer electron is significantly larger than that of the inner one,
the classical orbit period of the former is much larger than the
one of the latter (n3

2 � n3
1/4). The precession of the Runge-

Lenz vector, which is classically equivalent to the precession
of the major axis associated to the elliptic orbit of the inner
electron, is also much faster than the classical orbit period of
the outer electron because [10]

n3
2 � n3

1

4

(
∂μl1 (E )

∂l1

)−1

, (13)

where μl1 (E ) represents the quantum defects of Sr+(n1l1)
orbitals at energy E . Thus, in first approximation, the
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radial motion of the outer electron can be adiabatically de-
coupled from the motion of the inner electron (see, e.g.,
Refs. [31,33,61]). Such a procedure is further supported by
the absence of strong radial correlations in the CI-ECS two-
electron densities. Within the adiabatic picture, the inner
electron evolves in the static electric field generated by the
outer electron, which is fixed at a given point r2 in space. This
approach is equivalent to the clamped-nuclei approximation
in molecular physics, and offers a qualitative understanding
of the quantum defects and charge densities presented above.

In the Sr+ ion, the scalar polarizability of the 7d5/2 or-
bital, calculated using the one-electron radial functions of
Sec. III A, is α0 ∼ 54 332 a3

0. Thus, the Sr+(7d5/2) state is
redshifted by its interaction with an external electric field
and the charge distribution localizes preferentially on the side
of the nucleus opposite to the electric-field direction. In the
present case, this translates into the core electron sitting pref-
erentially on the side of the nucleus opposite to the outer
electron. Conversely, the scalar polarizability of Sr+(8p3/2)
is α0 ∼ −58 794 a3

0. It is blueshifted by an external electric
field and the center of gravity of the charge distribution is
displaced away from the nucleus in the direction of the electric
field. The inner electron preferentially resides on the same
side of the nucleus as the outer electron. The fact that the
polarizabilities of Sr+(7d5/2) and Sr+(8p3/2) have similar
magnitudes but different signs further explains why 7p5/2nl
and 8p3/2nl doubly excited states exhibit quantum defects of
similar magnitude but opposite signs. For 7d5/2(n′

2 = 12, l ′
2 =

10) states, the electric field generated by the outer electron
at its mean radial distance induces an energy shift due to the
scalar polarizability of the ion core of ≈ −31 cm−1, compa-
rable to the shift observed in the experimental spectrum. For
8p3/2(n′

2 = 15, l ′
2 = 11) states, the shift is ≈ 12 cm−1, which

compares well with observations (see Fig. 5). Energy shifts
depending on the projection of the total angular momentum
of the inner electron onto the adiabatic quantization axis (r2)
can in principle be derived by taking into account the tensor
polarizability (α2) of the Sr+ orbital under consideration [62].
However, the agreement with the observed and calculated
energies is not significantly improved, a fact we attribute pri-
marily to nonadiabatic effects not accounted for in our simple
model.

The doubly excited states under scrutiny are called plan-
etary states [4,9,10,15], by analogy with planets in a solar
system. The autoionization lifetimes we calculate for these
states are long [≈ 10−12–10−10 s for 7d5/212(10) states] com-
pared to the classical orbit period of the Rydberg electron (τ ∼
40 fs for n = 12). The planetary system is thus metastable
and survives for a large number of orbits. The two electrons
describe a synchronous angular motion the details of which
depend primarily on the polarizability of the ion core and the
projection of the ion-core total angular momentum onto the
adiabatic outer-electron-nucleus axis. For the 7dnl and 8pnl
states considered in the present paper, the two electrons are
preferentially either at 0◦ or 180◦ from each other depending
on the sign of the static polarizability of the ion core. How-
ever, their radial motion is not constrained and they are free
to roam along the electron-nucleus-electron direction. This
differs from the frozen-planet states calculated by Richter
and Wintgen for low angular momentum, high-lying doubly

excited states of helium [5,33], in which the two electrons are
further localized at specific r1 and r2 values on the radial axis
due to strong radial correlations.

VI. CONCLUSION

We presented an experimental and theoretical study of
7dnl and 8pnl planetary states of Sr. Experimental spectra
were recorded by photoexcitation from 5dnl states, pre-
pared by multiphoton excitation of ground-state atoms and
using the Stark-switching technique, followed by double ion-
ization via autoionization, photoionization, field ionization,
and any combination thereof. Theoretical spectra were cal-
culated using the method of configuration interaction with
exterior complex scaling, which permitted the complete treat-
ment of the dynamics of the two highly excited electrons
from first principles. Good agreement was obtained with ex-
perimental data, and permitted the detailed analysis of the
complex structures observed in the spectra. The signatures
of electron-electron correlations in the spectra were carefully
investigated. Electronic correlations were further investigated
using two-electron conditional probability densities calcu-
lated from CI-ECS wave functions. A strong distortion of the
inner-electron density caused by its interaction with the outer
electron was observed, and was related to the polarization of
the ion core by the electric field of the outer electron and to the
orientation of the ion-core angular momentum relative to the
nucleus-outer-electron adiabatic axis. The present paper thus
validates, through calculations from first principles in quan-
titative agreement with high-resolution experimental results,
the frozen-planet approximation that describes qualitatively
the structure of planetary states based on the polarization of
the inner electron by the Rydberg electron [9,10,17,27,31].
Similar ideas were developed in the early days of quantum
mechanics [63,64] and are being used, e.g., to study high-l
singly excited Rydberg series of K [65]. In doubly excited
Rydberg states, core-polarization effects are dramatically en-
hanced compared to singly excited Rydberg states because
static polarizabilities scale as n7 [66]. We further see that
quantitative agreement between calculated and measured en-
ergy levels can only be reached through complete calculations
taking into account higher-order electrostatic interactions and
nonadiabatic effects.

For larger orbital momenta l1 of the inner electron, the
ion core is expected to be more polarizable and the dynamics
described in the present paper should be yet more pronounced.
Such states are for example the 6gnl or 6hnl states lying
energetically just above the 8pnl states we studied. More-
over, because the quantum defects μl1 associated with high
l1 values are small, Eq. (13) should be violated for values of
the principal quantum number n2 of the outer electron that
are accessible to both theory and experiment. The study of
such states is a perspective of future work as it would provide
further information on the dynamics of planetary states. It
would also allow one to track the progressive breakdown of
the frozen-planet approximation as, for decreasing n2 values,
the motion of the outer electron can no longer be adiabatically
separated from the motion of the inner electron and radial
correlations become more pronounced. Another perspective
is the study of states where the centrifugal barrier associated
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with the outer electron is small enough to allow its penetration
in the core region. Frozen-planet states [5], exhibiting strong
radial and angular correlations, are known to form under such
conditions in the He atom but their existence in other systems
remains elusive.

ACKNOWLEDGMENTS

The authors gratefully acknowledge fruitful discussions
with F. Merkt and D. Wehrli, and W. Huang for his help with
the experiment at an early stage of this work.

[1] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.
68, 1015 (1996).

[2] G. Tanner, K. Richter, and J. M. Rost, Rev. Mod. Phys. 72, 497
(2000).

[3] K. Richter, G. Tanner, and D. Wintgen, Phys. Rev. A 48, 4182
(1993).

[4] P. Camus, Phys. Scr. T 51, 20 (1994).
[5] K. Richter and D. Wintgen, J. Phys. B 24, L565 (1991).
[6] R. P. Madden and K. Codling, Phys. Rev. Lett. 10, 516 (1963).
[7] W. E. Cooke, T. F. Gallagher, S. A. Edelstein, and R. M. Hill,

Phys. Rev. Lett. 40, 178 (1978).
[8] E. Y. Xu, Y. Zhu, O. C. Mullins, and T. F. Gallagher, Phys. Rev.

A 35, 1138 (1987).
[9] U. Eichmann, V. Lange, and W. Sandner, Phys. Rev. Lett. 64,

274 (1990).
[10] U. Eichmann, V. Lange, and W. Sandner, Phys. Rev. Lett. 68,

21 (1992).
[11] W. Huang, C. Rosen, U. Eichmann, and W. Sandner, Phys. Rev.

A 61, 040502(R) (2000).
[12] S. Cohen, M. Aymar, A. Bolovinos, M. Kompitsas, E. Luc-

Koenig, H. Mereu, and P. Tsekeris, Eur. Phys. J. D 13, 165
(2001).

[13] U. Eichmann, T. F. Gallagher, and R. M. Konik, Phys. Rev. Lett.
90, 233004 (2003).

[14] G. Fields, X. Zhang, F. B. Dunning, S. Yoshida, and J.
Burgdörfer, Phys. Rev. A 97, 013429 (2018).

[15] I. C. Percival, Proc. R. Soc. A 353, 289 (1977).
[16] P. Camus, S. Cohen, L. Pruvost, and A. Bolovinos, Phys. Rev.

A 48, R9 (1993).
[17] R. R. Jones and T. F. Gallagher, Phys. Rev. A 42, 2655 (1990).
[18] S. N. Pisharody and R. R. Jones, Science 303, 813 (2004).
[19] M. Aymar, E. Luc-Koenig, and S. Watanabe, J. Phys. B 20, 4325

(1987).
[20] J. Millen, G. Lochead, and M. P. A. Jones, Phys. Rev. Lett. 105,

213004 (2010).
[21] R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl,

J. Phys. B 44, 184010 (2011).
[22] R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J.-M.

Raimond, S. Gleyzes, and M. Brune, Phys. Rev. Lett. 125,
263001 (2020).

[23] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale,
A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M.
Endres, Nat. Phys. 16, 857 (2020).

[24] H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Phys. Rev. A 103,
022806 (2021).

[25] D. Wehrli, M. Génévriez, and F. Merkt, Phys. Rev. A 100,
012515 (2019).

[26] J. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. Burgers, and
J. Thompson, arXiv:1912.08754v2 (2019).

[27] P. Camus, T. F. Gallagher, J. M. Lecomte, P. Pillet, L. Pruvost,
and J. Boulmer, Phys. Rev. Lett. 62, 2365 (1989).

[28] K. Codling, Nature (London) 344, 194 (1990).
[29] V. N. Ostrovsky, J. Phys. B 26, 1163 (1993).
[30] W. Huang, X. Y. Xu, C. B. Xu, M. Xue, L. Q. Li, and D. Y.

Chen, Phys. Rev. A 49, R653(R) (1994).
[31] K. D. Heber, M. Seng, M. Halka, U. Eichmann, and W. Sandner,

Phys. Rev. A 56, 1255 (1997).
[32] M. Domke, C. Xue, A. Puschmann, T. Mandel, E. Hudson,

D. A. Shirley, G. Kaindl, C. H. Greene, H. R. Sadeghpour, and
H. Petersen, Phys. Rev. Lett. 66, 1306 (1991).

[33] K. Richter, J. S. Briggs, D. Wintgen, and E. A. Solov’ev,
J. Phys. B 25, 3929 (1992).

[34] A. Bürgers, D. Wintgen, and J.-M. Rost, J. Phys. B 28, 3163
(1995).

[35] A. Czasch, M. Schöffler, M. Hattass, S. Schössler, T. Jahnke,
T. Weber, A. Staudte, J. Titze, C. Wimmer, S. Kammer, M.
Weckenbrock, S. Voss, R. E. Grisenti, O. Jagutzki, L. P. H.
Schmidt, H. Schmidt-Böcking, R. Dörner, J. M. Rost, T.
Schneider, C.-N. Liu et al., Phys. Rev. Lett. 95, 243003 (2005).

[36] J. Eiglsperger, B. Piraux, and J. Madroñero, Phys. Rev. A 80,
022511 (2009).

[37] J. Madroñero and A. Buchleitner, Phys. Rev. A 77, 053402
(2008).

[38] A. González-Melan and J. Madroñero, Phys. Rev. A 101,
013414 (2020).

[39] T. P. Grozdanov, A. A. Gusev, E. A. Solov’ev, and S. I. Vinitsky,
Eur. Phys. J. D 74, 161 (2020).

[40] Y. Wang and C. H. Greene, Phys. Rev. A 103, 033103 (2021).
[41] R. P. Wood and C. H. Greene, Phys. Rev. A 49, 1029 (1994).
[42] M. Génévriez, Mol. Phys. 119, e1861353 (2021).
[43] R. R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).
[44] M. Génévriez, D. Wehrli, and F. Merkt, Phys. Rev. A 100,

032517 (2019).
[45] B. Simon, Phys. Lett. A 71, 211 (1979).
[46] T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 62, 032706

(2000).
[47] R. D. Cowan, The Theory of Atomic Structure and Spectra, Los

Alamos Series in Basic and Applied Sciences (University of
California, Berkeley, 1981).

[48] T. N. Rescigno and V. McKoy, Phys. Rev. A 12, 522 (1975).
[49] T. Carette, J. M. Dahlström, L. Argenti, and E. Lindroth, Phys.

Rev. A 87, 023420 (2013).
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