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The nonrelativistic “Ramsey-Flygare relationship” is the most used procedure to obtain semiexperimental
nuclear magnetic resonance (NMR) absolute shieldings by a correspondence between NMR shieldings (σ) and
nuclear spin-rotation constants (M). One of its generalizations to the relativistic framework is known as the M-V
model, which was proposed few year ago by some of the authors of the present work and right now is only
applied to linear molecules. This model includes terms that do not have nonrelativistic counterparts and also
include the paramagnetic contribution to the NMR shielding of nuclei in free atoms. All this ensures that its
results fit quite well with those of four-component (4c) calculations. The first application of the M-V model to
nonlinear molecules, like methyl halides or CH3X molecules (X = F, Cl, Br, and I), is given here. The analysis
of each electronic mechanism of σ shows that most of their electron correlation effects are strongly related with
the same effects in M. By including experimental data of M in the M-V model most of the correlation effects are
accurately taken into account for the absolute values of σ. Calculations of MY and σY (Y = H, C, and X ) were
carried out within the linear response formalism at the random-phase level of approach and density functional
theory in both 4c and nonrelativistic frameworks. The best fits between calculations of M and experimental data
are obtained from calculations at 4c-PBE0 level of theory in all cases, but not for M‖,Cl, which suggests that a
revision of the available experimental data may be necessary. There is an additional advantage of using the M-V
model: one can indirectly calculate shieldings of open-shell free atoms, which cannot be obtained at the moment
by applying 4c methods.

DOI: 10.1103/PhysRevA.104.012805

I. INTRODUCTION

Nuclear spin-rotation (SR) tensors (M) are accurately mea-
sured by microwave spectroscopy. They have been extensively
employed to validate many-electron structure calculations in
a wide number of molecules and are quite useful in nuclear
magnetic resonance (NMR) spectroscopy. The absolute values
of NMR magnetic shieldings (σ), which are very difficult to
measure, are obtainable from them by applying the widely
known “Ramsey-Flygare relationship” [1,2]. This is a rela-
tionship between the paramagnetic contribution to the NMR
shieldings and the electronic contribution to the SR constants
within a nonrelativistic (NR) framework.

During the last decade several groups of research around
the world have made contributions that improve the calcula-
tion of the absolute shieldings in heavy-atom-containing sys-
tems [3–13]. Four-component and two-component method-
ologies were applied to achieve this goal. One of the last one
was the development of the M-V model, which was proposed
by our research group [14–16]. There are still some doubts
about which methodology gives both more insights on the
physics behind the methodology and accurate results, given
that one can use different strategies to generalize the Ramsey-
Flygare relationship. On the other hand our model was only
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applied to linear systems, and it is necessary to enlarge its
application to nonlinear molecular systems in order to know
whether such a model can be safely used in nongeometrically
restricted molecular systems.

As mentioned, Flygare found an indirect way of obtaining
absolute shielding constants by combining experimental SR
data with some highly accurate calculations [17–19]. He as-
sumed the following:

(i) The paramagnetic contributions to the shielding con-
stants of free-atom nuclei are null.

(ii) The NMR shieldings and SR tensors for linear
molecules have null elements on the symmetry axis of the
molecule.

(iii) For molecules, there is an equivalence between the
perturbative Hamiltonian that describes the interaction of
magnetic moments of nuclear spins with an external and
uniform magnetic field and the perturbative Hamiltonian that
describes electronic effects due to molecular rotation of the
nuclei.

Since the earliest theoretical works that included relativis-
tic effects on NMR shieldings, it is known that the first
statement is not correct. Besides, it is known that in a rela-
tivistic framework the symmetry axis elements of the NMR
shielding tensor of a linear molecule are not zero, which
violates condition (ii) [20]. These findings together with some
accurate experimental data collected by Wasylishen and col-
laborators suggested that the Ramsey-Flygare relationship is
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not valid when relativistic effects are not negligible [21]. More
recently it was shown that the formal expressions of both
properties—the NMR magnetic shielding and SR tensors—
cannot be explicitly related to each other within the relativistic
regime [22]. This means that it is not possible to obtain an
exact theoretical relationship among them that would be valid
within the relativistic framework. So, one of the abovemen-
tioned conditions, the third one, is not fulfilled any longer.
Therefore, the Ramsey-Flygare relationship does not work in
heavy-atom-containing molecules.

One of the straight ways to generalize it makes use of the
linear response within the elimination of small components
(LRESC) model [23,24]. The development of the M-V model
was highly grounded on a bottom-up procedure whose first
steps were worked out within the LRESC model. This proce-
dure makes it so that, when the velocity of light, c, is scaled
to infinity, the M-V model goes to the Ramsey-Flygare one
[14,15,25]. It is also worth mentioning that, in addition to
the M-V model, some other models were recently developed
in order to extend the applicability of the Ramsey-Flygare
relationship to heavy-atom-containing molecules [4,5].

All previous applications of the M-V model to the com-
putation of NMR shieldings have shown that it gives very
close results to the four-component (4c) ones for heavy-atom-
containing linear molecules [15,16,26]. As a next step of our
development of the model M-V we show here how accurate
it is to reproduce magnetic shieldings in little more general
molecules like the set CH3X (X = 19F, 35Cl, 79Br, and 127I),
meaning nonlinear compounds. For them we also studied the
electronic origin of both electron correlation and relativistic
effects on paramagneticlike (or e-e) and diamagneticlike (or
p-p) contributions to both σ and M tensors.

The analysis of the SR constants of both nuclei X
and H in CH3X molecules (X = F, Cl, Br, and I) has
been performed in several computational and experimen-
tal works. The earliest experimental works applied different
techniques: (i) a molecular-beam electric resonance spec-
trometer to obtain radio-frequency spectra for CH3F [27],
(ii) a molecular-beam maser spectrometer to obtain high-
resolution measurements of hyperfine structure on CH3Cl
[28], and (iii) a molecular-beam absorption spectrometer to
obtain high-resolution microwave spectra for CH3Cl [29],
CH3Br [30], and CH3I [31]. Besides, rotational constants
of CH3Br and CH3I were obtained with the highest accu-
racy by combining data taken from rotational spectra and
pure quadrupole resonances [32]. The rotational spectra of
CH3I were also observed once more and analyzed in the
submillimeter-wave region, being that these data were com-
bined with the microwave and millimeter-wave measurements
to determine with high accuracy its rotational constants [33].
Then, combining the data obtained with the Doppler-free
double-resonance technique with that of previous Fourier-
transform infrared spectroscopy, the molecular constants of
CH3I were again obtained [34]. At the same time the Ramsey-
Flygare relationship given in Eq. (4) of Sec. II B of this
work was applied to obtain semiexperimental values of NMR
shieldings for F [27], Cl [29], Br [30], and I [31].

More recently, the microwave spectra of CH3Cl were
obtained using the Prague millimeter-wave semiconductor
spectrometer [35], and furthermore the Lamb-dip technique

was exploited to obtain sub-Doppler resolution, enabling the
determination of SR constants with an accuracy that rivals that
obtained by molecular-beam electric resonance measurements
on CH3F [36].

Concerning the NMR spectroscopy, Jackowski and
coworkers have developed a remarkable methodology to get
experimentally based absolute shielding values. They ob-
tained absolute shieldings of 1H and 13C in CH3F [37], CH3Br
[38], and CH3I [39]. A systematic study of this experimental
setup can be found in Ref. [40].

On the theoretical side, relativistic effects on magnetic
shieldings of methyl halides were first studied with dif-
ferent methodologies which only included spin-orbit (SO)
interactions [41–46]. A more general though two-component
perturbative approximation for including relativistic effects on
magnetic properties, the LRESC model [23,24], was recently
applied to calculate σ (127I), σ (79Br), σ (13C), and σ (1H) in
CH3Br and CH3I [47]. This method allows for the considera-
tion of a number of relativistic mechanisms others than the SO
one. Another and related recent work was devoted to the study
of σ (1H) and σ (13C) for the family of CH3X (X = F, Cl, Br,
and I) molecules. Quantum chemical calculations were carried
out at both ab initio and density functional theory (DFT) levels
of approach, where relativistic corrections were taken into
account at the leading-order Breit-Pauli perturbation level of
approach [48].

To our knowledge there are only three papers that contain
4c calculations of σ in methyl halides. In the first one, σ (13C)
in CH3I at 4c-DFT (using the KT3 functional) and random-
phase approximation (RPA) levels of theory, and using the
gauge-independent atomic orbital (GIAO) scheme, was stud-
ied. The authors also calculated σ (13C) with a hybrid method,
mixing NR-MP2 and 4c-RPA calculations [49]. Then, in a
second paper the same authors extended their work to the
analysis of σ (13C) in 70 CXnY4−n halogenomethanes (with
n = 1, 2, 3, and 4 and X,Y = H, F, Cl, Br, and I). They
performed RPA and DFT 4c calculations (with the OPW91
functional) and also used two hybrid methods (NR-MP2 +
4c-RPA and NR-MP2 + 4c-OPW91) to calculate σ (13C) [50].
The third one is the most recent and is close to the present one.
In this work, Uhlíková and Urban [13] have calculated σ (Br)
and σ (I) in CH3Br and CH3I using a 4c Dirac-Coulomb
Hamiltonian at DFT-BP86 and DFT-PBE levels of approach,
together with their NR counterparts. They compared the re-
sults of calculations of shieldings and SR constants employing
experimental and ab initio optimized equilibrium geometries,
but then they applied the Ramsey-Flygare relationship to get
σ , employing both NR and 4c methods. Another aim of our
work is related with the analysis of the consequences that arise
on the values of absolute shieldings when they are calculated
in this way.

In the following section we treat the equations for NMR
shielding and nuclear SR tensors derived within the 4c frame-
work, as well as the relationship between them, both in NR
and 4c levels of theory. In Sec. III the computational details
for all calculations are given and Sec. IV starts with with a
comparison of calculated nuclear SR tensor elements with the
corresponding experimental data. The accuracy of the M-V
model for methyl halides is then analyzed and concluding
remarks are given in Sec. V.
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II. THEORY

The SR tensor of a nucleus Y , MY , couples the magnetic
dipole moment due to nuclear spin with the molecular ro-
tational angular momentum [19,22]. On the other hand, the
NMR shielding tensor of a nucleus Y , σY , couples the nuclear
magnetic dipole moment with an external uniform magnetic
field.

A. Nuclear spin rotation and NMR shielding tensors

The tensor MY in a molecule in equilibrium depends
on both nuclear and electronic degrees of freedom: MY =
Mnuc

Y + Melec
Y [19,22]. In Gaussian atomic units, which are

used throughout the present work, they are written as

Mnuc
Y =

∑
X �=Y

gY ZX

2mpc2

[
RX,CM · RXY

|RXY |3 − RX,CM
RXY

|RXY |3
]

⊗ I−1

(1)

and

Melec
Y = gY

2mpc2

〈〈(
r − RY

|r − RY |3 × c α

)
; Je

〉〉
⊗ I−1. (2)

Here, gY is the nuclear g value of nucleus Y , ZX is the atomic
number of nucleus X , mp is the proton mass, c is the speed
of light in vacuum, RXY and RX,CM are the position vectors
of nucleus X with respect to nucleus Y and the molecular
center of mass, respectively, and I is the molecular moment of
inertia tensor in the equilibrium geometry with respect to its
center of mass. Furthermore, 〈〈 ; 〉〉 stands for the relativistic
polarization propagator, α is the Dirac operator, and Je =
(r − RCM) × p + 1

2� is the relativistic electronic total angular
momentum operator, which is the sum of the total orbital
and spin angular momenta. The orbital angular momentum is
taken with respect to the molecular center of mass, and � is
the 4c extension of the Pauli matrices. Then, Eq. (2) can be
written as Melec

Y = ML
Y + MS

Y .
On the other hand, within the 4c polarization propagator

theory (4c-PolProp) σY is written as

σY = 1

2c2

〈〈(
r − RY

|r − RY |3 × c α

)
; (r − RG) × c α

〉〉
, (3)

where RG represents the gauge origin position of the magnetic
potential.

Working with the 4c-PolProp theory, tensors Melec
Y and σY

can be approximated as the sum of two terms which contain
the following transition moment matrix elements: one that is
built between occupied positive-energy orbitals and unoccu-
pied positive-energy orbitals (e-e contributions), and another
one that is built between occupied positive-energy orbitals
and unoccupied negative-energy orbitals (p-p contributions)
[51,52].

B. Relationship between σ and M

Ramsey and Flygare based their works on the Schrödinger
representation. They found a reliable theoretical relationship
between σY and MY which is still useful for obtaining abso-
lute shieldings from measured SR constants [1,2,19]. Such a
relation, the Ramsey-Flygare relationship, is valid when the

molecules do not contain heavy atoms and are considered as
rigid rotors; it is written as

σY = σ
NR-para
Y + σNR-dia

Y

≈ mp

gY
MNR

Y ⊗ I + σFA,NR
Y . (4)

The symbols σ
NR-para
Y and σNR-dia

Y stand for paramagnetic
and diamagnetic contributions to the NR shielding, respec-
tively, and σFA,NR

Y is the shielding of a nucleus Y for a free
atom (which has only diamagnetic contributions within the
NR domain). Furthermore, results of calculations with the
Ramsey-Flygare relationship are more accurate for isotropic
values than for individual tensor elements [17–19].

Our main concern here is related with the application of
the M-V model to nonlinear molecules. This model is the
most accurate of the set of M-i (i = I to V) models whose
theoretical grounds are given elsewhere [15,16]. In this model
both properties are related as follows:

σM-V
Y = σSR

Y + σFA
Y + 1

2c

(
νS

Y − νFA,S
Y

)
, (5)

where

σSR
Y = mp

gY
MY ⊗ I, (6)

σFA
Y is the 4c shielding tensor of nucleus Y for the free atom,

and both νS
Y and νFA,S

Y are terms without NR equivalents,
where [15]

1

2c
νS

Y = 1

2c2

〈〈(
r − rY

|r − rY |3 × c α

)
; Se

〉〉
= mp

gY
MS

Y ⊗ I,

(7)
being Se = 1

2�. Besides, νFA,S
Y has the same expression as

that of νS
Y , but refers to the free atom. In addition, the linear

response on the right-hand side of Eq. (7) is formally the same
as that of MS

Y .
One can easily see that Eqs. (4) and (5) are expressed with

some similar formal terms. The main difference is that the
first one is written within the NR framework, meaning that
it includes only scalar terms; instead, the M-V model has all
its elements written within the relativistic framework.

We consider two different components of the σ tensors for
carbon and halogen nuclei. They are the perpendicular and
parallel components relative to the C-X molecular bond axis.
Hence,

σ
M-V(e-e)
⊥(‖),Y = mp I⊥(‖)

gY
Melec(e-e)

⊥(‖),Y + σ
FA(e-e)
Y

+ 1

2c

(
ν

S(e-e)
⊥(‖),Y − ν

FA,S(e-e)
Y

)
(8)

and

σ
M-V(p-p)
⊥(‖),Y = mp I⊥(‖)

gY

(
Mnuc

⊥(‖),Y + Melec(p-p)
⊥(‖),Y

) + σ
FA(p-p)
Y

+ 1

2c

(
ν

S(p-p)
⊥(‖),Y − ν

FA,S(p-p)
Y

)
. (9)

Then, the isotropic shielding constants for H, C, and X
nuclei are expressed as

σ M-V
iso,Y = σSR

iso,Y + σ FA
Y + 1

2c

(
νS

iso,Y − νFA,S
Y

)
. (10)

012805-3



BAJAC, AUCAR, AND AUCAR PHYSICAL REVIEW A 104, 012805 (2021)

TABLE I. Equilibrium bond distances and angles for CH3X
(X = 19F, 35Cl, 79Br, and 127I) molecules.

CH3F CH3Cl CH3Br CH3I

C–H (in Å) 1.095 1.090 1.086 1.084
C–X (in Å) 1.382 1.785 1.933 2.132
θ (HCH) 110.45◦ 110.8◦ 111.2◦ 111.2◦

III. COMPUTATIONAL DETAILS

Gas phase experimental geometries, determined by mi-
crowave and infrared spectroscopies and taken from Ref. [53],
were considered for CH3X (X = 19F, 35Cl, 79Br, and 127I)
molecules. The equilibrium bond distances and angles are
given in Table I.

Furthermore, calculations of SR constants were performed
with values of nuclear g factors taken from Ref. [54]:
5.585 694 for 1H, 1.404 824 for 13C, 5.257 736 for 19F,
0.547 916 for 35Cl, 1.404 267 for 79Br, and 1.125 309 for 127I.
Four-component calculations of σ, M, and νS were performed
with the DIRAC program package [55,56]. All of them were
based on the Dirac-Coulomb Hamiltonian, employing the de-
fault choice for a Hamiltonian of the DIRAC code. It uses an
energy correction to avoid the explicit calculation of (SS | SS)
integrals [57].

In all calculations, Dyall’s relativistic acv4z basis sets
(dyall.acv4z) were employed for hydrogen [58], fluorine, car-
bon, chlorine [59], bromine, and iodine [60], together with
uncontracted Gaussian basis sets and the common gauge-
origin (CGO) approach (additional calculations employing
GIAOs are given in the Supplemental Material [61]). The
small component basis sets for relativistic calculations were
generated by applying the unrestricted kinetic balance pre-
scription [52]. In addition, the Gaussian nuclear charge
distribution was used [62].

Most of response calculations have been carried out at the
4c-PolProp-RPA level of approach employing Dirac Hartree-
Fock (DHF) wave functions. Nonrelativistic values of σ and
M (reported here as σNR-para, σNR-dia, and MNR-elec) were ob-
tained scaling the speed of light to c = 100c0. The value of the
speed of light in vacuum used throughout all 4c calculations
was c0 = 137.035 999 8 a.u.

The gauge origin for the external magnetic potential was
always placed at the molecular center of mass. Then a di-
rect comparison with the SR results could be safely made.
Furthermore, the values of σ FA and νFA,S were calculated
for the following anions: 19F−, 35Cl−, 79Br−, and 127I−, in-
stead of the neutral atoms in order to consider closed-shell
systems.

The influence of electron correlation effects was studied
through Dirac Kohn-Sham DFT calculations performed em-
ploying the DIRAC code. DFT calculations were also based
on the 4c Dirac-Coulomb Hamiltonian and were done using
a variety of NR exchange-correlation functionals in the fol-
lowing categories: (i) the generalized-gradient-approximation
functionals KT3 [63] and BP86 [64,65], and (ii) the hybrid
functional PBE0 [66].

IV. RESULTS AND DISCUSSION

In this section, 4c calculations of SR constants at RPA
and DFT levels of theory are compared with available ex-
perimental data for hydrogen and halogen atoms. Afterwards,
each term of σM-V

Y is analyzed separately in order to learn
about the underlying physics that may be influencing both
the paramagneticlike (e-e) and the diamagneticlike (p-p) con-
tributions to σY . In line with this, results of 4c calculations
of the isotropic shieldings are compared with those obtained
from the application of the M-V model. Then, an analysis of
semiexperimental values of absolute shieldings is introduced,
where experimental SR constants are included in the M-V
model together with highly accurate calculations of σ FA

Y and
1
2c (νS

iso,Y − νFA,S
Y ) to obtain values of σ M-V

iso,Y (semiexpt). In the
last subsection we give an analysis of the electronic origin of
MC and σC for 13C.

A. Four component calculations of the tensor M

Results of calculations of parallel and perpendicular com-
ponents of MX , and the isotropic contribution to MH , are
displayed in Table II. We start analyzing MX . As expected,
relativistic effects in MX increase as ZX becomes higher. Be-
sides, those effects have opposite signs on the perpendicular
and parallel tensor elements. This fact implies that relativistic
effects on isotropic values of MX become smaller than the
ones in each component.

Results of calculations at the 4c-PBE0 level of theory are,
by far, the best fitting to experimental data. Those values are
within error bars of experiments for both perpendicular and
parallel components of the nuclear spin-rotation tensor and
for all nuclei, but not for the chlorine nucleus in CH3Cl. For
this last case, a discrepancy between calculated and experi-
mental values is found, even if the experimental error bar is
particularly large. So it may be interesting to know whether
new measurements can confirm which one of both numbers is
the most accurate.

Furthermore, only 4c calculations reproduce in an adequate
manner the experimental anisotropies of the SR tensor of
halogens, i.e., the differences between M⊥,X and M‖,X , as
it can be seen from results given in Table II. In order to
be more clear about this fact, we take the iodine nucleus
as an example. The experimental value of its anisotropy is
(−0.298 ± 0.097) kHz, whereas the NR-PBE0 and 4c-PBE0
calculations give −3.4299 and −0.2693 kHz, respectively.

Concerning electron correlations our results show that they
are larger than the relativistic effects in all cases. These last
ones are less than 1.6 kHz for M⊥,X and up to 3.0 kHz for
M‖,X . On the other hand, correlation effects are 6.0 kHz at
most for both perpendicular and parallel components of MX .

Turning now to the analysis of the isotropic values of
MH we want first to highlight that both effects, relativis-
tic and electron correlation, are very small. This behavior
is different from the one observed in hydrogen halides. In
these last molecules the HALA effects (due to the inclusion of
relativity in the calculations) strongly contribute to MH [67].
This means that, for methyl halides, heavy-atom effects are
not efficiently transmitted through two-bonds. Again electron
correlation effects are higher than the relativistic ones. On the
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TABLE II. Results (in kHz) of NR and 4c calculations of M⊥(X ), M‖(X ), and Miso(H) for CH3X molecules (X = F, Cl, Br, and I).

NR 4c

Molec Nuc Comp RPA BP86 PBE0 KT3 RPA BP86 PBE0 KT3 Expt.

CH3F F ⊥ 6.2594 2.4380 3.7170 0.0005 6.2557 2.4360 3.7149 -0.0134 4.50 ± 0.58a

F ‖ −45.0782 −65.0642 −57.4576 −63.7227 −45.2198 −65.2510 −57.6251 −63.9125 −55.7 ± 1.2a

H iso 5.6462 5.2498 5.3795 5.3746 5.6603 5.2676 5.3957 5.3933
CH3Cl Cl ⊥ −1.8819 −2.6344 −2.3548 −2.5833 −1.8772 −2.6332 −2.3525 −2.5854 −2.150 ± 0.063b

Cl ‖ −3.6698 −5.0344 −4.5309 −4.9215 −3.7069 −5.0948 −4.5833 −4.9827 −7.0 ± 1.6c

H iso 5.6034 5.3640 5.4383 5.4873 5.6209 5.3881 5.4601 5.4874
CH3Br Br ⊥ −10.1826 −14.5261 −12.9952 −14.2724 −9.8760 −14.4345 −12.8472 −14.2405 −12.63 ± 0.10d

Br ‖ −14.3106 −19.9670 −17.9759 −19.9978 −15.0453 −21.2517 −19.0814 −21.2982 −18.8 ± 1.7d

H iso 5.5808 5.3708 5.4342 5.4653 5.6241 5.4388 5.4952 5.5365
CH3I I ⊥ −14.8484 −19.9219 −18.0681 −19.5614 −13.2497 −19.5386 −17.4197 −19.2467 −17.398 ± 0.0475e

I ‖ −11.5564 −16.1591 −14.6382 −16.4485 −13.0986 −19.0835 −17.1504 −19.4188 −17.10 ± 0.085e

H iso 5.6514 5.5083 5.5236 5.5599 5.6915 5.5702 5.6111 5.6652

aTaken from Ref. [36].
bTaken from Ref. [35].
cTaken from Ref. [29].
dTaken from Ref. [30].
eTaken from Ref. [34]. Standard deviations are computed as one half of the reported errors.

other hand, electron correlation effects grow up in the opposite
direction as compared to the relativistic effects, meaning from
CH3I to CH3F.

B. Accuracy of the M-V model

Since 2016, the M-V model was successfully applied to
a few sets of linear molecules which include the following
dihalogen molecules: XY (X , Y = H, F, Cl, Br, I, and At) [15],
and some others like UV (U = Li, Na, K, Rb, Cs, Cu, Ag, Au,
H, F, Cl, Br, and I; V = H and I), and AgZ and CsZ (Z = H,
F, Cl, Br, and I) [16]. In those cases, NMR shielding constants
were accurately reproduced. So, if the same happens also for
methyl halides it would mean that our model could also be
safely applied to some nonlinear molecules.

In Table III perpendicular and parallel tensor elements
of σX , in terms of (e-e) and (p-p) contributions, are given.

TABLE III. Calculated values (in ppm) of ⊥ and ‖ components
of σX and σM-V

X in terms of their (e-e) and (p-p) contributions.
Four-component calculations were performed at the RPA level of
approach.

σ
(e-e)
X σ

M-V(e-e)
X �(e-e) σ

(p-p)
X σ

M-V(p-p)
X �(p-p)

X = F
⊥ 6.14 6.40 −0.26 505.19 519.11 −13.92
‖ −48.31 −48.18 −0.13 489.33 479.41 9.92

X = Cl
⊥ −222.18 −221.79 −0.39 1157.30 1166.89 −9.59
‖ 9.66 9.76 −0.10 1129.47 1125.35 4.12

X = Br
⊥ −173.30 −172.34 −0.96 2956.06 2963.95 −7.89
‖ 411.54 411.78 −0.24 2920.03 2916.75 3.28

X = I
⊥ 516.04 517.64 −1.60 4932.43 4939.19 −6.76
‖ 1599.67 1600.09 −0.42 4894.33 4892.44 1.89

The same occurs with σM-V
X . The differences among the (e-e)

contributions to σX and σM-V
X increase as ZX grows, whereas

the opposite trend is found for the differences between their
(p-p) contributions. They are less than 1.6 ppm (in abso-
lute values) for all halogen atoms. Besides, the M-V model
better reproduces the values of σ

(e-e)
‖,X than those of σ

(e-e)
⊥,X .

Furthermore, in agreement with earlier works [17,18], the
differences in the (p-p) contributions of both components,
i.e., σ

(p-p)
⊥,X − σ

M-V (p-p)
⊥,X and σ

(p-p)
‖,X − σ

M-V (p-p)
‖,X , have opposite

signs. Then, the M-V model reproduces σ
(p-p)
iso,X better than their

individual tensor elements. The same behavior is found in the
NR Ramsey-Flygare relationship [14,17–19]. The behaviors
of the (e-e) contributions to σX and to each one of the three
terms of the right-hand side of Eq. (5) are shown in Fig. 1.
According to the Ramsey-Flygare relationship, the NR limit
of σ

(e-e)
X (which is equal to σ

NR-para
X ) is such that the last two

terms of that equation are zero. This fact allows us to realize
that relativistic effects in M (e-e)

X are much smaller than those in
σ

(e-e)
X (see Fig. 1). The highest relativistic effects (in percent-

age) appear for M (e-e)
‖,I (12.8%) followed by M (e-e)

⊥,I (10.4%).
Besides, for all cases other than iodine the relativistic effects
in M (e-e)

⊥,X and M (e-e)
‖,X are smaller than 5%.

In addition, it is clearly seen that relativistic effects in σ
(e-e)
X

grow up from fluorine to iodine, and this occurs for both
perpendicular and parallel tensor components. In particular,
relativistic effects in σ

(e-e)
‖,I contribute around 1662.00 ppm.

According to the M-V model, this quite large value (its NR
limit is σ

NR-para
‖,I = −62.55 ppm) is mainly due to the core

contribution of σ
FA(e-e)
I− , whose NR limit is equal to zero.

In order to highlight the accuracy of our model we
performed a deeper analysis of the shielding of the iodine nu-
cleus in methyl iodide. Calculations of mpI

gI
(M (e-e)

⊥,I − MNR-elec
⊥,I ),

σ
FA(e-e)
I− , and 1

2c (νS(e-e)
⊥,I − ν

FA,S(e-e)
I− ) at the RPA level of ap-

proach give [as shown in Fig. 1(a)] 171.73, 1913.47, and 81.81
ppm, respectively. The addition of all of them gives 2167.01
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FIG. 1. (a) Perpendicular (e-e) and (b) parallel (e-e) tensor contributions (in ppm) to σ
(e-e)
X , M (e-e)

X , σ
FA(e-e)
X , and ν

S(e-e)
X − ν

FA,S(e-e)
X for the X

nuclei in CH3X molecules (X = F, Cl, Br, and I). Calculations were performed at the relativistic RPA level of approach. Values of σ
NR-para
X are

also displayed.

ppm, and the relativistic effect in σ
(e-e)
⊥,I (i.e., σ

(e-e)
⊥,I − σ

NR-para
⊥,I )

is 2165.41 ppm. Therefore, the difference between relativistic
effects of σ

(e-e)
⊥,I and σ

M-V(e-e)
⊥,I amount to only −1.60 ppm,

meaning that it is less than 0.1% (as seen in Table III). Then, it
can safely be stated that the M-V model accurately reproduces
the relativistic effects for σ

(e-e)
⊥,I .

Furthermore, the application of our model to the study
of σ

(e-e)
‖,I gives even better results. In Eq. (8) it is seen that

relativistic effects arise from the following three factors:
mpI
gI

(M (e-e)
‖,I − MNR-elec

‖,I ), σ
FA(e-e)
I− , and 1

2c (νS(e-e)
‖,I − ν

FA,S(e-e)
I− ).

Their 4c-RPA values are −8.25, 1913.47, and −242.80 ppm,
respectively [see Fig. 1(b)], being the addition of the three
equal to 1662.42 ppm, while σ

(e-e)
‖,I − σ

NR-para
‖,I = 1662.00

ppm. So, in this case the difference between them is −0.42
ppm (as reported in Table III).

Concerning the (p-p) contributions [see Eq. (9)], we ob-
serve that relativistic contributions to σ

(p-p)
⊥(‖),Y are mainly given

by those of σ
FA(p-p)
Y . In the special case of iodine we found

that there is an accurate matching between 4c and the M-V
values at the RPA level of approach (see Table III). Besides,
σ

FA(p-p)
I− = 4890.21 ppm, σ

(p-p)
⊥,I = 4932.43 ppm, and σ

(p-p)
‖,I =

4894.33 ppm, so that almost the whole contribution to σ
(p-p)
⊥(‖),I

is of an atomic nature. Therefore, we note that (p-p) contribu-
tions to shieldings are such that (i) they are almost completely
described by σ FA(p-p) and (ii) the parallel and perpendicular

tensor elements have values of σ (p-p) − σM-V(p-p) with oppo-
site signs (see Table III). Then the value of σ

(p-p)
iso − σ

M-V(p-p)
iso

is highly reduced, as happens when calculations are performed
within the NR regime [17,18].

An additional point must be raised here. The error in-
troduced by including NMR shieldings of anions instead of
the shielding of neutral free atoms, as it should be, can be
estimated working within the NR regime. As an example, for
iodine such a difference is found to be between −5.3 and
−5.1 ppm, according to the level of theory employed (see
Supplemental Material [61]). Even though such differences
(calculation of anions instead of neutral atoms) do not change
the main statements pointed out above, they do contribute to a
better reproduction of isotropic values by employing the M-V
model.

C. Isotropic shieldings and spans of halogens

The application of the M-V model gives new and powerful
tools to the analysis of the electronic origin of the relativistic
effects on σiso,X . As we did above, we analyze now the (e-e)
and (p-p) contributions to it.

First of all we should highlight here that σ
(e-e)
iso,X represents

only up to 15% of the total shielding for iodine (7% for
bromine, 23% for chlorine, and 10% for fluorine). This means
that the (p-p) term gives the largest contribution, being its
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M (p-p)
iso,X values are almost zero in all cases, as expected [22,67].

Besides, as stated recently in Ref. [15], the differences
ν

S(p-p)
iso,X − ν

FA,S(p-p)
X are also vanishingly small. Therefore,

σ
M-V(p-p)
iso,X ≈ mp

3gX
Tr(Mnuc

X ⊗ I) + σ
FA(p-p)
X , being that this ex-

pression is close to the Ramsey-Flygare relationship for
σ NR,dia

iso,X [17,18]. Furthermore, almost all (more than 99%) of

the relativistic effects of σ
(p-p)
iso,X come from the relativistic ef-

fects of σ
FA(p-p)
X . These effects become larger as ZX increases,

being less than 13% in the case of iodine.
The NR limits of both σ

(e-e)
iso,X and ML(e-e)

iso,X fulfill the Ramsey-
Flygare relationship but their corresponding relativistic effects
have opposite signs. This is what underlies the breakdown
of that well-known relation when heavy atoms are involved.
On the other hand, the values of σ

M-V(e-e)
iso,X have a very good

agreement with those of σ
(e-e)
iso,X . This is so because the M-V

model includes the contributions (from largest to smallest) of
σ

FA(e-e)
X , MS(e-e)

iso,X , and ν
S(e-e)
iso,X − ν

FA,S(e-e)
X , which are all zero in

the NR limit. It is worth stressing that all of them are important
in order to get the values of σ

M-V(e-e)
iso,X close to σ

(e-e)
iso,X (see Sup-

plemental Material [61]). In the case of iodine, for instance,
when σ

FA(e-e)
X and ν

S(e-e)
iso,X − ν

FA,S(e-e)
X are neglected, 95% of

the relativistic effects of σ
(e-e)
iso,I are not included. This means

that the relativistic effects of M (e-e)
iso,I represent only around 5%

of the relativistic effects of σ
(e-e)
iso,I . Therefore, the inadequate

replacement of MNR-para
iso,X by M (e-e)

iso,X as equivalent to the NR
Ramsey-Flygare relationship (a proposal recently adopted in
several works) gives incomplete and, therefore, wrong results
[4,6,9,13].

We start now the analysis of correlation effects in σiso,X

employing the M-V model. Among 97.0% and 101.5% of the
correlation effects on both σ

(e-e)
iso,X and ML(e-e)

iso,X have a similar
electronic origin (see Supplemental Material [61]).

This means that when electron correlation effects are ac-
curately included in M (e-e)

X , much of these effects will be
included in σ

(e-e)
iso,X . On the other hand, correlation effects

for σ
FA(p-p)
X , which are the main contributions to σ

(p-p)
iso,X , are

smaller than 0.5% (see Supplemental Material [61]).
All these findings can be summarized as follows: (i) rel-

ativistic effects in M (e-e)
iso,X represent only a small fraction of

its contributions to σ
(e-e)
iso,X , whereas most of them are due to

σ
FA(e-e)
X ; (ii) correlation effects are almost of the same value

for mp

3gX
Tr(M (e-e)

X ⊗ I) and σ
(e-e)
iso,X ; (iii) σ

(p-p)
iso,X is mostly inde-

pendent of electronic correlation effects, and (iv) relativistic
effects on σ

(p-p)
iso,X are smaller than 13%. Then, one can estimate

the accuracy of the M-V model to reproduce the total values
of isotropic shieldings of halogen atoms in methyl halides

by knowing that
σ M-V

iso,X −σiso,X

σiso,X
is smaller than 0.013 for fluorine,

0.006 for chlorine, 0.002 for bromine, and 0.001 for iodine.
The analysis of the anisotropy of the shielding can be

performed from the span (�) of the halogen nuclei in methyl
halides (i.e., �X = σ⊥,X − σ‖,X ) employing the M-V model.
In Fig. 2 the accuracy of this model in reproducing the 4c
values of the shielding’s span is observed. The small differ-
ences between them are almost completely given by their
(p-p) contributions, as can be seen in Table III.

FIG. 2. 4c RPA values of the spans of NMR shielding, SR ten-
sors, and results using the M-V model (i.e., perpendicular minus
parallel contributions to σX , MX , and σM-V

X ) in CH3X molecules
(X = F, Cl, Br, and I). All values are given in ppm.

Another fact that Fig. 2 highlights is the crucial role that
νS

X plays in the reproduction of the 4c values of �X . The
4c-RPA value of 1

2c (νS
⊥,I − νS

‖,I ) in methyl iodide is 323.87
ppm, whereas �I = −1045.53 ppm for this molecule. This
not only indicates how important the relativistic effects are
for accurately reproducing the values of spans (because νS is
always zero in the NR limit), but even more important is that it
confirms that νS cannot be neglected to accurately reproduce
the complete NMR shielding tensor from its relation with the
SR tensor.

D. New semiexperimental absolute values of σX

From the three terms of Eq. (10) only one, the first one,
can be taken either from calculations or from experiments. In-
cluding its values from experiments, semiexperimental values
of σiso,X are obtained and given in Table IV. The main differ-
ences among theoretical and experimental values of σ SR

iso,X [see
Eq. (6)], shown in the second column of Table IV, are mainly
due to the discrepancies between experimental data and the
calculated values of M⊥,X (and not M‖,X , because I⊥ > I‖).
As observed in Table II the best agreement between Mexpt

⊥,X and
their calculated counterparts is found for iodine in CH3I at the
DFT-PBE0 level of theory, being the same behavior observed
in Table IV.

On the other hand, the second term of Eq. (10) cannot be
directly obtainable employing the DIRAC code because linear
response calculations for open-shell electronic structures (as
halogens are) are not currently implemented in it. Then, they
can be estimated as the sum of two terms: (i) the shielding of
the ionized closed-shell atom instead of the neutral atom, i.e.,
σ FA

X − , and (ii) the NR correction given by �σ FA,NR
X = σ FA,NR

X −
σ FA,NR

X − , where σ FA,NR is calculated as a NR electronic ground-
state expectation value.

Concerning how important are electron correlation effects
on the absolute values of the shieldings, one should first
realize that the correlation effects are naturally included in
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TABLE IV. Semiexperimental values of σiso,X obtained from experimental values of SR constants taken from Table II and 4c-DFT-PBE0
calculations of σ FA

X− , νS
iso,X , and νFA,S

X− for halogens in methyl halides. Results are in ppm.

σ SR
iso,X (expt)a σ FA

X− �σ FA,NR
X

b �νS
X

c σ M-V
iso,X (semiexpt)

F −0.60 ± 1.91 481.68 −9.62 −0.01 471.45 ± 1.91
[−4.86]d [471.64]e[470.98]f

Cl −205.64 ± 6.85 1179.41 −6.77 −0.07 966.93 ± 6.85
[−213.96]d [960.21]e

Br −596.28 ± 3.98 3439.70 −6.08 −2.73 2834.61 ± 3.98
[−606.43]d [2825.92]e [2460.2]g

I −1280.21 ± 2.42 6800.30 −5.28 −25.69 5489.12 ± 2.42
[−1281.90]d [5487.96]e [4261.3]g

aObtained as mp

3gX
Tr(Mexpt

X ⊗ I), where Mexpt
X are taken from the last column of Table II.

b�σ FA,NR
X = σ FA,NR

X − σ FA,NR
X− is the difference between NR-PBE0 shielding of neutral and ionized atoms (see Supplemental Material [61]).

c�νS
X = 1

2c (νS
iso,X − νFA,S

X− ).
dFour-component PBE0 calculation (see Supplemental Material [61]).
eFour-component PBE0 calculation of σiso,X (see Supplemental Material [61]).
fExperimental value taken from Ref. [37].
gFour-component BP86 calculation of σ dia

X + σ SR
X . Taken from Ref. [13].

experimental data. So, the semiexperimental values of abso-
lute NMR shieldings given in Table IV do include most of
such effects.

The way to include relativistic effects requires a special
analysis. This will also shed some light on the reasons for
the differences between our results and the ones recently
published by Uhlíková and Urban [13]. In order to find the
absolute isotropic shielding constants of bromine and iodine,
they calculated σ

(e-e)
iso,X , σ

(p-p)
iso,X , and mp

3gX
Tr(Melec

X ⊗ I) (in their

work, σ para, σ dia, and σ SR, respectively) at the 4c-DFT-BP86
level of theory and employed ab initio optimized geome-
tries. They also obtained NR values by scaling the speed of
light 100 times its real value. Even though their results were
obtained using geometries and basis sets other than those
employed in the present work, an appropriate comparison with
ours is still valid. In their Table 5, they compare calculations
of σiso,X (i.e., σ

(e-e)
iso,X + σ

(p-p)
iso,X ) and mp

3gX
Tr(Melec

X ⊗ I) + σ
(p-p)
iso,X

with values of shieldings mentioned as “experimental,” being
those obtained by the application of the NR Ramsey-Flygare
relationship [our Eq. (4)] and including experimental SR
constants [30,31]. They stated that Eq. (4) “can be used to
determine the absolute nuclear shielding using a specific cor-
rection value, which will depend on the position of an element
in the periodic table” [13]. Such a correction value should
be related to σ

(e-e)
iso,X − mp

3gX
Tr(Melec

X ⊗ I), and following Eq. (8)

of our model, this is equal to σ
FA(e-e)
X + 1

2c (νS(e-e)
iso,X − ν

FA,S(e-e)
X )

(note that according to Ref. [22], Melec(p-p)
X is almost negligible

in all cases). Then, this “specific correcting value” should
be related to an atomic contribution (σ FA(e-e)

X − 1
2c ν

FA,S(e-e)
X )

together with another term that depends on the environment
( 1

2c ν
S(e-e)
iso,X ) [15,16,26].

The calculated values of mp

3gX
Tr(Melec

X ⊗ I) + σ
(p-p)
iso,X pub-

lished in Ref. [13] are closer to the experimental values
of σ

exp
iso,X published a long time ago in Refs. [30,31] than

to those of σ
(e-e)
iso,X + σ

(p-p)
iso,X . Nevertheless, this is in contrast

with our findings because our calculated values of σiso,X are
in very good agreement with σ M-V

iso,X (semiexpt) and far from

mp

3gX
Tr(Melec

X ⊗ I) + σ
(p-p)
iso,X (see Table IV and Supplemental

Material [61]).
According to this analysis the M-V model is useful not

only for obtaining semiexperimental absolute values of NMR
shieldings but also for learning more about the physics that is
behind such a magnetic property.

E. Absolute shieldings of 13C

First of all we consider the dependence on the shielding of
carbon atoms when the isotope 13C replaces that of 12C in our
calculations.

One difference may arise by the modification of the gauge
origin position [see Eq. (3)]. In the present work, the gauge
origin was placed at the molecular center of mass, which will
change only a bit with the switch from 12C to 13C. Then,
the shielding values are almost the same independently of
which carbon isotope is used. Furthermore, when the GIAO
approach is used instead of the CGO one, the gauge origin
dependence for the NMR shieldings disappears and so they do
not depend on which carbon’s isotope is employed. Besides,
the substitution of 12C by 13C will slightly change the values
reported above for the tensor M of halogen and hydrogen
atoms. Such differences are expected to happen because of
the small displacement of the position of the molecular center
of mass due to the isotope switch. The mentioned isotopic de-
pendence clearly appears in both Mnuc and Melec [see Eqs. (1)
and (2)].

On the other hand, relativistic effects for both, (e-e) and
(p-p) contributions to the shielding of carbons in methyl
halides are almost independent of the amount of electron
correlation involved. When relativistic effects are computed
at the RPA level of approach for σ

(e-e)
iso,C , their results (34.85

ppm) are close to those computed at the KT3, BP86, and
PBE0 levels (33.04, 30.81, and 29.97 ppm, respectively). In
addition, relativistic effects for σ

(p-p)
iso,C at the RPA level of

approach (−1.51 ppm for CH3I) are almost the same as those
obtained within the DFT approach (between −1.54 and −1.50
ppm).
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FIG. 3. Relativistic RPA values of the perpendicular and parallel
contributions to σ

(e-e)
C and M (e-e)

C in CH3X molecules (X = F, Cl, Br,
and I), together with their NR limits. Values are given in ppm.

Furthermore, as observed in Fig. 3 almost all relativistic
effects on σC and MC arise from σ

(e-e)
⊥,C and M (e-e)

⊥,C . Consid-

ering the RPA level of approach, relativistic effects in σ
(e-e)
⊥,C

for methyl iodide represent −65.7% of its total value. That
proportion goes down as the halogen atom becomes lighter:
−12.5% for CH3Br, −3.2% for CH3Cl, and −1.2% for CH3F.
From here it appears evident that those relativistic effects
grow up as ZX increases.

There is another feature that one can realize by observing
Fig. 3: σ

(e-e)
⊥,C and mpI

gC
M (e-e)

⊥,C are close each other. Then, they
almost fulfill the NR Ramsey-Flygare relationship. This trend
indicates that the addition of the following terms, σ

FA(e-e)
C +

1
2c (νS(e-e)

⊥,C − ν
FA,S(e-e)
C ), has a small contribution in methyl

halides. So, the values of the difference σ
(e-e)
⊥,C − mpI

gC
M (e-e)

⊥,C are
always between −1.6 and 2.5 ppm.

Given that linear response calculations for open-shell sys-
tems (as a carbon atom is) are not implemented in the
DIRAC code, one can estimate σ FA

C from its NR value. Then,
the way to calculate σ FA,NR

C is through the NR limit of
1

3c2
0
〈0| 1

|r−RC | |0〉, where |0〉 denotes the electronic DHF ground
state of the atom. For getting such expectation value the
NSTDIAMAGNETIC keyword of the DIRAC program must be

used. In the present work the NR limit was reached by con-
sidering c = 100c0, and doing this we found that σ FA,NR

C =
260.53 ppm. Furthermore, the paramagnetic contributions to
σ FA,NR are zero within the NR regime, being that such contri-
butions are obtained as the NR limit of σ FA(e-e).

Concerning the addition of electron correlation and rel-
ativistic effects on the (p-p) contribution to the carbon
shieldings, it can be shown [see Eqs. (9) and (10)] that cal-
culations of

�
(p-p)
iso,C = σ

(p-p)
iso,C − mp

3gC
Tr

[(
Mnuc

C + M (p-p)
C

) ⊗ I
] − 1

2c
ν

S(p-p)
iso,C

give results that belong to the range (261.4 ± 2.7) ppm for
all methyl halides and all methods (see Supplemental Mate-
rial [61]). In addition to that it was shown in Ref. [15] that
1
2c ν

FA,S(p-p) is almost equal to 1
2c ν

S(p-p)
iso . As 1

2c ν
S(p-p)
iso,C = −0.35

ppm for all methyl halides at both RPA and DFT levels
of approach, this means that, according to the M-V model,
σ

FA(p-p)
C values should belong to the range (261.0 ± 2.7) ppm.

Therefore, comparing the latter results with those of σ FA,NR
C

(= 260.53 ppm), we found that the combined electron corre-
lation and relativistic effects in σ

FA(p-p)
C are smaller than 3.2

ppm.
All this shows an additional advantage of using the M-V

model. It gives another way to estimate relativistic effects
for shieldings of nuclei in free atoms with high accuracy,
i.e., from molecular calculations of σ and M. Some time
ago few attempts were made to calculate shieldings of free
atoms [68–70], but given that 4c linear response calculations
for open-shell electronic structures are not still implemented
in relativistic codes, only shieldings of neutral noble gases
were obtained, as well as shieldings of ionized atoms with
closed-shell structures. The M-V model allows for accurate
estimations of NMR shieldings for all kind of neutral atoms.

V. CONCLUDING REMARKS

Some of our previous theoretical works were focused
on the development of formalisms aimed to best calculate
absolute shielding scales by extending the well-known nonrel-
ativistic Ramsey-Flygare rule to the relativistic regime. Its first
and successful applications were made on linear molecules. In
this work we went one step further by applying that formalism
to nonlinear systems.

Systematic and highly accurate four-component (4c) cal-
culations of spin-rotation (SR) tensors and NMR magnetic
shieldings were performed at RPA and DFT levels of the-
ory for all nuclei of methyl halides. A comparison with
experimental values of the SR tensor shows that theoretical
expressions proposed in Ref. [22] accurately describe this
spectroscopic parameter. It was found that, even though the
electron correlation and relativistic effects in SR tensors are
not of the same order of magnitude, both effects must be
introduced simultaneously to accurately describe the behavior
of the experimental data.

Some of the most important findings of this work are the
following.

(i) Experimental measurements of spin-rotation tensors of
nuclei that belong to methyl halides can be accurately repro-
duced by theoretical calculations.
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(ii) The M-V model reproduces 4c calculations of shield-
ings of H, C, F, Cl, Br, and I with high accuracy (at both levels
of approach, RPA and DFT). This includes the 4c calculation
of SR constants, σFA and νS − νFA,S . Then, this model can be
safely employed to obtain semiexperimental values of σ by
the combination of experimental SR data with the calculation
of σFA and νS − νFA,S . These last values are more accurate for
the heaviest atoms.

(iii) Most of the electron correlation effects for the shield-
ings of halogen nuclei, taken as the difference between DFT
and RPA calculations, are strongly related with those effects
in SR constants. Therefore, when experimental data for SR are
used, many of these effects in shieldings are accurately taken
into account.

(iv) Relativistic effects of both properties M and σ are
negligibly small for hydrogen nuclei in methyl halides.

(v) A comparison between experimental values and 4c
calculations of M‖,Cl at different levels of approach shows
that available experimental data for this parameter need to be
revisited.

(vi) We found a different procedure to estimate the free
atom NMR shieldings. This procedure requires the calcu-

lation of M and σ of the given atom in a set of different
molecules.

Another important finding is the fact that the results of
previous models (see, for instance, Refs. [4,6,9,13]), which
consider the sSR constants and the calculation of (p-p) con-
tributions to the shieldings (its diamagneticlike contributions),
should be taken with caution. They usually do not take into ac-
count the contributions of σFA(e-e) and νS − νFA,S , which may
be so large that they must be included. In addition, it should
be pointed out that their proposal of an atomic correction may
not be correct, because νS depends on the symmetry of the
molecule and it can be not negligible at all.
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