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Confined hydrogenlike ions in plasma environments
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The behavior of H-like ions embedded in astrophysical plasmas in the form of dense, strongly and weakly
coupled plasmas is investigated. In these, the increase and decrease in temperature are impacted by a change in
confinement radius rc. Two independent and generalized scaling ideas have been applied to modulate the effect of
the plasma-screening constant λ and ion charge Z on such systems. Several relations are derived to interconnect
the original Hamiltonian and two scaled Hamiltonians. In the exponential-cosine-screened Coulomb potential
(ECSCP; dense) and weakly coupled plasma (WCP) these scaling relations have provided a linear equation
connecting the critical screening constant λ(c) and Z . Their ratio offers a state-dependent constant beyond which
a particular state vanishes. Shannon entropy has been employed to understand the plasma effect on the ion. With
an increase in λ, the accumulation of opposite charge surrounding the ion increases, leading to a reduction in the
number of bound states. However, with a rise in ionic charge Z , this effect can be delayed. The competing effect
of plasma charge density ne and temperature in WCP and ECSCP is investigated. A recently proposed simple
virial-like theorem was established for these systems. Multipole (k = 1–4) oscillator strength and polarizabilities
for these are studied considering 1s, 2s states. As a bonus, analytical closed-form expressions are derived for f (k)

and α(k)(k = 1–4) involving 1s and 2s states for the free H-like ion.
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I. INTRODUCTION

The discovery and development of quantum confine-
ment [1,2] has triggered the study of the influence of
environment on quantum systems. In confined conditions,
rearrangement of orbitals may occur in atoms and molecules,
leading to some fascinating changes in physical and chemical
properties. Especially, this leads to an increase in the coordi-
nation number of atoms [3], enhanced reactivity of atoms and
molecules, room-temperature superconductivity [4], etc. The
environment-driven confinement has profound applications in
condensed-matter, semiconductor physics, astrophysics, nan-
otechnology, etc. In this context, the influence of the plasma
environment [5–7] in astrophysical systems is a subject of
topical interest. Particularly, the impact of the charge cloud
and temperature on bound quantum states can be determined
by investigating atoms and ions trapped inside various plasma
environments [8–10].

In such conditions, the competing effects of plasma free-
electron density ne and temperature Te play a pivotal role in
stabilizing the bound states of a given system. The plasma
coupling parameter � is expressed as [11]

� = Ecoulomb

Ethermal
= Q2

4πε0akbTe
. (1)
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Here, Q denotes the charge on the particle, inner particle
separation is given by a = ( 3

4πne
)

1
3 , kb signifies Boltzmann’s

constant, and ne refers to plasma electron density. Depending
on the value of �, the following two situations may be envis-
aged.

(1) � < 1 arises for low-density and high-temperature or
weakly coupled plasma (WCP). The thermal energy is higher
than the Coulomb energy in this case.

(2) � > 1 occurs for strongly coupled plasma (SP). It has
high density and low temperature. The thermal energy is now
lower than the Coulomb energy. This type of plasma has been
produced experimentally.

In hot WCP, the collective screening effect of plasma
on the electron-charged particle interaction is assumed to
behave as the Debye-Hückel potential, expressed in the

form V1(r) = − Z
r e−λ1r . Here, λ1 =

√
4πe2ne

kbTe
corresponds to

the inverse of Debye radius D. The screening parameter
arises due to the surrounding plasma cloud. In the last two
decades, this system has been studied vigorously with im-
mense interest. The impact of the plasma-screening effect
on the energy spectrum [12–15], inelastic electron-ion scat-
tering [16,17], two-proton transitions [18,19], and transition
probabilities involving electron-impact excitation [20–22],
information entropy (Shannon entropy, Fisher information,
and statistical complexities) [23], etc., has been investi-
gated. The dynamic plasma-screening effect was considered
in [24–27]. The relativistic correction to the plasma-screening
effect was also explored [28]. Various spectroscopic prop-
erties, including multipole oscillator strength (OS) and
static multipole polarizabilities, were calculated for H-like
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atoms embedded in WCP [29–33] using several numerical
methods. A time-dependent variation perturbation method
was employed to calculate transition probabilities, OS, and
static dipole polarizabilities for the ground state at differ-
ent λ1 values [34]. The numerical symplectic-integration
method [30–32], mean-excitation-energy-based approxima-
tion formula [33], integration-based shooting technique [35],
linear-variation method [36], etc., were also employed to ex-
tract these spectroscopic properties. The hyperpolarizability
of H atoms under spherically confined Debye plasma was
reported in [37]. Recently, polarizabilities were also com-
puted for confined WCP plus ring-shaped potentials [38]. A
closed-form expression for the critical screening constant in
the ground state of WCP was proposed in [39]. Numerical
values for ground and low-lying excited states were reported
in [40]. Recently, a generalized pseudospectral (GPS) method
was used in computing OS and polarizabilities in ground
and excited states (� = 0) [8]. In all these cases, calculations
were mostly concentrated in estimating the dipole OS and
polarizabilities considering 1s as the initial state. However,
WCP in a confined condition with varying λ1 has not yet been
well explored. It remains one of the primary objectives of this
paper.

The composite screening and wake effect around a slow-
moving test charge in low-density quantum plasma are
mimicked by using an exponential-cosine-screened Coulomb
potential (ECSCP), having the form V2(r) = − Z

r e−λ2r cos λ2r.

Here, λ2 = kq√
2

=
√

neωpe

h̄ signifies the screening parameter,
and kq is the electron plasma wave number connected to
electron plasma frequency and number density. The cosine
term in this model is introduced under the assumption that
the quantum force acting on plasma electrons predominates
over the statistical pressure of plasmas [10,41]. A variety
of theoretical methods like the perturbation-and-variation
method [42], Padé scheme [43], shooting method [44], Su-
persymmetric (SUSY) perturbation method [45], asymptotic
iteration [46], variation using hydrogenic wave functions [47],
J matrix [48], symplectic integration [49], GPS [50], basis-
expansion method with Slater-type orbitals [51], Laguerre
polynomials [52], etc., were employed to extract the eigen-
value and eigenfunctions of this system. Similarly, the
influence of λ2 on the energy spectrum [14,15], electron-
impact excitation [22], photoionization cross section [52,53],
etc., was discussed in appreciable detail. Apart from that,
polarizabilities were also evaluated for confined ECSCP plus
a ring-shaped potential [38]. A relativistic correction to the
screening effect was also explored. Further, the laser-induced
excitation on a confined H atom in ECSCP was pursued us-
ing the Bernstein-polynomial method [54]. In this context,
the impact of the shape of laser pulse, rc, λ2, and various
laser parameters on the dynamics of the system has been
examined and analyzed. Several attempts were made to es-
timate the characteristic value of λ2 at which a bound state
designated by quantum numbers n, � disappears [39]. The
critical screening parameters for n � 6 and 0 � � � n − �

were accurately estimated in Ref. [55]. The dipole OS and
polarizabilities at various λ2 values were reported before
in Refs. [44,45,49,51,56]. Recently, the utility of the GPS
method in ECSCP [10] was examined by evaluating OS and

polarizabilities. But here again, barring a few exceptions, the
majority of the calculations have focused on the ground state.
Moreover, to the best of our knowledge, ECSCP in a confined
environment has not been probed so far in a sufficiently thor-
ough manner.

In SP [5], an ion experiences the plasma effect within the
ion-sphere radius R. Thus, no electron current moves through
the boundary surface. It is generally described by a potential
of the form [35]

V3(r) =
{

− Z
r + ( Z−Ne

2R

)[
3 − (

r
R

)2]
,

0 r > rc = R,
(2)

where R = [ 3(Z−Ne )
4πne

]
1
3 . The free electrons in an ion sphere dis-

tribute uniformly. The ion-sphere model is profoundly useful
and expected to be valid in the limit of low temperature and
high density. Several theoretical methods have been employed
to understand the effect of SP on energy levels and wave func-
tions of H-like atoms [57–59]. Moreover, atomic transition
probabilities [60], transition energies and polarizabilities [35],
photoionization and the photoionization cross section [11,61],
OS and static polarizabilities [62], etc., in this case were stud-
ied previously. However, akin to the earlier two cases (WCP
and ECSCP), most of the works have been restricted to only
the ground state.

We have a number of objectives in this article. First, a
detailed investigation is made of the three plasma conditions,
viz., WCP, ECSCP, and SP, with special emphasis on their
confinement situation and excited states, for which the litera-
ture results are quite scarce. It may be noted that the influence
of the physical situation governed by a potential of the form
V = ∞ at r > rc in the context of plasma has not been con-
sidered before. In addition, its significance and relation to
the plasma environment are also not very clear. Here, the
confined condition is mapped with plasma temperature. It
may be noted that the multipole OS and polarizabilities of the
H atom in various plasmas have been reported in a number of
publications. However, such works in the confined scenario,
as implied above, have not been considered before. Thus, a
secondary objective is to examine the effect of confinement
on multipole OS and polarizabilities for WCP, ECSCP, and
SP. Two different scaling ideas connecting λ and Z are for-
mulated. The relation between these two individual concepts
is derived and explained. Additionally, Shannon entropy S
has been invoked to determine the critical screening constant
in free WCP and ECSCP. Our results show this can be an
interesting route. Beyond this critical parameter (the binding
energy of a given state disappears), no bound states could be
found. After some debate, It is now a well-accepted fact that
the standard form of the virial theorem (VT) is not ordinarily
obeyed in enclosed conditions. An appropriate modified form
is invoked in Ref. [63], which holds well in both free and
confined conditions. The utility and efficiency of this relation
are examined in the context of the plasma environment.

Thus, we have performed detailed calculations of multipole
OS (k = 1–4) and polarizabilities in the 1s, 2s states of WCP,
ECSCP, and SP employing accurate GPS wave functions.
Here, k = 1–4 represent dipole, quadrupole, octupole, and
hexadecapole transitions, respectively. In WCP and ECSCP,
we demonstrate the spectroscopic properties in two different

012803-2



CONFINED HYDROGENLIKE IONS IN PLASMA … PHYSICAL REVIEW A 104, 012803 (2021)

ways. First, they are calculated by varying λ, keeping rc fixed.
Second, the impact of the variation of rc on these properties
at fixed λ is also verified. Analogous calculations are done in
SP, with a change in rc. As a bonus, some analytical closed-
form expressions of multipole OS (up to hexadecapole) and
polarizabilities (up to hexadecapole) are derived for the 1s, 2s
states of a free H atom (FHA). In the literature, these forms are
available in only in the dipole case. This article is organized
in the following parts: Sec. II presents a brief description of
the formalism employed in the current work. In Sec. III, the
connection between plasma temperature and quantum con-
finement is proposed and explained. Section IV provides a
detailed discussion of the results for WCP, ECSCP, and SP.
Finally, we conclude with a few remarks and future prospects
in Sec. V.

II. THEORETICAL FORMALISM

The time-independent radial Schrödinger equation (SE) for
the spherically confined plasma system is expressed as (in
atomic units)[

−1

2

d2

dr2
+ �(� + 1)

2r2
+ Vc(r) + V0 θ (r − rc)

]
ψn,�(r)

= En,� ψn,�(r). (3)

Here, V0 is a positive number with a numerical value ap-
proaching ∞, and θ (r − rc) is a Heaviside function that
reaches 1 at r = rc and is zero otherwise, whereas Vc(r) rep-
resents the various plasma potentials discussed later in this
section. To calculate the energy and spectroscopic properties,
the GPS method has been exploited. Over time, its accuracy
and efficiency in calculating various bound-state properties in
several central potentials in both free and confined conditions
have been verified and established (see [63–68] and references
therein). In what follows, atomic units (a.u.) are employed
unless otherwise mentioned.

A. Virial-like theorem

Recently, a virial-like relation was proposed for free and
confined quantum systems by invoking the time-independent
nonrelativistic SE and hypervirial theorem [63]. The general-
ized form of this equation is expressed as

〈T̂ 2〉n − 〈T̂ 〉2
n = 〈V̂ 2〉n − 〈V̂ 〉2

n. (4)

T̂ and V̂ represent the kinetic- and potential-energy operators,
respectively. Further, (�T̂ )2 = 〈T̂ 2〉 − 〈T̂ 〉2 and (�V̂ )2 =
〈V̂ 2〉 − 〈V̂ 〉2 signify their standard deviations. Equation (4)
can be used as a necessary condition for an exact quantum
system to obey. Further, it has been proved that the equation

(�T̂n)2 = 〈V̂ 〉n〈T̂ 〉n − 〈T̂ V̂ 〉n = (�V̂n)2

= 〈T̂ 〉n〈V̂ 〉n − 〈V̂ T̂ 〉n (5)

can act as a sufficient condition for a bound, stationary
state [63]. Moreover, an alteration in boundary conditions
does not influence the general form. Equations (4) and (5)
are applicable in all coordinate systems, such as ellipsoidal,
parabolic, cylindrical, spheroidal, etc. Equations (4) and (5)
are obeyed in both free and confined conditions in unconfined

and confined systems (including angular confinement). In the
present endeavor, this has been extended to the plasma envi-
ronment.

B. Multipole polarizabilities

The static multipole polarizabilities can be expressed in
following form:

α
(k)
i = α

(k)
i (bound) + αk

i (continuum). (6)

It is customary to write α
(k)
i in terms of the compact sum-over-

states form [35]. However, it can also be directly computed by
adopting the standard perturbation-theory framework [69]. In
the former procedure, Eq. (5) is modified to

α
(k)
i =

∑
n

f (k)
ni

(En − Ei )2
−c

∫ |〈Ri|rkYkq(r)|Rεp〉|2
(Eεp − Ei )

dε,

α
(k)
i (bound) =

∑
n

f (k)
ni

(�Eni )
, (7)

αk
i (continuum) = c

∫ |〈Ri|rkYkq(r)|Rεp〉|2
(Eεp − Ei )

dε.

In Eq. (6), the summation and integral terms represent the
bound and continuum contributions, respectively, f (k)

ni signi-
fies the multipole OS (k is a positive integer), and c is a
constant which depends on the � quantum number. f (k)

ni mea-
sures the mean probability of transition between an initial state
i and a final state n, which is normally expressed as

f (k)
ni = 8π

(2k + 1)
�Eni|〈rkYkq(r)〉|2. (8)

Designating the initial and final states as |n�m〉 and |n′�′m′〉,
one can easily derive

f (k)
ni = 8π

(2k + 1)
�Eni

1

2� + 1

×
∑

m

∑
m′

|〈n′�′m′|rkYkq(r)|n�m〉|2. (9)

The application of the Wigner-Eckart theorem and sum rule
for the 3j symbol further leads to

f (k)
ni = 2

(2�′ + 1)

(2k + 1)
�Eni

∣∣〈rk〉n′�′
n�

∣∣2
{
�′ k �

0 0 0

}2

. (10)

The transition matrix element is expresses by the radial inte-
gral,

〈rk〉 =
∫ ∞

0
Rn′�′ (r)rkRn�(r)r2dr. (11)

Thus, it is clear that f (k)
ni depends on n, � quantum numbers,

while being independent of the magnetic quantum number m.
In this article, we aim to compute multipole (k = 1–4) po-
larizabilities and OS for the 1s, 2s states. The corresponding
selection rule for the dipole OS (k = 1) for these two states is
(i = 1 or 2)

f (1)
np−is = 2 �Enp−is

∣∣〈r〉np
is

∣∣2
{

1 1 0
0 0 0

}2
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= 2

3
�Enp−is

∣∣〈r〉np
is

∣∣2
. (12)

The quadrupole OS (k = 2) can be written as

f (2)
nd−is = 2 �End−is

∣∣〈r2〉nd
is

∣∣2
{

2 2 0
0 0 0

}2

= 2

5
�End−is

∣∣〈r2〉nd
is

∣∣2
. (13)

Similarly, for the octupole OS (k = 3), the expression be-
comes

f (3)
n f −is = 2 �En f −is

∣∣〈r3〉n f
is

∣∣2
{

3 3 0
0 0 0

}2

= 2

7
�En f −is

∣∣〈r3〉n f
is

∣∣2
. (14)

And for the hexadecapole OS (k = 4), one gets

f (4)
ng−is = 2 Eng−is

∣∣〈r4〉ng
is

∣∣2
{

4 4 0
0 0 0

}2

= 2

9
�Eng−is

∣∣〈r4〉ng
is

∣∣2
.

(15)
The analytical closed-form expressions for multipole oscil-
lator strength (k = 1 − 4) for all possible transitions and
polarizabilities in FHA are collected in Appendix A. It is
important to mention that a multipole OS sum rule exists as
follows:

S(k) =
∑

m

f (k) = k〈ψi|r (2k−2)|ψi〉, (16)

where the summation includes all the bound states.

C. Shannon entropy

Shannon entropy is a functional of the density. It provides
the arithmetic mean of uncertainty [70–72]. In r and p spaces
it can be expressed as

Sr = −
∫

R3
ρ(r) ln ρ(r)r2dr,

Sp = −
∫

R3
(p) ln (p)p2d p,

Sθ,φ = −
∫

χ (θ ) ln χ (θ ) sin θdθ, (17)

χ (θ ) = |�(θ )|2,
St = Sr + Sp + 2Sθ,φ � 3(1 + ln π ),

where ρ(r) and (p) are the normalized position- and
momentum-space densities, respectively. Barring a few cases,
Sr and Sp have been evaluated numerically employing
Eq. (17). In the present work, we employ Sr to determine
the critical screening constant in WCP and ECSCP. In recent
years, Shannon entropy has been investigated for confined H
atoms [72–76].

D. Plasma characteristics

Plasma is a statistical system of mobile charged parti-
cles which interact with each other through electromagnetic
forces. Here, the coupling occurs between quantum states and

plasma density. Now we briefly discuss the characteristics of
various H-atom plasmas.

In a hot plasma, the collective plasma-screening effect
on a H atom is normally mapped by using a Debye-Hückel
potential of the form [5]

V1(r) =
{− Z

r e−λ1r r � rc,

0 r > rc.
(18)

In this form of potential, the probability of finding plasma
particles inside the Debye sphere is negligible. In addition to
the screening effect, here, it is assumed that the charge cloud
is confined in the spherical enclosure. This situation provides
an alternate boundary condition for such systems. However, at
rc → ∞ this restriction vanishes. The Debye radius (D = 1

λ1
)

plays an important role in WCP. For example, (i) at a fixed ne,
D ∝ √

Te, and (ii) at a certain Te, D ∝ 1√
ne

. Most importantly,
at a constant D, ne ∝ Te. This result means that, to keep λ1

or D fixed, with a rise in Te, ne increases. Further, with an
increase in ne, the plasma-tail effect declines. Conversely,
with a rise in Te, it is enhanced. But, here, incorporation
of radial confinement indirectly controls the tail effect. It is
important to mention that, the plasma-tail effect arises due to
the presence of asymptotic part of the plasma potential. With
an increase in Te, the ions get diffused, leading to an enhance-
ment of this effect. When rc is large, then Te predominates
over ne. On the other hand, in the low-rc region, the effect of
ne prevails. Therefore, in this work, we have probed WCP in
two different ways: (i) with the variation of rc at a fixed λ1

and (ii) with the effect of λ1 at a certain rc. Figure 1(a) shows
that an enhancement in λ1 leads to a growth in plasma electron
density surrounding the positive ion.

With an increase in plasma density, the multiparticle coop-
erative interaction is enhanced. Thus, D becomes comparable
to the de Broglie wavelength, and hence, the quantum ef-
fect appears [77]. In this context, the Debye-Hückel model
becomes inappropriate to explain the plasma properties. In
ECSCP, λ2 is connected to plasma frequency as λ2 ∝ √

ωpe.
It has the form

V2(r) =
{− Z

r e−λ2r cos(λ2r) r � rc,

0 r > rc.
(19)

Due to the incorporation of the cosine term, ECSCP exhibits a
stronger screening effect than WCP. There occurs a maximum
at rmax = π

2λ2
. The temperature connection to λ2 is not known.

However, like WCP, here also, rc plays the same role: with an
increase in rc, the temperature effect is enhanced. Figure 1(b)
indicates that, with a rise in λ2, the position of the maximum
gets left shifted and hence the plasma density increases. Like
WCP, here, too, the effects of both λ2 and rc are explored. At
λ = 0, both WCP and ECSCP modify to FHA-like systems.

In the case of SP, the ion experiences a spherically sym-
metric environment within a radius R, commonly known as
the Wigner-Seitz radius. Beyond R, the effect of the potential
vanishes. Hence, the potential is expressed as

V3(r) =
{
− Z

r + Z−Ne
2R

[
3 − (

r
R

)2]
,

0 r > rc = R.
(20)

With a decrease in R, ne increases and vice versa. Te does
not appear directly in this case. However, it is implicit that
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FIG. 1. Plots of (a) V1(r), Eq. (18), and (b) V2(r), Eq. (19), against r (in a.u.), at selected λ values, namely, 0.5, 1, 2, 3, keeping Z = 2.
For details, see the text.

the change in R exerts the effect of Te. At rc → ∞, Eq. (20)
reduces to a FHA. It is necessary to mention that in SP the
Z � 2 condition needs to be obeyed.

E. Scaling transformation

In the case of plasma potentials, the scaling concept was
implied previously in Refs. [8,35,39,61]. This work employs
two independent scaling ideas and attempts to derive a single
equation connecting the original and scaled Hamiltonians.
Thus, starting from an arbitrary set of Z and β, one can easily
estimate a given desired property for a series of Z and β,
connected by the scaling relation. To proceed further, one can
write Eq. (3) as follows:

− h̄2

2m

d2

dr2
ψn,�(r)+Vc(Z; β; r)ψn,�(r) + V0θ (r − rc)ψn,�(r)

= En,� ψn,�(r),

θ (r − rc) = 0 for r � rc, θ (r − rc) = 1 for r > rc.

(21)

Here, Vc(Z, β, r) is the potential that describes a H atom
under the influence of the plasma environment, θ (r − rc) is
the Heaviside theta function, and V0 is taken to be an infinitely
large positive constant. The use of atomic units, h̄ = m = 1,
transforms Eq. (21) as

− 1

2

d2

dr2
ψn,�(r) + Vc(Z; β; r) ψn,�(r) + V0θ (r − rc) ψn,�(r)

= En,� ψn,�(r). (22)

For H-isoelectronic series, it is interesting to probe the impact
of Z as well as β on the properties of a given system. Now an-
alytical relations among 〈T̂ n〉, 〈V̂ n〉, 〈T̂ V̂ 〉, f (k)

ni , and α
(k)
ni with

Z and β will be established by employing two independent,
parallel scaling transformations.

(1) In the first case, we apply a transformation (r = Zr1).
The Hamiltonian can then be modified in the following form:

H (Z; β; rc; r) → H

(
1;

β

Z
; Zrc; r1

)
. (23)

Thus, the Z-containing part of the potential becomes indepen-
dent of it.

This substitution transforms the Hamiltonian in Eq. (21)
into following form:

− 1

2
∇2

1ψn,�(r1) + Vc

(
1,

β

Z
, r1

)
ψn,�(r1)

+ Z2V0θ (r1 − Zrc)ψn,�(r1) = Z2 En,� ψn,�(r1). (24)

The eigenfunctions and eigenvalues of the initial and modified
Hamiltonians are connected as

En,�[1; Z; β; rc] = Z2En,�

[
1; 1;

β

Z
; Zrc

]
,

ψn,�(1; Z; β; rc; r) = 1

Z
3
2

ψn,�

(
1; 1;

β

Z
; Zrc; r1

)
. (25)

Then 〈T̂ n〉, 〈V̂ n〉, 〈T̂ V̂ 〉, and Z are found to be related as

〈V̂ n〉[1; Z; β; rc] = Z2n 〈V̂ n〉
[

1; 1;
β

Z
; Zrc

]
,

〈T̂ n〉[1; Z; β; rc] = Z2n 〈T̂ n〉
[

1; 1;
β

Z
; Zrc

]
,

〈T̂ V̂ 〉[1; Z; β; rc] = Z4 〈T̂ V̂ 〉
[

1; 1;
β

Z
; Zrc

]
,

〈V̂ T̂ 〉[1; Z; β; rc] = Z4 〈V̂ T̂ 〉
[

1; 1;
β

Z
; Zrc

]
. (26)

The multipole OS now takes the form

f (k)
ni [1; Z; β; rc] = f (k)

ni

[
1; 1; β

Z ; Zrc
]

Z2(k−1)
. (27)

This equation suggests that the dipole (k = 1) OS is indepen-
dent of this scaling transformation. However, quadrupole (k =
2), octupole (k = 3), and hexadecapole (k = 4) OSs depend
on Z . Now, some simple mathematical manipulation provides
the modified expression of α

(k)
i (bound) as follows:

α
(k)
i (bound)[1; Z; β; rc] = α

(k)
i (bound)

[
1; 1; β

Z ; Zrc
]

Z2k+2
. (28)

012803-5



MUKHERJEE, PATRA, AND ROY PHYSICAL REVIEW A 104, 012803 (2021)

(2) Another transformation (r = r2
β

) can be applied to alter
the same Hamiltonian as

H (Z; β; rc; r) → H

(
Z

β
; 1; βrc; r2

)
. (29)

Now the potential is mapped such that the β-containing part
becomes free of it.

The substitution of r = r2
β

transforms the Hamiltonian in
Eq. (21) into the form

− 1

2
∇2ψn,�(r2) + Vc

(
Z

β
; 1; r2

)
ψn,�(r2)

+ 1

β2
V0θ (r2 − βrc)ψn,�(r2) =

(En,�

β2

)
ψn,�(r2). (30)

The eigenfunctions and eigenvalues of the initial and modified
Hamiltonians are related as

En,�[1; Z; β; rc] = β2, En,�

[
1;

Z

β
; 1; βrc

]
,

ψn,�(1; Z; β; rc; r) = β
3
2 , ψn,�

(
1;

Z

β
; 1; βrc; r2

)
. (31)

Then 〈T̂ n〉, 〈V̂ n〉, 〈T̂ V̂ 〉, and β are connected as

〈V̂ n〉[1; Z; β; rc] = β2n 〈V̂ n〉
[

1;
Z

β
; 1; βrc

]
,

〈T̂ n〉[1; Z; β; rc] = β2n 〈T̂ 2〉
[

1;
Z

β
; 1; βrc

]
,

〈T̂ V̂ 〉[1; Z; β; rc] = β4 〈T̂ V̂ 〉
[

1;
Z

β
; 1; βrc

]
,

〈V̂ T̂ 〉[1; Z; β; rc] = β4 〈V̂ T̂ 〉
[

1;
Z

β
; 1; βrc

]
. (32)

Now, using Eq. (26) in Eq. (9), the multipole OS can have
the generalized form

f (k)
ni [1; Z; β; rc] =

(
f (k)
ni

[
1; Z

β
; 1; βrc

]
β (2k−2)

)
. (33)

This implies that the dipole OS is invariant under this scaling
transformation. However, higher-order (k > 1) OSs depend
on β. Again, some straightforward mathematical manipula-
tion gives the modified expression of α

(k)
i (bound) as

α
(k)
i (bound)[1; Z; β; rc] =

(
α

(k)
i (bound)

[
1; Z

β
; 1; βrc

]
β2(k+1)

)
.

(34)
Thus, we have successfully converted the initial Hamilto-

nian, Eq. (3), into two independent scaled Hamiltonians, viz.,
Eqs. (24) and (30). Now, the connecting relations are

En,�[1; Z; β; rc] = Z2En,�

[
1; 1;

β

Z
; Zrc

]

= β2En,�

[
1;

Z

β
; 1; βrc

]
. (35)

Some reorganization leads to the following:

En,�

[
1; 1; β

Z ; Zrc
]

En,�

[
1; Z

β
; 1; βrc

] =
(

β

Z

)2

. (36)

The expectation values then satisfy the following relations:

〈V̂ n〉[1; Z; β; rc] = Z2n〈V̂ n〉
[

1; 1;
β

Z
; Zrc

]

= β2n〈V̂ n〉
[

1;
Z

β
; 1; βrc

]
. (37)

A slight rearrangement of the above equation leads to

〈V̂ n〉[1; 1; β

Z ; Zrc
]

〈V̂ n〉[1; Z
β

; 1; βrc
] =

(
β

Z

)2n

. (38)

In the case of kinetic energy, one gets

〈T̂ n〉[1; Z; β; rc] = Z2n〈T̂ n〉
[

1; 1;
β

Z
; Zrc

]

= β2n〈T̂ n〉
[

1;
Z

β
; 1; βrc

]
, (39)

which, upon rearrangement, gives

〈T̂ n〉[1; 1; β

Z ; Zrc
]

〈T̂ n〉[1; Z
β

; 1; βrc
] =

(
β

Z

)2n

. (40)

The multipole OS accordingly becomes

f (k)
ni [1; Z; β; rc] = f (k)

ni

[
1; 1; β

Z ; Zrc
]

Z2(k−1)
=

f (k)
ni

[
1; Z

β
; 1; βrc

]
β2(k−1)

,

(41)
which can be recast to yield

f (k)
ni

[
1; 1; β

Z ; Zrc
]

f (k)
ni

[
1; Z

β
; 1; βrc

] =
(

Z

β

)2(k−1)

. (42)

Finally, the polarizabilities are connected as

α
(k)
i (bound)[1; Z; β; rc] = α

(k)
i (bound)

[
1; 1; β

Z ; Zrc
]

Z2(k+1)

=
α

(k)
i (bound)

[
1; Z

β
; 1; βrc

]
β2(k+1)

. (43)

This can be written in the following form:

α
(k)
i (bound)

[
1; 1; β

Z ; Zrc
]

α
(k)
i (bound)

[
1; Z

β
; 1; βrc

] =
(

Z

β

)2(k+1)

. (44)

The foregoing discussion thus shows that a connection for-
mula, as follows, can be derived among three Hamiltonians,
corresponding to the SE in Eqs. (3), (24), and (30):

H

(
1; 1;

β

Z
; Zrc; r1

)
↔ H (1; Z; β; rc; r)

↔ H

(
1;

Z

β
; 1; βrc; r2

)
. (45)

The above equation signifies that, performing the calculation
at a particular (Z, β) pair, one can evaluate the properties of
the other pair of (Z, β ) (connected by scaling) without solving
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FIG. 2. Plot of Sr as a function of λ1 (in a.u.) in WCP for (a) 1s, (b) 2s, (c) 2p, (d) 3p, (e) 3d , and (f) 4d states at four selected values of Z ,
namely, 1, 2, 3, 4. See the text for details.

the SE. These are derived for any two-parameter potentials.
These relations are applicable in all three potentials used
for the plasma characteristics in Sec. II C. In WCP, ECSCP,
and SP, β becomes λ1, λ2, σ = ( Z−Ne

2R3 )
1
4 , respectively. Some

representative numerical results (En,�, f (1)
ns→2p, α

(1)
ns ) for these

three Hamiltonians (connecting WCP, ECSCP, SP) are pro-
vided in Table V in Appendix B.

III. RESULTS AND DISCUSSION

In this section, first, we discuss the critical screening con-
stant in WCP and ECSCP. Then, the usefulness and efficacy
of VT are verified for WCP, ECSCP, and SP successively.
Next, we report the multipole OS and polarizabilities for
all three potentials. Pilot calculations are done for 1s and
2s states, choosing Z = 2. Of course, employing the scaling
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FIG. 3. Plot of Sr as a function of λ2 (in a.u.) in ECSCP for (a) 1s, (b) 2s, (c) 2p, (d) 3p, (e) 3d , and (f) 4d states at four selected values of
Z , namely, 1, 2, 3, 4. See the text for details.

relations of Eqs. (25)–(28), one can easily extract the result
for other Z values. For ease of convenience, we have adopted
the following notation. Use of λ in the text implies both λ1

and λ2, while explicit use of λ1 or λ2 refers to only WCP
and ECSCP.

A. Critical screening constant in WCP and ECSCP

In WCP and ECSCP (at rc → ∞), the number of bound
states reduces with the rise in the screening parameter λ. Sev-
eral attempts were made to estimate the characteristic value
of λ at which a particular state vanishes. Accurate numerical
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TABLE I. λ
(c)
n,� for H-like ion for 1s, 2s, 2p, 3p, 3d, 4d states in WCP and ECSCP. See the text for details.

WCP ECSCP

Z State λ
(c)
n,� En,� Z State λ

(c)
n,� En,�

1 1s 1.1856a,b −0.00000656 1 1s 0.7196c −0.00000531
2 2.3712 −0.00002650 2 1s 1.4384 −0.00002124
3 3.5573 −0.00005964 3 1s 2.1576 −0.00004779
4 4.7410 −0.00010265 4 1s 2.8756 −0.00008496
1 2s 0.3063b −0.00000995 1 2s 0.1664c −0.00000552
2 0.6124 −0.00003960 2 2s 0.3328 −0.00002206
3 0.9195 −0.00008970 3 2s 0.4992 −0.00004965
4 1.2254 −0.00015925 4 2s 0.6656 −0.00008826
1 2p 0.2206b −0.00000723 1 2p 0.1482c −0.00000234
2 0.4404 −0.00002860 2 2p 0.2964 −0.00000937
3 0.6606 −0.00006341 3 2p 0.4446 −0.00002109
4 0.8821 −0.00011341 4 2p 0.5928 −0.00003749
1 3p 0.1126b −0.00000701 1 3p 0.0687c −0.00000488
2 0.2254 −0.00002854 2 3p 0.1374 −0.00001950
3 0.3381 −0.00006371 3 3p 0.2061 −0.00004388
4 0.4504 −0.00011208 4 3p 0.2748 −0.00007801
1 3d 0.0914b −0.00000878 1 3d 0.0635c −0.00001937
2 0.1826 −0.00003614 2 3d 0.1271 −0.00007787
3 0.2739 −0.00008030 3 3d 0.1907 −0.00017251
4 0.3653 −0.00012718 4 3d 0.2542 −0.00031150
1 4d 0.0581b −0.00000974 1 4d 0.0374c −0.00000260
2 0.1161 −0.00003951 2 4d 0.0748 −0.00001041
3 0.1741 −0.00008364 3 4d 0.1122 −0.00002342
4 0.2321 −0.00016672 4 4d 0.1496 −0.00004164

aLiterature result for λ
(c)
1,0 [8]: 1.190612421.

bLiterature results for λ
(c)
n,� [55,56]: (a) λ

(c)
1s = 1.190610, (b) λ

(c)
2s = 0.310199, (c) λ

(c)
2p = 0.220216, (d) λ

(c)
3p = 0.112710, (e) λ

(c)
3d = 0.091345,

and (f) λ
(c)
4d = 0.058105.

cLiterature results for λ
(c)
n,� [44,55,56]: (a) λ

(c)
1s = 0.720524, (b) λ

(c)
2s = 0.166617, (c) λ

(c)
2p = 0.148205, (d) λ

(c)
3p = 0.068712, (e) λ

(c)
3d = 0.063581,

and (f) λ
(c)
4d = 0.037405.

results are available up to 6h states of a H atom in
WCP [40,56] and ECSCP [44,55,56]. Further, in Ref. [39],
the relation between this critical constant λ

(c)
n,�(Z ) and Z was

derived for the ground state in WCP. These values are de-
termined by applying the sign-change argument in energy.
Instead of that, here, we have applied a simple density-based
technique to ascertain these points in WCP and ECSCP. For
that purpose, Sr [given in Eq. (17)] has been employed. Based
on this study, a uniform relation between these two quantities
[λ(c)

n,�(Z ) and Z] is offered. It may be applied to an arbitrary
state. Furthermore, a similar relation is also obtained by em-
ploying the scaling concept and some empirical idea (see
below).

The calculated Sr as a function of λ1 for the first two states
of each � = 0–2 are displayed in Fig. 2. Figures 2(a)–2(f)
represent 1s, 2s, 2p, 3p, 3d, 4d states, respectively. In each of
these panels one can see equispaced curves corresponding to
Z = 1–4. At a fixed Z , in each of these states a sudden jump in
Sr occurs at a characteristics λ1. Therefore, Sr can indicate the
critical point at which a particular state vanishes. Further, at a
certain Z , Sr increases with λ1. It means that with a decrease
in D the confinement effect weakens. Conversely, with a rise
in Te this effect predominates. Analogous plots are supplied
in Figs. 3(a)–3(f) for ECSCP, involving the same six states as
in Fig. 2. The qualitative behaviors of Sr in WCP and ECSCP

remain quite similar. In each state, a stiff increase in Sr occurs
at a certain λ2 value. Interestingly, with a rise in Z , this Sr vs
λ2 curve gets right shifted. Further, these curves are placed
equidistant from each other. From the above, it is clear that
Sr can be used to determine the critical screening constant
in a given potential. Note that, in both potentials, for a given
state, the ratio of the screening constant and Z is a constant
because the four curves remain evenly separated. Depending
upon these outcomes, one can derive an empirical relation
between λn,� and Z .

Both in WCP and ECSCP, the Hamiltonian in the free
condition is scaled as

H (Z; λ) → H

(
1;

λ

Z

)
. (46)

Similarly, energy in a definite (n, �) state is scaled as

En,�(Z; λ) = Z2En,�

(
1;

λ

Z

)
. (47)

Therefore, one can easily write the following relations for both
the WCP and ECSCP cases:

λ
(c)
n,�

Z
≈ λ

(c)
n,�(Z = 1),

λ
(c)
n,�(Z ) ≈ Z λ

(c)
n,�(Z = 1). (48)
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TABLE II. En,�, (�V̂n,�)2, (�T̂n,�)2, 〈T̂ 〉n,�〈V̂ 〉n,� − 〈T̂ V̂ 〉n,�, and 〈T̂ 〉n,�〈V̂ 〉n,� − 〈V̂ T̂ 〉n,� of the 1s, 2s states in WCP, ECSCP, and SP,
choosing Z = 2, at six different sets of (λ1, rc ), (λ2, rc ), and rc, respectively.

WCP

λ1 = 0.1, λ1 = 0.1, λ1 = 0.5, λ1 = 1, λ1 = 1.5, λ1 = 0.45,
State Quantity rc = 0.1 rc = 0.5 rc = 0.5 rc = 1 rc = 5 rc = ∞

E1,0 444.47894213 9.69364280 10.43995746 1.13262338 −0.22737500 −1.23411551
(�V̂1,0)2 1285.99378348 71.83641411 71.53062216 26.32910366 8.20218577 15.00733998

1s (�T̂1,0 )2 1285.99378348 71.83641411 71.53062216 26.32910366 8.20218577 15.00733998
〈T̂ 〉1,0〈V̂ 〉1,0 − 〈T̂ V̂ 〉1,0 1285.99378355 71.83641411 71.53062216 26.32910366 8.20218577 15.00733998
〈T̂ 〉1,0〈V̂ 〉1,0 − 〈V̂ T̂ 〉1,0 1285.99378355 71.83641411 71.53062216 26.32910366 8.20218577 15.00733998
E2,0 1911.60619014 66.47853464 67.22135372 14.89326554 0.38477218 −0.02806813
(�V̂2,0 )2 3787.39749470 180.91460373 180.32580299 53.43300740 3.14499616 1.08218497

2s (�T̂2,0 )2 3787.39749470 180.91460373 180.32580299 53.43300740 3.14499616 1.08218497
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈T̂ V̂ 〉2,0 3787.39749467 180.91460373 180.32580300 53.43300740 3.14499616 1.08218497
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈V̂ T̂ 〉2,0 3787.39749467 180.91460373 180.32580300 53.43300740 3.14499616 1.08218497

ECSCP

λ2 = 0.1, λ2 = 0.1, λ2 = 0.5, λ2 = 1, λ2 = 1.5, λ2 = 0.25,
State Quantity rc = 0.1 rc = 0.5 rc = 0.5 rc = 1 rc = 5 rc = ∞

E1,0 444.47943354 9.69592190 10.49107011 1.39032540 0.07291645 −1.50671442
(�V̂1,0)2 1286.00324892 71.84954944 71.80723304 27.20420371 4.95684246 15.91293469

1s (�T̂1,0 )2 1286.00324892 71.84954944 71.80723304 27.20420371 4.95684246 15.91293469
〈T̂ 〉1,0〈V̂ 〉1,0 − 〈T̂ V̂ 〉1,0 1286.00324885 71.84954944 71.80723304 27.20420371 4.95684246 15.91293469
〈T̂ 〉1,0〈V̂ 〉1,0 − 〈V̂ T̂ 〉1,0 1286.00324885 71.84954944 71.80723304 27.20420371 4.95684246 15.91293469
E2,0 1911.60668730 66.48097112 67.27483408 15.15621209 0.49330671 −0.07314818
(�V̂2,0 )2 3787.42042508 180.93992940 180.85424331 54.56130508 4.89088914 2.26239187

2s (�T̂2,0 )2 3787.42042508 180.93992940 180.85424331 54.56130508 4.89088914 2.26239187
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈T̂ V̂ 〉2,0 3787.42042492 180.93992940 180.85424331 54.56130508 4.89088914 2.26239187
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈V̂ T̂ 〉2,0 3787.42042492 180.93992940 180.85424331 54.56130508 4.89088914 2.26239187

SP

State Quantity rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 5 rc = 10

E1,0 471.50566905 14.98747298 2.27917566 −0.50537037 −1.40602867 −1.70075051
(�V̂1,0)2 1207.82025521 67.49838821 26.33780873 16.31778893 15.91807847 15.98870703

1s (�T̂1,0 )2 1207.82025521 67.49838821 26.33780873 16.31778893 15.91807847 15.98870703
〈T 〉1,0〈V̂ 〉1,0 − 〈T̂ V̂ 〉1,0 1207.82025512 67.49838821 26.33780873 16.31778893 15.91807847 15.98870703
〈T 〉1,0〈V̂ 〉1,0 − 〈V̂ T̂ 〉1,0 1207.82025512 67.49838821 26.33780873 16.31778893 15.91807847 15.98870703
E2,0 1938.19369550 71.63098684 15.97749590 3.00469070 0.09030651 −0.21064190
(�V̂2,0 )2 3589.04237047 172.06135205 53.23498447 18.29571481 3.69613370 2.88000313

2s (�T̂2,0 )2 3589.04237047 172.06135205 53.23498447 18.29571481 3.69613370 2.88000313
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈T̂ V̂ 〉2,0 3589.04237064 172.06135205 53.23498447 18.29571481 3.69613370 2.88000313
〈T̂ 〉2,0〈V̂ 〉2,0 − 〈V̂ T̂ 〉2,0 3589.04237064 172.06135205 53.23498447 18.29571481 3.69613370 2.88000313

The relation in Eq. (48) is in excellent agreement with those
achieved by computing Sr in WCP and ECSCP. Represen-
tative numerical results are provided in Table I for Z = 1–4
involving the same six states as in Figs. 1 and 2 in WCP
and ECSCP. These critical parameters are compared with
available reference results (for Z = 1), which show very good
matching in both WCP [55,56] and ECSCP [44,55,56]. How-
ever, to the best of our knowledge, no such data have been
reported for Z > 1. The critical points from the sign-change
argument also complement the outcomes achieved by em-
ploying the information-entropy concept. This shows that Sr

may act as an efficient indicator for finding critical points
and may be utilized in the future. As expected, the tabular
results strongly recommend the proposition of Eq. (48) in
both WCP and ECSCP. For the sake of completeness, λ

(c)
n,�

are computed for all the remaining states corresponding to
� = 5 (3s, 4s, 4p, 4 f , 5s, 5p, 5d, 5 f , 5g). They are reported
in Table VI in Appendix C, along with the appropriate ref-
erences.

B. Virial-like theorem

As mentioned in Sec. II A, the conventional VT is not
satisfied in the confined condition. Recently [63], a virial-like
expression was derived and successfully applied to a H atom
trapped in various confined environments [63]. It was found
that, in the end, the perturbing potential does not appear in the
final expression. In this section, we probe this theorem in the
context of WCP, ECSCP, and SP successively.
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TABLE III. f (1) values for WCP and ECSCP (in free and confined conditions) and SP involving the ns → 2p and ns → 3p (n = 1, 2)
transitions. See the text for details.

Confined WCP Free WCP

Transition λ1 rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 5 λ1 rc = ∞
1s → 2p 0.1 0.97072714 0.98455633 0.99105667 0.92744965 0.48674542 0.1 0.40181907

0.5 0.97072657 0.98450970 0.99101296 0.93172951 0.42593118 0.2 0.36301391
1 0.97072481 0.98437662 0.99088526 0.94270974 0.42487213 0.3 0.29859664
2.2 0.97071618 0.98380464 0.99014361 0.97196847 0.84116523 0.4 0.19333749

1s → 3p 0.1 0.02145207 0.00772756 0.00000194 0.04896547 0.30906124 0.01 0.07892729
0.5 0.02145255 0.00776480 0.00000008 0.04498399 0.32619988 0.05 0.07536052
1 0.02145402 0.00787227 0.00002302 0.03498548 0.07783255 0.1 0.06581437
2.2 0.02146127 0.00834459 0.00047966 0.00951569 0.26193927 0.2 0.02982086

2s → 2p 0.1 −0.59617944 −0.60825425 −0.61188356 −0.54000701 −0.06993817 0.1 0.01961263
0.4 −0.59617891 −0.60820263 −0.61167657 −0.54121728 0.00417437 0.2 0.07522974
0.5 −0.59617859 −0.60817302 −0.61156439 −0.54200502 0.03181610 0.3 0.17737202
1 −0.59617598 −0.60794575 −0.61078004 −0.54873672 0.07905123 0.4 0.37896055

2s → 3p 0.1 1.53239528 1.56032134 1.57779183 1.51296821 0.96212776 0.01 0.43399889
0.4 1.53239452 1.56024714 1.57830084 1.51388585 0.90876197 0.05 0.41594460
0.5 1.53239406 1.56020449 1.57797157 1.51453142 0.88783614 0.1 0.36639711
1 1.53239034 1.55987605 1.57652076 1.52043617 0.85542392 0.2 0.17105455

Confined ECSCP Free ECSCP

Transition λ2 rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 5 λ2 rc = ∞
1s → 2p 0.1 0.97072717 0.98455833 0.99105855 0.92726266 0.49020012 0.05 0.41541265

0.5 0.97072715 0.98455130 0.99103661 0.92859601 0.39261746 0.1 0.41059123
1 0.97072703 0.98450670 0.99091497 0.93723099 0.38873757 0.2 0.37680897
1.4 0.97072679 0.98442680 0.99070952 0.95086935 0.72484192 0.25 0.33815629

1s → 3p 0.1 0.02145205 0.00772596 0.00000215 0.04914057 0.25938284 0.01 0.07908337
0.5 0.02145206 0.00773097 0.00000111 0.04772537 0.32705934 0.05 0.07727923
1 0.02145216 0.00776310 0.00000195 0.03909999 0.33012451 0.1 0.06672974
1.4 0.02145234 0.00782141 0.00003015 0.02603893 0.12347883 0.12 0.05778373

2s → 2p 0.05 −0.59617948 −0.60825787 −0.61189909 −0.53993757 −0.07746440 0.05 0.00099592
0.1 −0.59617948 −0.60825776 −0.61189792 −0.53993008 −0.07524706 0.1 0.00719122
0.5 −0.59617945 −0.60824322 −0.61176097 −0.53953695 0.07707677 0.2 0.05235875
1 −0.59617924 −0.60815247 −0.61102508 −0.54115043 0.16873325 0.25 0.10793827

2s → 3p 0.05 1.53239533 1.56032654 1.57832534 1.51292362 0.96729789 0.01 0.43478301
0.1 1.53239533 1.56032638 1.57832365 1.51291209 0.96572414 0.05 0.42653220
0.5 1.53239529 1.56030638 1.57812514 1.51213836 0.84864260 0.1 0.37668282
1 1.53239501 1.56018160 1.57705831 1.51229530 0.76798664 0.12 0.33241753

SP

Transition rc = 0.1 rc = 0.2 rc = 0.5 rc = 1 rc = 2 rc = 2.5 rc = 5 rc = 10

1s → 2p 0.97051035 0.97420550 0.98379490 0.99067302 0.92958863 0.84910611 0.46356524 0.40514594
1s → 3p 0.02161960 0.01795866 0.00826516 0.00002030 0.04648691 0.10750364 0.27699337 0.10047172
2s → 2p −0.59580794 −0.59894650 −0.60667433 −0.60974041 −0.53810301 −0.45106011 −0.03771967 0.01415902
2s → 3p 1.53188858 1.53916195 1.55815448 1.57522845 1.51008687 1.41740733 0.93835324 0.51932973

In WCP, the necessary expectation values will take the
form

〈T̂ V̂ 〉n,� =
〈
T̂

(
− Z

r
e(−λ1r)

)〉
n,�

,

〈V̂ T̂ 〉n,� =
〈(

− Z

r
e(−λ1r)

)
T̂

〉
n,�

,

〈V̂ 2〉n,� =
〈

Z2

r2
e(−2λ1r)

〉
n,�

, 〈V̂ 〉n,� =
〈
− Z

r
e(−λ1r)

〉
n,�

.

(49)

Now, applying the expression in Eq. (49) in Eq. (5), we obtain

〈T̂ 2〉n,� − 〈T̂ 〉2
n,�

= (�T̂n,�)2 = 〈V̂ 2〉n,� − 〈V̂ 〉2
n,� = (�V̂n,�)2

=
〈

Z2

r2
e(−2λ1r)

〉
n,�

−
〈

Z

r
e(−λ1r)

〉2

n,�

= 〈T̂ 〉n,�

〈
− Z

r
e(−λ1r)

〉
n,�

−
〈
T̂

(
− Z

r
e(−λ1r)

)〉
n,�

. (50)
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FIG. 4. f (1)
ns→2p(n = 1, 2) for WCP. (a) gives the rc (in a.u.) variation at two selected λ1 (0.1, 0.5 a.u.), while (b) shows the λ1 (in a.u.)

variation at two different rc (5, 10 a.u.). See text for details.

The relevant expectation values in ECSCP are expressed as

〈T̂ V̂ 〉n,� =
〈
T̂

(
− Z

r
e(−λ2r) cos λ2r

)〉
n,�

,

〈V̂ T̂ 〉n,� =
〈(

− Z

r
e(−λ1r) cos λ2r

)
T̂

〉
n,�

,

〈V̂ 2〉n,� =
〈

Z2

r2
e(−2λ2r) cos2 λ2r

〉
n,�

,

〈V̂ 〉n,� =
〈
− Z

r
e(−λ2r) cos λ2r

〉
n,�

. (51)

Now, substituting the results of Eq. (51) in Eq. (5), we achieve

〈T̂ 2〉n,� − 〈T̂ 〉2
n,�

= (�T̂n,�)2 = 〈V̂ 2〉n,� − 〈V̂ 〉2
n,� = (�V̂n,�)2

=
〈

Z2

r2
e(−2λ2r) cos2 λ2r

〉
n,�

−
〈

Z

r
e(−λ2r) cos λ2r

〉2

n,�

= 〈T̂ 〉n,�

〈
− Z

r
e(−λ2r) cos λ2r

〉
n,�

−
〈
T̂

(
− Z

r
e(−λ2r)

)
cos λ2r

〉
n,�

. (52)

In SP, the respective expectation values manifest as

〈T̂ V̂ 〉n,� =
〈
T̂

{
− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}〉
n,�

,

〈V̂ T̂ 〉n,� =
〈{

− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}
T̂

〉
n,�

,

〈V̂ 2〉n,� =
〈{

− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}2〉
n,�

,

〈V̂ 〉n,� =
〈{

− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}〉
n,�

. (53)

FIG. 5. f (1)
ns→2p(n = 1, 2) for ECSCP. (a) gives the rc (in a.u.) variation at two selected λ2 (0.1, 0.5 a.u.), while (b) shows the λ2 (in a.u.)

variation at two different rc (5, 10 a.u.). See the text for details.
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TABLE IV. α(1) for WCP and ECSCP (in free and confined conditions) and SP in the 1s and 2s states.

Confined WCP Free WCP

State λ1 rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 3 rc = 5 λ1 rc = ∞
1s 0.1 0.00000348 0.00179958 0.02141842 0.14911950 0.25573621 0.28428984 0.05 0.2820913

0.5 0.00000348 0.00180142 0.02159981 0.15905913 0.29929691 0.35670443 0.1 0.2845122
1 0.00000348 0.00180662 0.02207243 0.18422797 0.43081698 0.66907982 0.2 0.2937360
2 0.00000348 0.00182404 0.02347293 0.25795381 0.96822978 4.64009044 0.25 0.3004862

2.5 0.00000348 0.00183517 0.02427643 0.29812432 1.30252206 8.89513209 0.3 0.3086925
3 0.00000348 0.00184738 0.02509476 0.33616289 1.60942186 12.66519620 0.4 0.3297730

2s 0.1 0.000000784 0.00027589 −0.00105258 −0.30696765 −4.32610957 −150.21895140 0.05 4035.9536
0.5 0.000000784 0.00027635 −0.00105258 −0.30187923 −4.62797003 503.53816745 0.1 1161.9265
1 0.000000784 0.00027768 −0.00081299 −0.27873557 −4.40335922 287.82230501 0.2 419.04688
2 0.000000784 0.00028251 −0.00020805 −0.19039680 −2.24216995 −53.18407330 0.25 339.24125

2.5 0.000000784 0.00028579 0.00017337 −0.14358283 −1.42113266 −18.92337897 0.3 312.66238
3 0.000000784 0.00028955 0.00058151 −0.10232148 −0.87783191 −8.40883662 0.4 393.94908

Confined ECSCP Free ECSCP

State λ2 rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 3 rc = 5 λ2 rc = ∞
1s 0.1 0.00000348 0.00179950 0.02141041 0.14867869 0.25393187 0.28156914 0.01 0.2812505

0.5 0.00000348 0.00179980 0.02146640 0.15382762 0.28118411 0.33101794 0.05 0.2813193
1 0.00000348 0.00180171 0.02178057 0.18029000 0.45239114 0.91168796 0.1 0.2817742

1.25 0.00000348 0.00180359 0.02206630 0.20378040 0.65045235 2.57374006 0.2 0.2850410
1.4 0.00000348 0.00180507 0.02227983 0.22117395 0.81774044 4.89195099 0.25 0.2883457

2s 0.1 0.00000078 0.00027587 −0.00105523 −0.30712416 −4.30664314 −136.34737101 0.01 89914.38
0.5 0.00000078 0.00027591 −0.00104609 −0.30960540 −4.85239904 230.50804606 0.05 20470.3544
1 0.00000078 0.00027620 −0.00098316 −0.30418590 −5.36027549 171.45198632 0.1 2954.0860

1.25 0.00000078 0.00027650 −0.00091626 −0.28685821 −4.42905058 −831.87504495 0.2 546.52109
1.4 0.00000078 0.00027674 −0.00086180 −0.27036124 −3.63524261 −91.86677448 0.25 386.92234

SP

State rc = 0.1 rc = 0.2 rc = 0.5 rc = 1 rc = 2 rc = 2.5 rc = 3 rc = 5 rc = 10

1s 0.00000349 0.00005369 0.00183246 0.022259 0.160406 0.232152 0.273467 0.288320 0.282136
2s 0.00000078 0.00001131 0.00028033 0.011415 0.133172 0.275261 0.486354 2.354053 8.230057

Finally, engaging the outcome of Eq. (53) in Eq. (5) leads to

〈T̂ 2〉n,� − 〈T̂ 〉2
n,�

= (�T̂n,�)2 = 〈V̂ 2〉n,� − 〈V̂ 〉2
n,� = (�V̂n,�)2

=
〈{

− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}2〉
n,�

−
〈{

− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}〉2

n,�

= 〈T̂ 〉n,�

〈{
− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}〉
n,�

−
〈
T̂

{
− Z

r
+ (Z − Ne)

R

[
3 −

(
r

R

)2]}〉
n,�

. (54)

The top part of Table II represents results for WCP in 1s
and 2s states for six different sets of {λ1, rc} values, namely,
(0.1, 0.1), (0.1, 0.5), (0.5, 0.5), (1, 1), (1.5, 5), (0.45,∞).
In all these cases, Eq. (5) from Sec. II A is corroborated.
More importantly, in a given state, at a fixed rc, the energy
increases with λ1. Similarly, at a certain λ1, it declines with
a rise in rc. In the middle part, the corresponding outcomes
are tabulated for ECSCP at six chosen (λ2, rc) values, viz.,

(0.1, 0.1), (0.1, 0.5), (0.5, 0.5), (1, 1), (1.5, 5), (0.25,∞).
Again, these data support the conclusion drawn from Eq. (5).
Like the WCP, here also, the energy increases with λ2 at fixed
rc and diminishes with rc at a specific λ2. In the bottom part,
numerical data about the validity of VT in the context of SP
are presented. Like the earlier two cases, they also satisfy
Eq. (5). It may be mentioned that a few attempts were made
before to establish such a theorem in confined conditions
(which includes the plasma environment) by means of the
Hellmann-Feynman theorem and conventional VT [39,78].
There, the mathematical form of the expression changes
from system to system; the present form, on the other hand,
provides a uniform mathematical expression irrespective of
the system of interest.

C. Multipole oscillator strengths and polarizabilities

In the following discussion, Z = 2 is chosen; that means
in SP β depends on only rc. Hence, in SP, the results are
provided with respect to variation of only rc. It may be re-
called from Sec. II C that in SP, Z is required to be greater
than 1. That is why we have selected Z = 2 instead of 1 for all
three environments. Note that results for Z = 1 in free WCP
and ECSCP were also calculated. They are found to be in
agreement with the available literature (see, e.g., [8,10] and
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FIG. 6. α(1) in 1s, 2s states in WCP. (a) and (b) rc (in a.u.) variation at two selected λ1 (0.5, 1 a.u.) and (c) and (d) λ1 (in a.u.) variation at
two different rc (5, 5.5 a.u.). See text for details.

references therein). In this work, the primary focus, however,
is on confined plasma systems. The multipole OS sum rule
given in Eq. (16) was estimated for both 1s and 2s states,
involving all four k (k = 1, 2, 3, 4). In both free and confined
conditions, this equation was obeyed. Further, this sum rule
remains invariant under scaling transformations.

The OS, in practice, measures the probability of transi-
tion between an initial state and a final state. The dipole
OSs for first two � = 0 states of WCP, ECSCP, and SP are
presented in Table III. These changes do not seem to be
straightforward. At λ1 → 0 (WCP) and λ2 → 0 (ECSCP),
these results coalesce to a FHA. On the other hand, OS in SP
approaches a FHA in the limit of rc → ∞. The selection rule
is �� = ±1; therefore, only p-wave states are permitted as
final states. In all three cases, these are provided for ns → mp
(n = 1, 2; m = 2, 3) states, in both free and confined condi-
tions. In the first two plasma conditions, f (1)

1s→2p decreases in
the strong-confinement regime (rc � 1), with the rise in the
screening constant, keeping rc fixed. But for low to moderate
rc (1, 2) it increases with λ. However, at rc = 5, it reduces
to attain a minimum and then grows gradually. Interestingly,
in the free condition, it again declines with the increase of λ.
On the other hand, in either of the plasmas, at a fixed λ, it
increases with rc, then reaches a maximum, and eventually

falls off. The positions of the maxima do not change with
λ. In SP also, f (1)

1s→2p shows a similar behavior; it initially
increases to reach a maximum and then declines. It can thus
be stated that, in all three plasmas, there is an optimum Te

(refer to Sec. II C) at which the probability of transition attains
a maximum. Moreover, with the growth in rc and Te, the
plasma-tail effect predominates. At rc = 0.1 and 0.5, only
minor changes occur in f (1)

1s→3p with an increase in λ in both
WCP and ECSCP. However, at rc = 1, although the values are
significantly small, nevertheless, there appears a minimum in
f (1)
1s→3p versus λ plots for both plasmas. At rc = 2, it decays

with growth in λ. Further, at rc = 5, there appears a maximum
in the f (1)

1s→3p against λ2 plot for ECSCP. However, in a similar
plot for WCP, one finds a maximum followed by a minimum.
On the contrary, at a fixed λ, in WCP and ECSCP with a rise in
rc, f (1)

1s→3p decreases to reach a minimum and then increases.
But in SP, first, there occurs a minimum followed by a maxi-
mum. Thus, with a rise in Te, the probability of transition from
1s to 3p decreases initially in all three potentials and increases
thereafter. It is noticed that f (1)

1s→mp(m = 2, 3) in free WCP and
ECSCP decreases with an increase in λ.

Now, the focus is on the 2s states. Like in the previous case,
here also, nontrivial variations are recorded in their change
with rc and λ. In this case, the occurrence of a negative sign in
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FIG. 7. α(1) for ECSCP in 1s and 2s states. (a) and (b) rc (in a.u.) variation at two selected λ1 (0.5, 1 a.u.) and (c) and (d) λ1 (in a.u.)
variation at two different rc (5, 5.5 a.u.). See text for details.

f (1)
2s→2p indicates emission. In WCP and ECSCP, at a fixed rc

in the strong-confinement region (rc � 2), they remain almost
unchanged with changes in λ. In this low-rc region, emission
occurs between these two states for all the λ considered.
However, in rc = 5, emission happens at lower values of λ.
Thus, at this particular rc, there appears a crossover between
E2s and E2p, with an increase in λ. The 2s to 3p transition
provides the absorption spectrum. Similar to f (1)

2s→2p, in the
strong-confinement zone (at a fixed rc), nominal changes oc-
cur in f (1)

2s→3p in both WCP and ECSCP. The same quantity,
however, at rc = 5, decreases with a rise in λ. At fixed λ,
with a rise in rc, it increases to reach a maximum and then
decays. Similarly, in SP also, one gets a maximum with an
increase in rc at fixed λ. One observes that, in both WCP
and ECSCP, f (1)

2s→mp(m = 2, 3) decays with growth in λ. The
results in Table III are graphically shown in Figs. 4 and 5
for confined WCP and confined ECSCP, respectively. Thus,
f (1)
ns→2p(n = 1, 2) is plotted as a function of rc at fixed λ and

λ at given rc in these plasma conditions. Two representative λ

(5, 10) and rc (0.1, 0.5) are chosen to illustrate these. There
are certain similarities in the qualitative natures of these plots
in Figs. 4(a) and 5(a), as well as in Figs. 4(b) and 5(b). From
Figs. 4(a) and 5(a), one notices that, for both λ values, starting
from a nonzero positive number, f (1)

1s→2p grows to a moderate
extent, reaching a maximum at a lower rc, and then sharply

falls until converging to the respective free system. However,
f (1)
2s→2p starts from a small negative number, then lowers to

a slight extent to attain a minimum, and finally accelerates
rapidly to reach the corresponding free limit in both WCP and
ECSCP [also shown in Figs. 4(a) and 5(a)]. Next, Figs. 4(b)
and 5(b) show f (1)

1s→2p gradually falls to a minimum from an
initially positive number with an increase in λ and thereafter
grows until reaching the free limit. As rc increases, the plots
display a well-like behavior with a flatter minimum, without
any significant change in the positions of these minima. On the
other hand, f (1)

2s→2p [again from Figs. 4(b) and 5(b)] initially
shows a tendency to reach a maximum (which flattens with
a rise in rc) followed by a sharp fall to attain the FHA limit.
All these patterns are not necessarily evident from Table III,
which offers only a few entries to save space. Thus, one sees
that 1s and 2s states maintain a complementary nature in
Figs. 4 and 5.

Now, Table IV presents dipole polarizabilities α(1) in 1s
and 2s for all three plasmas. It retains the arrangement pattern
in Table III, so the top, middle, and bottom parts contain
results for WCP, ECSCP, and SP respectively. However, the
chosen λ differ from those in Table III. At lower rc (� 0.5),
α(1)

ns is quite small and remains practically unaltered with
changes in λ. Similarly, in SP, it is also rather small. In the
rc > 0.5 region, however, α

(1)
1s continually increases with λ

for a fixed rc. Further, at a specific λ, it progresses with rc. In
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FIG. 8. Change in α(1) with Sr in SP, WCP (λ1 = 1 a.u.), and ECSCP (λ2 = 1 a.u.) involving (a) 1s and (b) 2s states. See text for details.

essence, we conclude that, in the 1s state, with relaxation in
confinement (increase in Te) α(1) increases. However, in the 2s
state, α(1) does not maintain the regular feature of the ground
state. Thus, α

(1)
2s at rc = 0.5 is higher than its counterpart in

rc = 0.1 for all λ. In WCP and ECSCP, it increases with λ at
a constant rc. At rc = 1, in WCP α

(1)
2s attains a negative value

at lower λ1; with a rise in λ1 it generally grows and eventually
becomes positive towards the end. In contrast, in ECSCP it
remains negative for all the λ2 considered and slowly in-
creases as we descend down the column. Further, at rc = 2, 3,
in both WCP and ECSCP, it reflects a negative value but,
overall, increases with a rise in λ. Interestingly, however, at
rc = 5, in either WCP or ECSCP, it starts from an initially
negative value at lower λ, then increases to a positive value,
followed by a drop to attain a certain negative value again.
These results have prompted us to investigate the behavior of
α(1)

ns as a function of λ, keeping rc fixed at 5 and 5.5 in the
corresponding plots (see Figs. 6 and 7). However, in SP, α(1)

ns
smoothly increases from a small number to reach a maximum
and finally merge with FHA results (0.282136 and 7.5002 for
1s and 2s). In free WCP and ECSCP, α

(1)
1s accelerates, while

α
(1)
2s reduces, with growth in λ. These results are demonstrated

in the last two columns.
The α(1)

ns results in Table IV are depicted graphically in
Figs. 6 and 7. Thus, Figs. 6(a) and 7(a) suggest that, at a
fixed λ (0.5, 1), α(1)

1s steadily increases with rc until converging
to the free limit. Figures 6(b) and 7(b) show that, at fixed
rc (5, 5.5), α

(1)
1s increases, initially slowly, but later sharply

with λ, and then reaches the FHA limit. It is observed that, in
either WCP or ECSCP, the numerical value of α

(1)
1s at rc = 5.5

remains higher than that at rc = 5. Similarly, the top rows
of Figs. 6 and 7 provide the respective plots for 2s in WCP
and ECSCP. From Figs. 6(c) and 7(c), it is inferred that, for
a given λ (0.5, 1), α

(1)
2s records some abrupt fall to a high

negative value at certain rc, followed by a dramatic increase
to a high positive value in a spikelike fashion, then again
a drop, and, eventually, steady growth, thus giving rise to
one maximum and minimum. On the contrary, at rc = 5 or
5.5, in Figs. 6(d) and 7(d), it proceeds through two spikelike
features with a change of sign in between high negative and
high positive, passing through two maxima and minima. This
complex pattern may occur due to a sign change in various
energy states.

FIG. 9. Changes in (a) f (2)
(1s→3d ), (b) f (3)

(1s→4 f ), and (c) f (4)
(1s→5g) with rc (in a.u.) in WCP (λ1 = 1 a.u.), ECSCP (λ2 = 1 a.u.), and SP. See the

text for details.
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FIG. 10. Changes in (a) α(2), (b) α(3), and (c) α(4) with rc (in a.u.), involving the 1s state of WCP (λ1 = 1 a.u.) and ECSCP (λ2 = 1 a.u.).
See the text for details.

From the above discussion it appears that the impact of
confinement on α(1)

ns (n = 1, 2) is thought provoking. In order
to probe it further, it would be interesting to invoke Shannon
entropy. It is well known that Sr is an efficient measure of
confinement [72,79]; with an increase of confinement strength
Sr decreases, while Sr increases with its relaxation. Therefore,
α(1) is plotted as a function of Sr for both 1s, 2s states for
all three plasmas. In WCP and ECSCP λ is kept fixed at 1.
Figure 8(a) shows that, in all three cases, α

(1)
1s progress with

Sr . But the dipole polarizability for 2s in Fig. 8(b) shows a
behavior that is not so straightforward. Therefore, an in-depth
analysis would be highly desirable.

Finally, some sample results are now presented for
quadrupole, octupole, and hexadecapole OSs, as well as the
polarizabilities involving WCP, ECSCP, and SP. The selec-
tion rules for these three different transitions are �� ± 2, 3,
and 4, respectively. To illustrate the qualitative features, we
offer a cross section of these transitions, while detailed re-
sults will be published elsewhere. Figures 9(a)–9(c) show
the variation of f (2), f (3), f (4), respectively, as a function of
rc for the three potentials for the 1s → 3d , 1s → 4 f , and
1s → 5g transitions. In WCP and ECSCP λ was chosen to
be 1. For all three potentials, OS rises with rc, then attains
a maximum, and finally reaches the free values. This feature
holds true for all the higher-order OSs. That means there exists
a characteristic rc at which the probability of the concerned
transition is maximum. Similarly, Figs. 10(a)–10(c) displays
changes in α(2), α(3), α(4) with rc in the 1s state for WCP
and ECSCP. In both plasmas, α(k) continually increases until
it reaches a constant value corresponding to the free system.
The analogous SP plots are qualitatively similar and thus are
omitted.

IV. CONCLUSION

Multipole (up to order 4) OS and polarizabilities were
probed for H-like ions in WCP, ECSCP, and SP. In the first
two cases, the investigation was done in both free and confined
conditions. A connection between Te and rc was proposed
and analyzed. It was found that the plasma-tail effect can be
controlled by introducing this confinement. Two generalized
scaling ideas were derived connecting Z and λ separately.

The relation between these two independent ideas was also
achieved. Starting from a given Hamiltonian and using these
designed relations, one can easily extract results for a series
of Hamiltonians. An Sr-driven technique was designed to
determine λ

(c)
n,� for both WCP and ECSCP in the free envi-

ronment accurately, where it increases stiffly. Further, using
Sr-based results and this scaling idea, a generalized relation
between λ

(c)
n,� and Z was proposed which is applicable to an

arbitrary state. The applicability of a recently proposed virial-
like theorem was verified for the plasma systems studied here.
Results were also presented for free WCP and ECSCP. A de-
tailed investigation of these spectroscopic properties for � �= 0
states would be highly desirable. The influence of the plasma-
screening effect on the two-photon transition amplitude and
photoionization cross section also needs to be explored in
the confined condition. Other information-theoretic quanti-
ties like the Fisher information, Onicescu energy, complexity,
mutual and relative information, etc., need to be examined.
Exploration of the Hellmann-Feynman theorem in the con-
text of confined plasma is necessary. A similar calculation in
helium plasmas may provide vital insight into the effect of
confinement on many-electron plasmas.
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APPENDIX A: ANALYTICAL FORMS
OF f (k) AND α(k) IN FHA

The analytical expression for dipole polarizabilities in a
FHA was reported in Ref. [80] for the 1s state. In this Ap-
pendix, we provide the 2k-pole OS (k = 1, 4) and respective
polarizabilities for a FHA in both 1s, 2s states.
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TABLE V. En,0, f (1)
ns→2p, and α(1)

ns (n = 1, 2) values for three Hamiltonians, given in Eqs. (45). α(1)
ns represents the bound-state polarizability.

I signifies analytical results obtained by employing (a) Eqs. (25), (31), and (36) for En,�, (b) Eqs. (27), (33), and (43) for f (1)
js→np, and

(c) Eqs. (28), (34), and (44) for α(1)
ns . II indicates numerical results calculated using the Hamiltonian directly. B = ( 2

81 )
1
3 .

WCP

H (1, 1,
λ1
Z , Zrc, r1) H (1, Z

λ1
, 1, λ1rc, r2) H (1, Z, λ1, rc, r)

λ1
Z = 2, H (1, 1, 2, 1, r1) H (1, 1, 2, 2, r1) H (1, 0.5, 1, 2, r2) H (1, 0.5, 1, 4, r2) H (1, 1, 2, 1, r) H (1, 2, 4, 1, r)

rc = 1 λ1 = 2, Z = 1 λ1 = 4, Z = 2 λ1 = 2, Z = 1 λ1 = 4, Z = 2 λ1 = 2, Z = 1 λ1 = 4, Z = 2

I II I II I II I II I II I II

E1,0 3.6923 3.6923 0.8644 0.8644 0.9230 0.9230 0.2161 0.2161 3.6923 3.6923 3.4576 3.4576
f (1)
1s→2p 0.9825 0.9825 0.9877 0.9877 0.9825 0.9825 0.9877 0.9877 0.9825 0.9825 0.9877 0.9877

α
(1)
1s 0.02998 0.02998 0.42689 0.42689 0.47968 0.47968 6.83026 6.83026 0.02998 0.02998 0.02668 0.02668

E2,0 17.8794 17.8794 4.2884 4.2884 4.4698 4.4698 1.07212 1.07212 17.8794 17.8794 17.1538 17.1538
f (1)
2s→2p −0.6051 −0.6051 −0.6039 −0.6039 −0.6051 −0.6051 −0.6039 −0.6039 −0.6051 −0.6051 −0.6039 −0.6039

α
(1)
2s 0.00477 0.00477 0.02271 0.02271 0.07632 0.07632 0.36349 0.36349 0.00477 0.00477 0.00142 0.00142

ECSCP

H (1, 1,
λ1
Z , Zrc, r1) H (1, Z

λ1
, 1, λ1rc, r2) H (1, Z, λ1, rc, r)

λ1
Z = 2, H (1, 1, 2, 1, r1) H (1, 1, 2, 2, r1) H (1, 0.5, 1, 2, r2) H (1, 0.5, 1, 4, r2) H (1, 1, 2, 1, r) H (1, 2, 4, 1, r)

rc = 1 λ1 = 2, Z = 1 λ1 = 4, Z = 2 λ1 = 2, Z = 1 λ1 = 4, Z = 2 λ1 = 2, Z = 1 λ1 = 4, Z = 2

I II I II I II I II I II I II

E1,0 4.00195 4.00195 1.07647 1.07647 1.00048 1.00048 0.29612 0.29612 4.00195 4.00195 4.30589 4.30589
f (1)
1s→2p 0.98265 0.98265 0.98488 0.98488 0.98265 0.98265 0.98488 0.98488 0.98265 0.98265 0.98488 0.98488

α
(1)
1s 0.02998 0.02998 0.46172 0.46172 0.47981 0.47981 7.38750 7.38750 0.02998 0.02998 0.02885 0.02885

E2,0 18.1544 18.1544 4.47386 4.47386 4.53860 4.53860 1.11846 1.11846 18.15440 18.15440 17.89546 17.89546
f (1)
2s→2p −0.6047 −0.6047 −0.5971 −0.5971 −0.6047 −0.60477 −0.5971 −0.5971 −0.6047 −0.6047 −0.6047 −0.6047

α
(1)
2s 0.00466 0.00466 0.02914 0.02914 0.07454 0.07454 0.46631 0.46631 0.00466 0.00466 0.00182 0.00182

SP

H (1, 1, ( σ

Z )4, Zrc, r1) H (1, Z
σ
, 1, σ rc, r2) H (1, Z, σ 4, rc, r)

H (1, 1, 1
16 , 2, r1) H (1, 1, 1, 3B, r1) H (1, 2, 1, 1, r2) H (1, 1, 1, 3B, r2) H (1, 2, 1, 1, r) H (1, 3, 3, B, r)

σ = 1, Z = 2 σ = 3, Z = 3 σ = 1, Z = 2 σ = 3, Z = 3 σ = 1, Z = 2 σ = 3, Z = 3

I II I II I II I II I II I II

E1,0 0.56979 0.56979 5.64694 5.64694 2.27917 2.27917 5.64694 5.64694 2.27917 2.27917 50.64694 50.64694
f (1)
1s→2p 0.99067 0.99067 0.98176 0.98176 0.99067 0.99067 0.98176 0.98176 0.99067 0.99067 0.98176 0.98176

α
(1)
1s 0.35614 0.35614 0.01769 0.01769 0.02226 0.02226 0.01769 0.01769 0.02226 0.02226 0.00021 0.00021

E2,0 3.99437 3.99437 24.2876 22.2876 15.97749 15.97749 24.2876 24.2876 15.97749 15.97749 218.5886 218.5886
f (1)
2s→2p −0.6097 −0.6097 −0.6048 −0.6048 −0.6097 −0.6097 −0.6048 −0.6048 −0.6097 −0.6097 −0.6048 −0.6048

α
(1)
2s −0.0149 −0.0149 0.00296 0.00296 −0.0009 −0.0009 0.00296 0.00296 −0.0009 −0.0009 0.000036 0.000036

The closed-form expressions for f (1)
(1s→np)(Z ) and

f (1)
(2s→np)(Z ) are

f (1)
(1s→np)(Z ) = 28

3Z7
n5 (n − 1)(2n−4)

(n + 1)(2n+4)
,

f (1)
(2s→np)(Z ) = 215

3Z7
n5 (n2 − 1)

(n − 2)(2n−5)

(n + 2)(2n+5)
. (A1)

Now, applying Eq. (A1) in Eq. (7), one easily obtains
α

(1)
i (bound)(Z ) for the 1s and 2s states of a FHA. They take

the following forms:

α
(1)
1s (bound)(Z ) =

n∑
i=2

210

3Z9
i9 (i − 1)(2i−6)

(i + 1)(2i+6)
,

α
(1)
2s (bound)(Z ) =

n∑
i=2

221

3Z9
i9 (i2 − 1)

(i − 2)(2i−7)

(i + 2)(2i+7)
. (A2)
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TABLE VI. λ
(c)
n,� for H-like ions (Z = 1–4) for 3s, 4s, 4p, 4 f , 5s, 5p, 5d, 5 f , 5g states in WCP and ECSCP.

WCP ECSCP

Z State λ
(c)
n,� En,� Z State λ

(c)
n,� En,�

1 3s 0.13656a −0.00000013 1 3s 0.289685b −0.00000005
2 3s 0.27614 −0.00000013 2 3s 0.217247 −0.00000014
3 3s 0.41563 −0.00000012 3 3s 0.144808 −0.00000026
4 3s 0.55510 −0.00000015 4 3s 0.072366 −0.00000009
1 4s 0.07636a −0.00000020 1 4s 0.040407b −0.00000015
2 4s 0.1554320 −0.00000001 2 4s 0.080838 −0.00000009
3 4s 0.23433 −0.00000002 3 4s 0.121266 −0.00000016
4 4s 0.31319 −0.00000005 4 4s 0.161693 −0.00000077
1 4p 0.06769a −0.00000058 1 4p 0.03926b −0.00000076
2 4p 0.13572 −0.00000025 2 4p 0.078526 −0.00000116
3 4p 0.20363 −0.00000116 3 4p 0.117789 −0.00000025
4 4p 0.271529 −0.00000076 4 4p 0.157053 −0.00000058
1 4 f 0.04984a −0.00000024 1 4 f 0.035241b −0.00000016
2 4 f 0.099662 −0.00000014 2 4 f 0.0704820 −0.00000064
3 4 f 0.149493 −0.00000031 3 4 f 0.1057237 −0.00000005
4 4 f 0.199324 −0.00000056 4 4 f 0.1409649 −0.00000019
1 5s 0.04822a −0.00000024 1 5s 0.02578b −0.00000016
2 5s 0.09921 −0.00000022 2 5s 0.051569 −0.00000065
3 5s 0.14991 −0.00000006 3 5s 0.077357 −0.00000065
4 5s 0.20054 −0.00000017 4 5s 0.103145 −0.00000024
1 5p 0.04471a −0.00000001 1 5p 0.025313b −0.00000039
2 5p 0.090253 −0.00000007 2 5p 0.05063 −0.00000068
3 5p 0.125506 −0.00000001 3 5p 0.075946 −0.00000083
4 5p 0.18071 −0.00000063 4 5p 0.101262 −0.00000064
1 5d 0.03996a −0.00000002 1 5d 0.024499b −0.00000037
2 5d 0.08004 −0.00000081 2 5d 0.049 −0.00000001
3 5d 0.120072 −0.00000007 3 5d 0.0735 −0.00000006
4 5d 0.160097 −0.00000002 4 5d 0.098 −0.00000010
1 5 f 0.03538a −0.00000055 1 5 f 0.023482b −0.00000008
2 5 f 0.070778 −0.00000023 2 5 f 0.046964 −0.00000035
3 5 f 0.106168 −0.00000008 3 5 f 0.0704464 −0.00000012
4 5 f 0.141557 −0.00000038 4 5 f 0.0939286 −0.00000006
1 5g 0.031343a −0.00000006 1 5g 0.022371b −0.00000029
2 5g 0.062687 −0.00000007 2 5g 0.0447428 −0.00000007
3 5g 0.09403 −0.00000056 3 5g 0.0671140 −0.00000056
4 5g 0.125374 −0.00000024 4 5g 0.0894856 −0.00000026

aLiterature results for λ
(c)
n,� [55,56]: (a) λ

(c)
3s = 0.1394, (b) λ

(c)
4s = 0.07882, (c) λ

(c)
4p = 0.067885, (d) λ

(c)
4 f = 0.049831, (e) λ

(c)
5s = 0.05058,

(f) λ
(c)
5p = 0.045186, (g) λ

(c)
5d = 0.040024, (h) λ

(c)
5 f = 0.035389, and (i) λ

(c)
5g = 0.031343.

bLiterature results for λ
(c)
n,� [44,55,56]: (a) λ

(c)
3s = 0.072436, (b) λ

(c)
4s = 0.040427, (c) λ

(c)
4p = 0.039263, (d) λ

(c)
4 f = 0.035241, (e) λ

(c)
5s = 0.025787,

(f) λ
(c)
5p = 0.025315, (g) λ

(c)
5d = 0.024500, (h) λ

(c)
5 f = 0.023482, and (i) λ

(c)
5g = 0.022371.

f (2)
(1s→nd )(Z ) and f (2)

(2s→nd )(Z ) are expressed as

f (2)
(1s→nd )(Z ) = 212

5Z9
n7 (n2 − 4)

(n − 1)(2n−6)

(n + 1)(2n+6)
,

f (2)
(2s→nd )(Z ) = 227

5Z9
n7 (n2 − 1)

(n − 2)(2n−9)

(n + 2)(2n+9)
. (A3)

Inserting Eq. (A3) in Eq. (7), one gets α
(2)
i (bound)(Z ) in the

1s and 2s states of a FHA as follows:

α
(2)
1s (bound)(Z ) =

n∑
i=3

212

5Z11
i11 (i2 − 4)

(i − 1)(2i−8)

(i + 1)(2i+8)
,

α
(2)
2s (bound)(Z ) =

n∑
i=3

233

5Z11
i11 (i2 − 1)

(i − 2)(2i−10)

(i + 2)(2i+10)
.

(A4)

The analytical expressions for f (3)
(1s→n f )(Z ) and f (3)

(2s→n f )(Z ) are

f (3)
(1s→n f )(Z ) = 9

7

212

Z11
n9(n2 − 9)(n2 − 4)

(n − 1)(2n−8)

(n + 1)(2n+8)
,

f (3)
(2s→n f )(Z ) = 9

7

227

5Z11
n9(n2 − 9)(n2 + 4)(n2 − 1)

× (n − 2)(2n−10)

(n + 2)(2n+10)
. (A5)
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Doing some mathematical manipulation after substituting
Eq. (A5) into Eq. (7) yields α

(3)
i (bound)(Z ) for the 1s and 2s

states of a FHA:

α
(3)
1s (bound)(Z ) =

n∑
i=4

9

7

214

Z13
i13 (i2 − 9)(i2 − 4)

× (i − 1)(2i−10)

(i + 1)(2i+10)
,

α
(3)
2s (bound)(Z ) =

n∑
i=4

9

7

233

Z13
i13 (i2 − 9)(i4 + 4)(i2 − 1)

× (i − 2)(2i−12)

(i + 2)(2i+12)
. (A6)

Finally, f (4)
(1s→ng)(Z ) and f (4)

(2s→ng)(Z ) manifest as

f (4)
(1s→ng)(Z ) = 218

9Z13
n11 (n2 − 16)(n2 − 9)(n2 − 4)

× (n − 1)(2n−10)

(n + 1)(2n+10)
,

f (4)
(2s→ng)(Z ) = 239

9Z13
n11 (n2 − 16)(n2 − 9)(n2 + 2)2(n2 − 1)

× (n − 2)(2n−12)

(n + 2)(2n+12)
. (A7)

By inserting Eq. (A7) in Eq. (7) one may extract
α

(4)
i (bound)(Z ) for 1s, 2s with the form

α
(4)
1s (bound)(Z ) =

n∑
i=5

220

9Z15
i15

× (i2 − 16)(i2 − 9)(i2 − 4)
(i − 1)(2i−12)

(i + 1)(2i+12)
,

α
(4)
2s (bound)(Z ) =

n∑
i=5

245

9Z15
i15 (i2 − 16)(i2 − 9)(i2 + 2)2

× (i2 − 1)
(i − 2)(2i−14)

(i + 2)(2i+14)
. (A8)

APPENDIX B: SOME SELECTED RESULTS USING THE
SCALING CONCEPT

Here, we demonstrate the derived relations presented in
Sec. II D. Table V shows some sample results obtained by
the proposed scaling concept. Here, we use these formulas
to connect Z , λ, and rc. However, they can be applied and
extended to any Hamiltonian.

The top, middle, and bottom parts present results for WCP,
ECSCP, and SP, respectively. In all three cases, the second
and third, sixth and seventh, and 10th and 11th columns and
fourth and fifth, eighth and ninth, and 12th and 13th columns
form two separate groups. Here, due to lack of space, we
restrict our calculation to three Hamiltonians. However, one
can extend the number of such Hamiltonians in a given group
by using this formulation. Interestingly, one can extract the
results for all members of a particular group just by perform-
ing calculations for any one Hamiltonian belonging to that
group.

APPENDIX C: λ
(c)
n,� VALUES FOR HIGHER STATES IN WCP

AND ECSCP

The critical screenings λ
(c)
n,� of WCP and ECSCP for Z =

1–4, in the 3s, 4s, 4p, 4 f , 5s, 5p, 5d, 5 f , 5g states are pro-
duced in Table VI.
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