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Improving nonstoquastic quantum annealing with spin-reversal transformations
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Nonstoquastic Hamiltonians are hard to simulate due to the sign problem in quantum Monte Carlo simulation.
It is, however, unclear whether nonstoquasticity can lead to advantage in quantum annealing. Here we show
that YY interactions between the qubits make the adiabatic path during quantum annealing, and therefore the
performance, dependent on spin-reversal transformations. With the right choice of spin-reversal transformation, a
nonstoquastic Hamiltonian with YY interaction can outperform stoquastic Hamiltonians with similar parameters.
We introduce an optimization protocol to determine the optimal transformation and discuss the effect of
suboptimality.
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I. INTRODUCTION

Quantum annealing (QA) [1–3] is a heuristic algorithm for
finding low-energy configurations of Ising spin Hamiltonians,
with applications in optimization and machine learning. Phys-
ical implementations of quantum annealers have matured to
systems that include more than 5000 qubits, with increasing
numbers of qubits expected in the future. The typical Hamil-
tonians implemented by these devices are

H (s) = A(s)HD + B(s)HP, (1)

HD = −1

2

∑
i

σ x
i , (2)

HP =
∑

i

hiσ
z
i +

∑
i< j

Jz
i jσ

z
i σ z

j , (3)

where σ
x,y,z
i are the Pauli matrices acting on the ith qubit;

HD and HP are known as driver and problem Hamiltonians,
respectively; hi and Ji j are dimensionless bias and coupling
coefficients; and s = t/ta is a dimensionless annealing time
parameter, with ta being the total annealing time. The en-
velope functions A(s) and B(s) are usually fixed by the
experimental implementation; an example is plotted in Fig. 1.
Annealing is performed by initially letting the system relax to
its ground state at s = 0 when A(s) � B(s) and then evolving
to a configuration in which A(s) � B(s) at s = 1. Qubit states
are measured at the end of annealing in the computation basis,
which is defined by eigenfunctions of σ z

i denoted by |↑〉 and
|↓〉 with eigenvalues ±1.

For closed systems, the adiabatic theorem [4–6] ensures
that the system remains in its ground state throughout the an-
nealing if the evolution time is long relative to a timescale that
is proportional to 1/�2, where � is the minimum gap between

the ground state and the first excited state [7]. Reading out the
N qubits then returns a configuration of �S ≡ {S1, S2, . . . , SN },
with Si = ±1, that minimizes the problem Hamiltonian HP.
In practice, the adiabatic theorem may be violated via fast
evolution or thermal excitations, resulting in a suboptimal
(but maybe still acceptable) solution. In this work, we only
consider closed system evolution and take the ground state as
the only acceptable solution.

The existing physical implementations of QA [8] use su-
perconducting qubits coupled via only one degree of freedom
(flux), giving rise to stoquastic Hamiltonians [9–12], i.e.,
Hamiltonians with no positive or complex off-diagonal ele-
ments. Equilibrium statistics of stoquastic Hamiltonians can
be simulated with quantum Monte Carlo (QMC) methods
with no sign problem [13–15]. QMC methods may also ex-
hibit dynamical behavior similar to QA for special stoquastic
Hamiltonians [16], although this does not hold in general
[17–19]. Nonstoquastic Hamiltonians, however, are not treat-
able by QMC methods; hence their statistical and dynamical
properties are extremely hard to simulate [11,15]. They also
can perform universal quantum computation [20–22] sug-
gesting that nonstoquasticiy may be connected to quantum
advantage in QA.

In order to make Hamiltonian (1) nonstoquastic, one needs
to introduce interactions via other degrees of freedom, e.g., by
changing the driver Hamiltonian to

HD = −1

2

∑
i

σ x
i +

∑
i < j

(
Jx

i jσ
x
i σ x

j + Jy
i jσ

y
i σ

y
j

)
. (4)

We refer to the last two terms as XX and YY interactions,
respectively, in contrast to the ZZ interaction in HP. For
Jy

i j = 0, the driver (4) has positive off-diagonal elements when
Jx

i j > 0. This is, indeed, the regime in which most studies
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have been done. It has been shown that this nonstoquastic
Hamiltonian can significantly improve performance of QA,
but only in special cases [23–27]. Moreover, a recent study
[28] has found that the minimum gap in nonstoquastic QA
generally increases by de-signing the Hamiltonian, i.e., mak-
ing the Hamiltonian stoquastic by simply changing the sign of
all positive off-diagonal elements. Therefore, whether or not
nonstoquasticity can result in quantum annealing advantage
over classical approaches remains an open question.

Less studied is nonstoquasticity due to YY interaction.
Recently a pair of superconducting flux qubits with a nonsto-
quastic Hamiltonian were implemented by coupling them via
both flux and charge degrees of freedom [29]. The resulting
Hamiltonian had a driver of the form (4) that was dominated
by YY interaction. A nonzero Jy

i j is special because it gener-
ates positive off-diagonal elements regardless of its sign and
makes adiabatic path and performance variant under spin-
reversal transformation (SRT), defined in the next section.
The goal of this paper is to systematically study the role of
SRT in quantum annealing with nonstoquastic drivers.

II. SPIN-REVERSAL TRANSFORMATION

Let us define a gauge transformation:

|ψ〉 → |ψ ′〉 = U |ψ〉, H → H ′ = UHU †, (5)

with the unitary operator

U ≡
∏

i

(
σ x

i

)(1−αi )/2
, (6)

where �α ≡ {α1, α2, . . . , αN } is a set of transformation param-
eters with αi = ±1. The unitary operator U flips the state of
qubit i if αi = −1; otherwise, it does nothing. The sign of each
term in the Hamiltonian is adjusted so that the total energy
remains unchanged. The transformed Hamiltonian H ′ has the
following parameters:

h′
i = αihi, (7)

J ′x
i j = Jx

i j, (8)

J ′y
i j = αiα jJ

y
i j, (9)

J ′z
i j = αiα jJ

z
i j . (10)

It has exactly the same spectrum and dynamical behavior as
H , as expected for gauge transformations, and the returned
solution is the transformation of the original solution:

S′
i = αiSi. (11)

In practice, changing the sign of Jy
i is nontrivial, at least for the

physical implementation of Ref. [29]. We define SRT as trans-
formations (7)–(11) without (9), i.e., with J ′y

i j = Jy
i j . Therefore,

SRT only transforms the classical part of the Hamiltonian.
For Jy

i j = 0, SRT is a true gauge transformation and is
not expected to affect the dynamics. Therefore, solving the
problem with QA using H or H ′ should lead to exactly the
same probability of success. However, if there exist systematic
errors in parameter specifications of the physical Hamiltonian,
the errors will not be transformed if we submit H ′ instead of
H to the QA hardware. This means that SRT is not a true

gauge transformation at the physical level and therefore is ex-
pected to affect the probability of success. In these situations,
parameter specification error can be mitigated (averaged out
to some extent) by running the problem with a set of SRTs,
each parametrized by a randomly selected �α.

When Jy
i j �= 0, the spectrum and the dynamical behavior

of (1) change depending on the applied SRT. However, since
the SRT remains a true gauge transformation of the problem
Hamiltonian, the classical problem being solved stays the
same while the quantum path in the Hilbert space through
which the solution is reached can heavily vary for different
SRTs. Specially, the minimum gap can significantly change
between transformations, resulting in a huge difference in
success probabilities. Our goal is to find ways to select SRTs
intelligently so that the performance is improved.

The driver Hamiltonian (4) contains all the tunneling terms
in Hamiltonian (1). Single-qubit tunneling is through σ x

i op-
erators, and the XX and YY terms contribute to two-qubit
cotunneling events. The matrix elements of σ x

i σ x
j and σ

y
i σ

y
j

between states with ferromagnetic (FM) and antiferromag-
netic (AFM) orientations are given by

〈↑↓|σ x
i σ x

j |↓↑〉 = 1, 〈↑↑|σ x
i σ x

j |↓↓〉 = 1, (12)

〈↑↓|σ y
i σ

y
j |↓↑〉 = 1, 〈↑↑|σ y

i σ
y
j |↓↓〉 = −1. (13)

While σ x
i σ x

j does not distinguish between FM and AFM or-
ders, σ

y
i σ

y
j has off-diagonal elements with opposite signs. To

the lowest order perturbation in A(s)/B(s) � 1, the two-qubit
tunneling amplitudes for FM and AFM correlations, when
hi = 0, ∀i, are given by

�h=0
FM = −A(s)

(
A(s)

4|Jz|B(s)
− Jx + Jy

)
, (14)

�h=0
AFM = −A(s)

(
A(s)

4|Jz|B(s)
− Jx − Jy

)
. (15)

The first term in each equation describes tunneling through
two single-qubit tunneling processes via σ x operators. The
last two terms, on the other hand, are contributions of direct
two-qubit cotunneling via XX and YY interactions. Notice
that with a negative Jx (stoquastic), the XX coupling always
increases the tunneling amplitude for both FM and AFM cor-
relations. The YY interaction with Jy > 0, however, increases
(decreases) the tunneling amplitude for FM (AFM) correlated
qubits, due to constructive (destructive) interference. For a
pair of coupled qubits with zero bias, Eqs. (14) and (15)
determine the size of the spectral gap between the ground
and the first excited states. Therefore, for the same magnitude
of ZZ coupling, FM coupling has a larger spectral gap than
AFM coupling when Jy > 0, as experimentally demonstrated
in Ref. [29]. The same argument also holds for larger clusters
of strongly coupled qubits; the spectral gap is largest when
couplings are maximally FM.

In problems with first-order phase transition [30], the min-
imum gap is typically suppressed because the ground state
jumps between two states that are separated by a large ham-
ming distance. In these cases, a large cluster of qubits needs
to flip between the two crossing local minima. The clus-
ter’s tunneling amplitude at the avoided crossing determines
the size of the gap. This phenomenon was experimentally
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FIG. 1. The envelope functions A(s) and B(s) as functions of the
dimensionless annealing time s.

demonstrated in Ref. [31], using a crafted 16-qubit problem
with an extremely small gap. If qubits’ transverse fields can
be tuned individually, one can increase � by changing the
adiabatic path either randomly [32] or algorithmically [33].
The presence of XX and/or YY interactions allows for alterna-
tive ways of changing the adiabatic path. Especially with YY
interaction, every SRT introduces a new path. Therefore, by
choosing the right SRTs, one can find an adiabatic path with
a large �. This can be done either by random exploration or
algorithmically. The latter is the focus of this work.

III. NUMERICAL SIMULATIONS

In this section, we explore the effect of SRT on the perfor-
mance of QA assuming realistic parameters. The Hamiltonian
is taken to be (1) with experimentally motivated A(s) and
B(s) plotted in Fig. 1. All qubit couplings (XX , YY , or ZZ)
are assumed to be according to the Chimera topology [34].
Based on the experimental observations of Ref. [29], we
choose Jy

i j = 0.5 whenever they are nonzero. Also, to allow
a direct comparison between stoquastic and nonstoquastic
drivers, we choose Jx

i j = −0.5 (if nonzero). We calculate the
minimum gap at each step of the evolution using exact di-
agonalization. We also calculate the probability of success
by solving the time-dependent Schrödinger equation with an-
nealing time ta = 1 μs. We initialize the system in the the
ground state of Hamiltonian (1) at s = 0. An approximated
evolution can be obtained in the following way. Let |k(t )〉
denote instantaneous eigenstates of the Hamiltonian at time
t , with instantaneous eigenvalues Ek (t ). At each step of the
evolution, we obtain the neigen lowest energy eigenstates via
exact diagonalization. We express the wave function in terms
of these eigenstates: |ψ (t )〉 ≈ ∑neigen

k=0 ck (t )|k(t )〉, where ck =
〈k(t )|ψ (t )〉. Since the eigenstates in the truncated subspace
do not form a complete set, this relation is approximate.
However, for slow evolutions, the occupation probabilities
of the higher energy state are extremely small and therefore
the approximation is good. One may also increase neigen until
there is no effect on the results. In our calculations, we use
neigen = 25. Assuming the Hamiltonian remains constant dur-
ing the small time step δt , the wave function after the time step

FIG. 2. (a) A crafted problem designed to have a small mini-
mum gap. All couplers are ferromagnetic. (b)–(d) Three spin-reversal
transformations of problem (a) with some or all couplers being
antiferromagnetic.

becomes

|ψ (t + δt )〉 ≈
neigen−1∑

k=0

e−iEk (t )δt ck (t )|k(t )〉. (16)

After the time step, the new instantaneous eigenstates |k(t +
δt )〉 and eigenvalues Ek (t + δt ) are obtained by exact di-
agonalization and the above procedure is repeated. During
the evolution, the time step δt is adjusted according to the
instantaneous variation of the gap, so that the resolution of
the minimum gap is adequate and the truncation and dis-
cretization error is kept under control. We also tested the
configuration against the publicly available software QTIP

[35,36].

A. Crafted problem

We first consider a slightly modified version of the problem
studied in Ref. [31], as shown in Fig. 2(a). Parameters of
the problem Hamiltonian are color coded in the figure. We
divide the qubits into two groups, inner qubits (blue and
white circles) and outer qubits (red circles). All couplings
are FM; therefore, the two ferromagnetically oriented states
|↑↑ . . . ↑〉 and |↓↓ . . . ↓〉 are energetically favored by the
coupling terms. The biases in Fig. 2(a) are four positive,
three negative, and one zero, making |↓↓ . . . ↓〉 the unique
ground state and |↑↑ . . . ↑〉 an excited state. The outer qubits
are pairwise coupled. Each outer qubit is in agreement with
its applied bias in the ground state, but opposes the bias in
the above excited state. If in the excited state a pair of cou-
pled outer qubits are flipped together, two bias terms will be
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FIG. 3. The energy splitting between the ground state and the
first excited state as a function of the annealing parameter s for the
problems in Fig. 2 with different driver Hamiltonians.

satisfied but two couplers will be violated, leaving the energy
unchanged. Therefore, with the existing four outer pairs there
are 24 = 16 degenerate excited states all connected by two-
qubit flips. This degeneracy is lifted by the transverse field.
Each coupled pair would lower their energy by forming an en-
tangled state, (|↑↑〉 + |↓↓〉)/

√
2. The lowest excited state is

therefore a superposition of these 16 degenerate states. As the
transverse field is increased (moving back in s), the splitting of
the excited states grows until the lowest excited state crosses
the ground state. The minimum gap at this avoided crossing
is proportional to the tunneling amplitude between the two
(localized) crossing states. Each of the 16 classical states in
the superposition has a large hamming distance to the ground
state (8 to 16 bit flips), resulting in a very small �. Figure 3
shows the energy splitting between the ground state and the
first excited states for Hamiltonian (4) during the annealing
according to the schedule in Fig. 1. As expected, the minimum
gap for the original problem, with no YY or XX interactions
(curve with minimum energy splitting at s = 0.5), is very
small, �0 ≈ 10−3 GHz (the index 0 indicates Jx

i j = Jy
i j = 0 for

every i and j). The gap is significantly increased when the XX
interaction is turned on (curve with minimum energy splitting
at s = 0.53 in Fig. 3).

In the presence of YY interaction, � is expected to depend
on SRT. Figures 2(b)–2(d) show three SRTs of Fig. 2(a). The
eight inner qubits all flip at the avoided crossing; therefore,
they need to be coupled ferromagnetically to allow maximum
tunneling amplitude. These couplings are turned from FM
to AFM in Fig. 2(c). As it is clear from Fig. 3, the size of
the minimum gap for problem (c) is reduced by almost 2
orders of magnitude compared to problem (a), although its
position remains almost unchanged. The outer qubits, on the
other hand, determine the position of the avoided crossing.
Their pairwise tunneling is what lifts the degeneracy of the
16 classical excited states and creates the avoided crossing.
Therefore, turning the coupling between the outer qubits from
FM to AFM should reduce the splitting of the degenerate
states and push the avoided crossing back toward a smaller
s, as is the case in Fig. 3 for (b) and (d) curves, where the
minimum energy splitting is pushed at s = 0.49. Since the

FIG. 4. The success probabilities for the problems in Fig. 2 with
different driver Hamiltonians.

transverse field is larger earlier in the anneal, one might expect
the minimum gap to be larger for problem (b) compared to
that for problem (a), and likewise for problem (d) compared
to problem (c). However, Fig. 3 shows the opposite behavior.
This is because not only the inner qubits but also some of the
outer qubits flip between the ground state and each of the 16
degenerate excited states. At a fixed transverse field, the mul-
tiqubit tunneling amplitude is largest when the outer qubits
are coupled ferromagnetically. Since the transverse field is not
fixed, the two effects compete with each other; coupling the
outer qubits antiferromagnetically pushes the avoided cross-
ing to a smaller s hence increasing in the transverse field,
but the increase is not enough to compensate the reduction
of multiqubit tunneling amplitude due to AFM coupling. As
a result, the largest minimum gap happens when all couplers
are FM, as they are in problem (a).

Figure 4 compares probabilities of success for the scenar-
ios presented in Fig. 3. As expected, the success probabilities
in Fig. 4 are small and correlate with the minimum gap sizes
in Fig. 3. While the XX coupling enhances the performance
regardless of the SRT, the YY coupling may increase or
decrease the probability of success depending on the SRT.
The best performance is obtained for problem (a) when YY
interaction is on. Since the magnitudes of Jx

i j and Jy
i j are the

same, switching from YY to XX interaction is equivalent
to one of the de-signing processes proposed in Ref. [28].
Clearly from problem (a) to (b) de-signing did not improve
the performance, in contrast to Ref. [28]. Therefore, although
nonstoquasticity does not automatically lead to advantage in
QA, with a right choice of SRT a nonstoquastic Hamiltonian
with YY interaction (Jy

i j = 0.5, Jx
i j = 0) can outperform the

original stoquastic Hamiltonian (Jy
i j = Jx

i j = 0) as well as the
de-signed stoquastic Hamiltonian (Jy

i j = 0, Jx
i j = −0.5).

B. Random problems

We now investigate whether the observations in the pre-
vious example hold for random problems. We generate
problems by randomly selecting Jz

i j from [−1, 1] with 4 bits of
precision (16 evenly distributed values within that range). The
biases are also selected in the same way or all taken to be zero.
The connectivity graph is again a Chimera graph [34], but with
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FIG. 5. Scatter plot of the relative success probability and the rel-
ative minimum gap size corresponding to the driver Hamiltonian (4)
with Jx

i j = 0 and Jy
i j = 0.5. For each of the 130 random problems we

have applied 50 random SRTs. The color-code shows the value of J̄
for each instance. The majority of cases with improved performance
have J̄ < 0.

N = 12 (six qubits within each unit cell) to limit the computa-
tion time. Since most generated problems of this size are easy,
we only keep the ones with small gaps: � < 0.1 GHz. In total
we generated 100 problems with random hi and 30 problems
with hi = 0. Since we did not find any qualitative difference
between the two cases, we combine them into a single set and
present them together.

The best performance in the previous crafted example was
obtained when the couplers were all FM. In random problems,
however, the coupling terms are usually frustrated, meaning
that no solution can satisfy them all simultaneously. There-
fore, no SRT can make all the couplers FM, i.e., making a
frustrated problem unfrustrated. Since qubits with strongest
couplings are most likely to be correlated, it is reasonable to
choose SRTs that make those couplers FM and allow the weak
ones to be AFM. We define the average coupling strength for
the transformed Hamiltonian as

J̄ = 1

NJ

∑
i, j

J ′z
i j , (17)

where NJ is the number of couplers. Clearly, J̄ varies with
SRT and the more negative it is the more ferromagnetic the
couplings are.

For each of the 130 generated random problems we chose
50 SRTs by randomly selecting αi from ±1 with equal prob-
ability. Figure 5 shows a scattered plot of success probability
versus minimum gap in the presence of YY interaction for all
the 6500 instances. The probabilities and the gap values are
normalized to their corresponding values in the original prob-
lem. Therefore, a value bigger than 1 means improvement. A
correlation between the probabilities and the minimum gap
sizes can be recognized in Fig. 5. The color-coding represents
the average coupling strength J̄ . As in the previous example,
adding YY interactions can improve or impair the perfor-
mance depending on the SRT. However, as the color coding
indicates, there is a close correlation between the performance
and the sign of J̄; most of the improved instances have FM-
dominated couplers (J̄ < 0).

FIG. 6. Scatter plot of relative success probabilities and relative
minimum gaps for SRTs obtained by minimizing Eq. (18). Color
coding represents the distance from the optimum. We have only kept
suboptimal solutions with J̄ − J̄opt < 0.1.

The above observation as well as the results of the previous
example suggest that a SRT that minimizes J̄ is likely to
improve the performance. Using Eqs. (10) and (17), we write
the objective function as

J̄ (�α) = 1

NJ

∑
i, j

Jz
i jαiα j . (18)

The solution �αopt that minimizes (18) defines the desired SRT.
Since the number of variables is not very large (N = 12), we
can find all global and local minima of (18) through exhaus-
tive search. This, however, is not possible for larger problems.
Since αi is a binary variable with values ±1 (similar to Si), the
objective function (18) itself is an Ising problem. Indeed, (18)
forms the quadratic part of the problem Hamiltonian (3) and
is equivalent to HP when hi = 0. Finding �αopt is, therefore,
NP-hard, i.e., as complex as minimizing the original prob-
lem Hamiltonian. However, the quantum annealer itself can
be used to minimize Eq. (18). Especially for problems with
hi = 0, the optimal solution to the original problem HP and
the optimal SRT coincide: �Sopt = �αopt, Therefore, solving the
problem itself with QA gives the SRT for the next run and the
process can be repeated iteratively until the desired solution is
reached. Moreover, suboptimal solutions to (18) also improve
the performance and could be as good as, and sometimes even
better than, the optimal solution, as we show below.

Figure 6 shows a scatter plot similar to Fig. 5, but instead
of being random, the SRTs are obtained via optimization of
Eq. (18). Colors represent the distance from the optimal J̄opt.
We only kept local minima with J̄ − J̄opt < 0.1 to investigate
what the results look like in the case where the minimization
of Eq. (18) does not converge to the global but rather to a
local minimum close to the global one. For each one of the
130 problems, the threshold 0.1 corresponds to 0.3%-0.6% of
the total 212 SRTs and is chosen according to the following
argument. Ignoring frustration, the average value of J̄opt can
be calculated as

〈J̄opt〉 ≈
〈
−M−1

∑
i, j

|Ji, j |
〉
, (19)
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TABLE I. Percentages of improved instances for suboptimal and
optimal solutions of Eq. (18).

J̄ − J̄opt PYY /P0 PYY /PX X

Suboptimal 83% 56%
Optimal 91% 82%

where the average is over the uniform distribution of Ji j val-
ues. With the 8-bit precision on Ji j , the average turns out to
be 〈J̄opt〉 = −9/17. Due to frustration, however, this is just a
lower bound on the actual value. The maximum value can be
obtained in a similar way without the negative sign and and
gives us an average maximum of 〈J̄max〉 = 9/17. The thresh-
old 0.1 then corresponds to an approximation ratio, defined as
(J̄ − J̄opt )(J̄max − J̄opt )−1, of about 10%. As it is evident from
Fig. 6, for the majority of the 130 problems, the minimum
gap size is increased for the SRT corresponding to the optimal
or suboptimal solutions of Eq. (18), and the probability of
success is improved by up to more than 3 orders of magnitude.
There were also cases where suboptimal solutions to Eq. (18)
gave better probability of success than the optimal one. Table I
shows the percentage of improved cases: 91% of the optimal
solutions and 83% of the suboptimal solutions led to SRTs
that increased the success probability.

Finally, we investigate how a nonstoquastic Hamiltonian
with YY interaction compares, in terms of QA performance,
to the corresponding stoquastic (de-signed) Hamiltonian with
XX interaction. The magnitudes of the YY and XX interac-
tions are the same in the two Hamiltonians (|Jx

i j | = |Jy
i j | =

0.5). Since for YY interaction the adiabatic path depends on
the SRT, we expect the performance to be better or worse than
the stoquastic case depending on the SRT. Indeed, we find
that for the majority of random SRTs, stoquastic Hamiltonians
yield better performance than the corresponding nonstoquas-
tic ones, in agreement with Ref. [28]. However, when we
find optimal SRTs by minimizing Eq. (18), the nonstoquas-
tic Hamiltonians on average outperform the corresponding
stoquastic ones. Figure 7 plots the relative probabilities and
minimum gap sizes for the 130 random problems studied
before. The percentages of improvement are also reported in
Table I. Quantum annealing with the stoquastic Hamiltonian
(XX interaction) is outperformed by the corresponding non-
stoquastic one (YY interaction) for 82% of the problems when
the optimal SRT [the global minimum of Eq. (18)] was applied
and for 56% of cases when suboptimal SRTs were applied.

IV. CONCLUSIONS

We investigated the effect of a nonstoquastic Hamiltonian
with YY interaction between the qubits on the performance
of quantum annealing. The existence of YY interaction makes
the adiabatic path and the performance strongly dependent on
SRTs. Random transformations in general do not improve the
performance. We found that the transformation that makes the
average ZZ coupling maximally ferromagnetic is most likely
to improve the performance, sometimes by several orders

FIG. 7. Comparison between the nonstoquastic Hamiltonian
with YY interaction (Jx

i j = 0 and Jy
i j = 0.5) and the (de-signed) sto-

quastic Hamiltonian obtained by replacing YY with XX interaction
(Jx

i j = −0.5 and Jy
i j = 0). The instances are the same as in Fig. 6 with

colors representing the distance from the optimum.

of magnitude. Suboptimal solutions also improve the perfor-
mance, but with less frequency. We should mention that the
SRT obtained by minimizing the average coupling is not the
best possible SRT among all the exponentially large number
of possible transformations. It is conceivable that more elegant
algorithms, e.g., that use information from previously ob-
tained solutions, lead to better transformations. One may also
use machine-learning techniques to choose SRTs based on the
numerical observations or experimental data once large-scale
quantum annealers with nonstoquastic interactions are built.

In the physical implementation of Ref. [29], nonsto-
quasticity was obtained by adding capacitive coupling to
magnetically coupled flux qubits. The resulting Hamiltonian
had an extra XX coupling in addition to the expected YY
coupling. The XX coupling was stoquastic with a magnitude
that depended on ZZ interaction. Both XX and YY couplings
favored FM over AFM correlation in terms of contribution
to two-qubit tunneling. As a result, the dependence on SRT
is expected to be stronger than that for YY coupling alone.
Moreover, the addition of coupling capacitors will increase the
total capacitance of each qubit, resulting in smaller tunneling
amplitudes. However, only a few percent reduction is ex-
pected, not large enough to eliminate the orders of magnitude
enhancement of performance observed above. More research
is needed to assess the value of such capacitive interactions in
practical quantum annealers at large scales.
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