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Neutral atoms are promising for large-scale quantum computing, but accurate neutral-atom entanglement
depends on large Rydberg interactions which strongly limit the interatomic distances. Via a phase accumulation
in detuned Rabi cycles enabled by a Rydberg interaction of similar magnitude to the Rydberg Rabi frequency,
we study a controlled-phase gate with an arbitrary phase and extend it to the controlled-NOT gate. The gates need
only three steps for coupling one Rydberg state, depend on an easily accessible van der Waals interaction that
naturally arises between distant atoms, and have no rotation error in the weak interaction regime. Importantly,
they can work with very weak interactions so that well-separated qubits can be entangled. The gates are sensitive
to the irremovable fluctuation of Rydberg interactions, but can still have a fidelity over 98% with realistic position
fluctuation of qubits separated over 20 μm.

DOI: 10.1103/PhysRevA.104.012615

I. INTRODUCTION

Neutral atoms can be rapidly entangled when they are
excited to high-lying Rydberg states, which renders the
possibility to use neutral atoms for large-scale quantum
computing [1–6]. There have been several experiments
demonstrating entanglement between individual neutral atoms
by Rydberg interactions [7–18] primarily via the blockade
mechanism [19] where two nearby Rydberg atoms should pos-
sess a strong interaction V . The value of V drops quickly when
the qubit spacing increases, so it is necessary to place the
qubits close enough for the blockade condition to hold. For ex-
ample, the interatomic distance was in the range 3.6–5.7 μm
in recent experiments of high-fidelity neutral-atom entan-
glement [13,15,16,18]. On the other hand, the yet to be
large-scale quantum processor is supposed to host a large
number of qubits in which entanglement operations between
distant qubits are required in a general computational task.
To tackle this issue, Ref. [20] suggested a method to entangle
two qubits separated by a chain of ancillary qubits by adiabat-
ically following the many-body ground state of the qubit chain
coupled via the Rydberg blockade mechanism, and Ref. [21]
proposed to entangle distant qubits by coupling two targeted
qubits with a group of ancillary atoms via Rydberg interac-
tions. These methods depend on strong interactions of nearby
Rydberg atoms. For example, Ref. [20] analyzed a model
by assuming a large enough V enabled by a small average
interatomic spacing 1 μm, so that the entanglement of two
logic qubits separated by 20 μm would require a coherent
control over around 19 ancillary qubits.

In this article, we analyze an entangling gate between
two well-separated neutral atoms by partially exciting them
to Rydberg states. In contrast to the gate protocols depen-
dent on the blockade mechanism, we find that a tiny V
can rapidly generate entanglement between ground hyperfine
levels via detuned ground-Rydberg Rabi oscillations, and a
controlled-phase gate with an arbitrary phase θ can be created

accurately. The intrinsic fidelity of the gate is perfect when
V is frozen and when the Rydberg-state decay is ignored,
but for realistic setups where there will be fluctuations of
qubit positions [16] and Rydberg-state decay, the gate can
still have a fidelity 0.99 with qubit spacing over 20 μm. Com-
pared to the Rydberg gate by a dynamical phase shift V t/h̄
from the Rydberg interactions [19], our gate does not require
the Rydberg Rabi frequency � to be much larger than V/h̄
and, thus, a high-fidelity implementation is less technically
demanding, where h (h̄) is the (reduced) Planck constant.
Compared to the Rydberg gates in Ref. [22] that work with a
similar condition V/h̄ ∼ � but need five pulses to couple mul-
tiple Rydberg states, the gate in this work needs fewer pulses
to couple only one Rydberg state. In contrast to previous
Rydberg gates based on Förster resonances [22–29], our gate
depends on van der Waals interactions that naturally appear
in well-separated atoms without resorting to external fields
for tuning a Förster resonance. Since entangling operations
between well-separated qubits are necessary for large-scale
quantum computing, our method can simplify the quantum
circuit in quantum computing because otherwise many stan-
dard Rydberg gates are needed to entangle two distant qubits.

The remainder of this article is organized as follows. In
Sec. II, we study the controlled-phase gate with an arbitrary
phase, and then extend it to a controlled-NOT (CNOT) gate. In
Sec. III, we study the achievable gate fidelity with realistic
parameters and fluctuation of qubit positions. Section IV gives
a comparison between the gate protocols here and previous
Rydberg gates with distant qubits. A brief summary is given
in Sec. V.

II. TWO-QUBIT CONTROLLED GATES WITH WEAK
VAN DER WAALS INTERACTIONS

A. A controlled-phase gate with an arbitrary phase θ

We first present the protocol for a controlled-phase gate
and then extend it to a CNOT gate in Sec. II B. In particular, we
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FIG. 1. A controlled-phase gate with an arbitrary phase θ me-
diated by a weak Rydberg interaction V that satisfies the condition
θ = −2πV/

√
h̄2�2

t + V 2 (up to a trivial addend of an integer times
2π ). The first and third pulses excite and deexcite the Rydberg
excitation in the control qubit. At the middle of the second pulse
a π phase change is inserted in the Rabi frequency via modifying the
phases in the Rydberg lasers. The phase θ is tunable via adjustment
of the ratio between �t and V .

consider a quantum entanglement operation

{|00〉, |01〉, |10〉, |11〉} �−→ {|00〉, |01〉, |10〉, eiθ |11〉}, (1)

by exciting two qubits to Rydberg states via external laser
fields, where θ is tunable via adjustment of the frequency
and magnitude of the laser field, and |0〉 and |1〉 are the two
states of a qubit defined by the two hyperfine-Zeeman ground
substates of a heavy alkali-metal atom such as 87Rb and 133Cs.
External laser fields are sent to the qubits for exciting |1〉 to
a Rydberg state |r〉. Equation (1) is realized effectively by
three pulses, where “effectively” means that the total number
of pulses is four, but since the middle two pulses only differ
by a phase which can be rapidly inserted in the laser fields,
the total number of pulses is effectively three as shown in
Fig. 1. Pulses 1 and 3 are for exciting and deexciting the
control qubits with Rabi frequencies of magnitude |�c|, and
pulse 2 is for exciting the target qubit with Rabi frequencies
of magnitude |�t|. Upon the application of pulse 1 with a
π rotation |1〉 → |r〉 for the control qubit enabled by the
Hamiltonian �c|r〉〈1|/2 + H.c. in a rotating frame, the input
eigenstates evolve as

|01〉 �−→ |01〉, |10〉 �−→ −i|r0〉, |11〉 �−→ −i|r1〉,
where the other input state |00〉 does not evolve since it is
not excited because the energy separation between |0〉 and
|1〉 is Ehyper = h × 6.8 GHz for 87Rb which is orders of
magnitude larger than (h̄ times) the Rydberg Rabi frequency
2π × 0.8 MHz that we will consider. Then, the probability
2(h̄�t/Ehyper)2 [30] of Rydberg excitation of |0〉 is on the
order of 10−8, which can be ignored.

The Hamiltonian for pulse 2 sent upon the target qubit
is ±�t|r〉〈1|/2 + H.c., where the sign + (−) applies for the
first (second) half of pulse 2. During the first half of pulse
2, laser fields are sent to the target qubit for the transition
|1〉 → |r〉 with a Rabi frequency �t for a pulse duration

t0 = 2π/

√
�2

t + V 2/h̄2, where V is the Rydberg interaction
of the state |rr〉. As previous studied in Refs. [15,22,31,32],
the interaction V will detune the transition between |r1〉 and
|rr〉 so that the state rotation has a generalized Rabi frequency

�t ≡
√

�2
t + V 2/h̄2. In contrast to the resonant Rabi rotation

between two states where one full Rabi cycle results in a phase
change π to the state, the detuned Rabi cycle will lead to a
phase change θ/2 = −π [1 + V/(h̄�t )] [22], so that the state
evolution in the first half of pulse 2 is

|01〉 �−→ e−it0Ĥ (�t )/h̄|01〉, −i|r0〉 �−→ −i|r0〉,
−i|r1〉 �−→ −ieiθ/2|r1〉,

where

Ĥ (�t ) = h̄�t|0r〉〈01|/2 + H.c.

The second half of pulse 2 is similar to its first half, but
with a Rabi frequency −�t. With a radiation duration t0, the
input state |01〉 returns to itself since its total time-evolution
operator in the second pulse e−it0Ĥ (−�t )/h̄e−it0Ĥ (�t )/h̄ reduces
to an identity because Ĥ (−�t ) + Ĥ (�t ) = 0. On the other
hand, remarkably, the change of the sign of the Rydberg Rabi
frequency does not change the picture of the detuned Rabi
oscillation, so that another θ/2 phase change appears for the
input state |11〉. As a consequence, the state evolution is

e−it0Ĥ (�t )/h̄|01〉 �−→ |01〉, −i|r0〉 �−→ −i|r0〉,
−ieiθ/2|r1〉 �−→ −ieiθ |r1〉, (2)

in the second half of pulse 2.
Pulse 3 is similar to pulse 1 but with a π phase change

to the Rabi frequency which becomes −�t. The π rotation
restores the state of the control qubit back to the ground state,
leading to

|01〉 �−→ |01〉, −i|r0〉 �−→ |10〉,
−ieiθ |r1〉 �−→ eiθ |11〉.

With the understanding that the input state |00〉 does not
evolve in the rotating frame, the state transform in Eq. (1) is
realized as shown in Fig. 1.

B. A CNOT gate

The controlled-phase gate studied in Sec. II A becomes
a controlled-Z (CZ ) gate when θ = π , which has the same
entangling power [33] as a CNOT gate. On the other hand, the
pulse sequence in Sec. II A can be slightly modified so as to
directly create a CNOT gate,

{|00〉, |01〉, |10〉, |11〉} �−→ {|00〉, |01〉, |11〉, |10〉}. (3)

The CNOT gate sequence shown in Fig. 2 is similar to that
described in Fig. 1 with two modifications. First, pulse 1
and pulse 3 use the same set of laser fields, i.e., no need to
have a relative sign difference in the Rabi frequencies as in
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FIG. 2. A CNOT gate with a pulse sequence similar to that in
Fig. 1 when θ = π . (a), (b) During pulse 2, both qubit states |0〉
and |1〉 are excited to the Rydberg state |r〉 via two different low-
lying p-orbital states. (c) When the Rydberg Rabi frequencies for
|0〉 → |r〉 and |1〉 → |r〉 are both �t/

√
2, it is as that the state

|1〉 ≡ (|0〉 + |1〉)/
√

2 is excited with a Rabi frequency �t during
pulse 2, while the other state |0〉 ≡ (|0〉 − |1〉)/

√
2 stays intact.

(d) By a similar pulse sequence as in Fig. 1 with the modification of
pulse 2 shown in (c) with the condition h̄�t/V = √

3, a state map-
ping diag{1, 1, −1, 1} is realized in the basis {|00〉, |01〉, |10〉, |11〉},
which is the standard CNOT gate after expanding |0(1)〉.

Fig. 1. Second, in pulse 2, we replace the Rydberg-excitation
Hamiltonian ±h̄�t|r〉〈1|/2 + H.c. in Fig. 1 by

±h̄�t|r〉(〈0| + 〈1|)/(2
√

2) + H.c., (4)

i.e., (i) the first half of pulse 2 requires two sets of laser

fields, one for the Rydberg excitation |0〉 �t/
√

2−−−→ |r〉, and the

other for the Rydberg excitation |1〉 �t/
√

2−−−→ |r〉, and (ii) the
second half of pulse 2 requires two sets of laser fields, one

for the Rydberg excitation |0〉 −�t/
√

2−−−−→ |r〉, and the other for

the Rydberg excitation |1〉 −�t/
√

2−−−−→ |r〉. This requires simulta-
neous excitation of both qubit states to a Rydberg state. For
two-photon Rydberg excitations, different intermediate states
should be used with an example shown in Figs. 2(a) and 2(b).
To understand the time evolution of the wave functions for

different input states in pulse 2, we follow Ref. [34] and con-
sider {|00〉, |01〉, |10〉, |11〉}, where |1(0)〉 = (|0〉 ± |1〉)/

√
2

as shown in Fig. 2(c). In this basis, Eq. (4) becomes

ˆ̄H (±�t ) = ±h̄�t|r〉〈1|/2 + H.c.

With the condition h̄�t/V = √
3 (corresponding to θ = π in

the picture of Sec. II), the first half and the second half of pulse
2, each with duration t0 = √

3π/�t, lead to

|01〉 �−→ e−it0 ˆ̄H (�t )/h̄|01〉 �−→ |01〉,
−i|r0〉 �−→ −i|r0〉 �−→ −i|r0〉,
−i|r1〉 �−→ |r1〉 �−→ i|r1〉,

for which a detailed proof is given above Eq. (2). Figure 2(c)
shows that the Rydberg deexcitation via pulse 3 leads to a
CNOT gate of Eq. (3) with the fact that

|1〉〈1| − |0〉〈0| = |0〉〈1| + |1〉〈0|.

III. GATE FIDELITY

The gates can be fast. The total gate duration is tg =
2π (1/�c + 2/�t ) according to the pulse sequence in Fig. 1
or Fig. 2. For a CZ or CNOT gate where θ = π , we should have
the condition

�t =
√

3V/h̄ (5)

so that the total gate duration is tg = 2π (1/�c + √
3/�t ).

Rydberg Rabi frequencies around 2π × 4.6 MHz were used
for entanglement of individual neutral atoms in Ref. [16], so
the CZ or CNOT gates can have a short duration tg = 0.59 μs if
similar Rabi frequencies are employed.

A high fidelity (about 99%) can be realized with our gates.
Because the gate sequences for the CZ and the CNOT gates are
similar, we consider the CZ gate as an example. In order to
avoid a slow gate speed, a Rydberg interaction around or over
h × 0.5 MHz is desirable. Then, higher Rydberg states are
preferred so that the Rydberg interaction can still be around
h × 0.5 MHz even if the qubits are separated by tens of μm.
Among the previous demonstrations of neutral-atom quan-
tum gates, the highest d-orbital Rydberg state of 87Rb atoms
ever used had a principal quantum number n = 97 [8,9].
The excitation of s-orbital Rydberg states with n = 102 was
demonstrated in an ensemble of 87Rb atoms where coher-
ent many-body phenomena were observed [35]. To avoid
the anisotropic interaction of d-orbital Rydberg states, we
consider s-orbital Rydberg states whose interaction is highly
isotropic in real space [36]. For these reasons, we analyze the
gate performance with |r〉 ≡ |97S1/2, mJ = 1/2〉 and Rydberg
Rabi frequencies

�c = �t = 2π × 0.8 MHz, (6)

so that the duration will be 3.4 μs for a CZ gate. We note that a
similar Rydberg Rabi frequency 2π × 0.81 MHz was used in
Ref. [9] for entanglement of individual 87Rb atoms via the ex-
citation of the 97d states. The Rydberg interaction of |rr〉 for
well-separated qubits is characterized by C6/L6 [1,36], where
C6 = h × 39.5 THz μm6 [37] is the van der Waals coefficient
and L is the qubit spacing. To analyze the performance of
a CZ gate where θ = π in Eq. (1), the condition in Eq. (5)
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requires that the distance between the centers of the traps for
the two qubits should be 20.99 μm with Eq. (6) [which leads
to V ≈ h × 0.46 MHz according to Eq. (5)].

There are intrinsic errors from the Rydberg-state decay and
the position fluctuations of the atomic qubits when the traps
are turned off during the gate sequence (there is also an error
due to Doppler dephasing but it is not an intrinsic issue since
it is removable by the methods in, e.g., Refs. [38,39]). The
former can be estimated as Edecay = TRyd/τ , where τ is the
lifetime of the Rydberg state and TRyd is the total duration for
the input state to stay in the Rydberg state averaged over the
four input eigenstates,

TRyd = 1

4

∑
α∈{0,1}

∑
|ψ (0)〉∈{|01〉,|10〉,|11〉}

∫
[|〈αr|ψ (t )〉|2

+ |〈rα|ψ (t )〉|2 + 2|〈rr|ψ (t )〉|2]dt,

where |ψ (t )〉 is the wave function calculated by unitary time
evolution from the initial state |ψ (0)〉. A numerical simulation
shows TRyd ≈ 1.52 × 2π/�c in general and TRyd ≈ 1.91 μs
with Eq. (6), and τ is 0.311 ms (or 1.10 ms) at room temper-
ature (or at 4.2 K) [40], leading to Edecay = 6.14 × 10−3 (or
1.74 × 10−3).

The fluctuation of the qubit positions contributes the ma-
jor error because our gate works perfectly only when the
interaction is equal to the desired value. There will be ran-
dom position fluctuation of the qubits before the traps are
switched off, and the atoms fly freely during the gate se-
quence. This leads to a fluctuation of the qubit spacing which
results in a fluctuation of V . A numerical investigation of this
matter requires information for realistic rms qubit-position
fluctuations in reference to the trap center. Though most
publications on entanglement experiments did not show such
details, Ref. [16] showed that the longitudinal and transverse
rms position fluctuations of the atoms in their traps were
σz0 = 1.47 μm and σ⊥0 = 0.27 μm, respectively. In order to
incorporate the effect of the free flight of the atoms during the
gate sequence, we would like to modify the values of rms fluc-
tuations. The change of the atomic locations during the gate
sequence will change the interatomic distance. For an atomic
temperature around Ta = 10 μK (e.g., qubits with Ta = 5, 10,
and 15 μK were studied in the entanglement experiments of
Refs. [14], [13], and [16], respectively), the rms distance for a
qubit to fly during the gate sequence is about 	 = vrmstg, where
vrms = √

kBTa/m is the rms speed of the atom along one of
the three directions in the three-dimensional (3D) space, Ta is
the effective temperature of the atom, and kB and m are the
Boltzmann constant and the atomic mass, respectively. For a
free flight of qubits, the average change of distance will be
vrmstg/2 for a duration tg. So, we analyze the fluctuation of the
qubit positions by increasing the rms fluctuations to

σz = σz0 + 	/2, σ⊥ = σ⊥0 + 	/2,

which leads to (σz, σ⊥) = (1.52, 0.32) μm in the condition of
Eq. (6).

The schematic of position fluctuation is shown in Fig. 3(a).
We suppose that the quantization axis is along x, and
π -polarized Rydberg laser lights travel along z. The Rydberg-
excitation scheme is shown in Fig. 3(b). The centers of the
traps for the control and target qubits are (0,0,0) and (L, 0, 0),

FIG. 3. (a) Schematic of the position fluctuation of the two
atomic qubits in real space. The trap centers are at (xc, yc, zc ) and
(L + xt, yt, zt ), while the locations of the qubits can deviate from
the centers of the traps. The longitudinal and transverse rms position
fluctuations of the atoms in the traps are σz and σ⊥ along the z and
x (or y) directions. The gate sequence proceeds after the traps are
switched off so that the atoms fly freely. (b) Rydberg excitation of the
qubit state |1〉 ≡87 Rb|5S1/2, F = 2, mF = 2〉 via a largely detuned
intermediate state |e〉. The red and blue shadows in (a) indicate the
lower and upper laser fields in (b) used for exciting the Rydberg states
from |1〉.

respectively. Because of the finiteness of the trap depths, the
positions of the control and target qubits are (xc, yc, zc) and
(L + xt, yt, zt ), respectively, where the distribution function

G (ζ ) = 1√
2πσ⊥

e−ζ 2/(2σ 2
⊥ )

characterizes ζ ∈ {xc, yc, xt, yt}, and

G (ζ ) = 1√
2πσz

e−ζ 2/(2σ 2
z )

is the distribution function for ζ = zc or zt. In the
numerical simulation, the value of V is calculated
by using the actual distance of the qubits L =√

(xc − xt − L)2 + (yc − tt )2 + (zc − zt )2. The average
fidelity is sampled with

F = �ζ

∫
G (ζ )dζF ,

where the fidelity F is defined by [41]

F = [|Tr(U †U )|2 + Tr(U †U U †U )]/20.

Here, U is the actual gate matrix evaluated by us-
ing the unitary dynamics with the Rydberg-state de-
cay ignored, and U = diag{1, 1, 1,−1} is the ideal gate
matrix in the basis {|00〉, |01〉, |10〉, |11〉}. The integral
for each ζ is approximated by taking discrete val-
ues; for example, for xc, the sampling is approximated
by

∑
G (xc)F/

∑
G (xc) with xc ∈ {−1.5,−1.5 + δ,−1.5 +

2δ, . . . , 1.5 − 2δ, 1.5 − δ, 1.5}σ⊥, and the total gate fidelity
is sampled by similar approximations for {yc, zc, xt, yt, zt}.
The numerical simulation is resource-demanding, but we can
obtain an estimate about the convergence of the integration via
slowly varying the steps. For δ equal to 0.25, 0.2, 0.15, 0.12,
and 0.1, the sampled average fidelities are 0.9910, 0.9912,
0.9914, 0.9920, and 0.9920, respectively, from which we es-
timate F = 0.992. With Rydberg-state decay included, the
intrinsic fidelity would be F − Edecay = 0.986 (or 0.990) at
300 K (or 4.2 K).
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IV. COMPARISON WITH OTHER METHODS

The gates in this work have several advantages compared
to other gates [19,22,23,31] that can also work with weak
interactions in distant Rydberg atoms.

The first advantage is that our gate does not have rotation
errors in the weak interaction regime. It was proposed in
Ref. [19] that phase gates can be created via the dynam-
ical phase shift of the van der Waals interaction between
two weakly interacting Rydberg atoms as experimentally
demonstrated in Ref. [17]. The method of Ref. [19] in-
volves the excitation |11〉 → |rr〉 which has an intrinsic error
2V 2/(h̄2�2) due to the failure for exciting the state |rr〉 from
|11〉 as analyzed in Ref. [30]. In contrast, the intrinsic ac-
curacy of the gate here is limited only by the Rydberg-state
decay in the weak interaction regime.

The second advantage is that our gate depends on a
van der Waals interaction that naturally appears between
two distant Rydberg atoms. As has been experimentally
tested [17], such a strategy allows an easy access to an ex-
perimental demonstration. In comparison, by using Förster
resonance one can also design entangling gates between
well-separated qubits [23,25,26,28] but fine tuning via ex-
ternal fields is required [42–53]. However, it will be useful
to investigate, if possible, an extension of our method to
the regime of Förster resonance. If it is indeed possible,
high-fidelity entanglement should be reachable with qubits
separated even longer than the estimate in this work. This
is because the Förster resonant interaction falls off as 1/L3,
while the van der Waals interaction falls off as 1/L6 when L
increases.

The third advantage is that our method can more easily
realize a CZ gate compared to previous high-fidelity gates
based on weak van der Waals interactions [22,31]. Compared
to Ref. [22] which uses five pulses for coupling two different

Rydberg states, the gate here needs only three steps to couple
one Rydberg state. Compared to Ref. [31] which proposes
a quantum entangling gate that should be repeated several
times to form a CZ gate when assisted by single-qubit gates,
our method can realize a controlled-phase gate (such as CZ )
with any desired phase by only three laser pulses as shown
in Fig. 1.

V. CONCLUSIONS

We study a controlled-phase gate based on weak van der
Waals interactions between neutral Rydberg atoms. The gate
is realized via phase accumulations in detuned Rabi oscil-
lations enabled by weak Rydberg interactions. The gate is
easily realizable and can have a high fidelity because it only
needs three steps to couple one type of Rydberg state, has no
intrinsic rotation errors in the weak interaction regime, and
does not depend on fine tuning of Förster resonant processes.
We use practical parameters to show that it is possible to create
a CZ gate in two qubits separated by 21 μm with a fidelity
about 0.990 (or 0.986) at 4.2 K (or at room temperature).
We also show that a similar pulse sequence can lead to a
CNOT gate which is realizable with similarly small van der
Waals interactions. The theory brings hope to simplify the
quantum circuit for large-scale quantum computing in which
entanglement between distant qubits is required.
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