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Quantum simulation of nuclear inelastic scattering
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We present a time-dependent quantum algorithm for nuclear inelastic scattering in the time-dependent basis
function on qubits approach. This algorithm aims to quantum simulate a subset of the nuclear inelastic scattering
problems that are of physical interest in which the internal degrees of freedom of the reaction system are excited
by time-dependent external interactions. We expect that our algorithm will enable an exponential speedup in
simulating the dynamics of the subset of the inelastic scattering problems, which would also be advantageous
for the applications to more complicated scattering problems. For a demonstration problem, we solve for the
Coulomb excitation of the deuteron, where the quantum simulations are performed with IBM QISKIT.
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I. INTRODUCTION

Following Richard Feynman’s original idea of simulating
quantum dynamics using another well-controlled quantum
system [1], the last couple of decades have witnessed the
exciting innovation and rapid development of quantum com-
puting technology. Quantum computers take advantage of
quantum principles to potentially outperform their classical
counterparts by increasing the computing power and reducing
the required computing resources [2]. Widely celebrated algo-
rithmic innovations such as the Shor’s algorithm [3] and the
quantum Fourier transformation [2,4–6] fuel the excitement
by proving dramatic exponential speedup in computation
compared to the classical computers. To exploit the power
of the quantum computer, researchers have since developed
various algorithms for Hamiltonian dynamics [7–14], with
applications to problems in, e.g., condensed-matter physics
[15], quantum chemistry [16–19], nuclear physics [20,21],
and quantum field theories [22–28].

Here we present the time-dependent basis function on
qubits (tBFQ) approach for quantum simulating a subset
of nuclear inelastic scattering problems, where the internal
degrees of freedom of the reaction system are excited by
the external interaction. We will also discuss the quantum
advantage the tBFQ algorithm would achieve over classi-
cal algorithms for this subset of nuclear inelastic scattering
problems. With this advantage, the tBFQ algorithm would
enable simulations of complicated nuclear inelastic scattering
processes that classical computers would find intractable. This
treatment is adaptable for atomic and molecular quantum scat-
tering processes [29] as well.

In this work we show (1) how to prepare and to qubitize the
basis representation and (2) how to design the time-dependent
quantum algorithm for simulating the nuclear inelastic scatter-
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ing. In particular, we adopt the Schrödinger picture and divide
the full Hamiltonian of the nuclear system undergoing inelas-
tic scattering into the reference and external interaction parts.
We first solve the eigenbasis set of the reference Hamiltonian
via nuclear structure calculations on classical computers. Our
eigenbases may be obtained from ab initio methods [30–34],
but eigenbases from phenomenological models would also
serve our purposes. We then apply an importance trunca-
tion scheme to regulate the basis size. We will calculate the
full Hamiltonian and the time-evolution operator using this
trimmed basis representation. Next, we qubitize the basis
representation. Based on the matrix of the time-evolution op-
erator in the basis representation, we apply the Trotterization
technique to decompose the total evolution into a sequence of
short time evolutions [13,14] [see Eq. (14) below]: (1) this
sequence of evolutions is parameterized by the discretized
scattering time; and (2) for each time step, the evolution oper-
ator of the reaction system is considered as time independent.
We also introduce our idea to design the quantum circuit such
that it is directly parameterized by the scattering time (see
Secs. III D and III E). Finally, we simulate the time-dependent
inelastic scattering process on quantum computer, where the
measurements produce the transition probabilities as well as
other observables of the reaction system.

We demonstrate the tBFQ algorithm with a simple model
problem: the Coulomb excitation of the deuteron in a pe-
ripheral scattering with a heavy ion. This specific model
problem was applied, in Refs. [35,36], to demonstrate the
time-dependent basis function (tBF) approach on classi-
cal computers, which was introduced to achieve a unified
description of nuclear structure and reactions. Though intu-
itively simple, this model problem is a nontrivial problem
due to the strong time-dependent external field that fea-
tures higher-order transitions to states not directly accessible
from the initial state. A generalization of this initial ap-
plication has successfully reproduced experimental results
[37]. Here, we similarly benchmark the tBFQ algorithm
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with this model problem applying the IBM QISKIT quantum
simulator [38,39].

The arrangement of this paper is as follows. In Sec. II we
discuss the elements of the scattering theory related to this
work. In Sec. III we present the details of the tBFQ algorithm.
We illustrate the model problem and the simulation conditions
in Secs. IV and V, respectively. In Sec. VI we show the
results of the model problem via quantum simulations, where
we also compare the results of the tBFQ with those of the
tBF approach to validate the quantum simulation results. We
conclude with Sec. VII, where we also provide the outlook.
We present in the Appendix a preliminary prescription to
decompose a diagonal unitary.

II. THEORY

In this work we focus on the Hamiltonian dynamics of a
subset of the nuclear inelastic scattering problems in which
the internal degrees of freedom of the reaction system are
excited by strong time-dependent external interactions. In this
section we show our formalism of the Hamiltonian dynamics
and define our problem set. We also present the details of the
construction of the basis representation.

A. Hamiltonian dynamics

In the Schrödinger picture, the equation of motion of the re-
action system is described by the time-dependent Schrödinger
equation,1

i
∂

∂t
|ψ ; t〉 = Ĥ (t )|ψ ; t〉, (1)

where the full Hamiltonian of the reaction system, Ĥ (t ), can
be divided into two self-adjoint terms:

Ĥ (t ) = Ĥ0 + V̂int (t ), (2)

with Ĥ0 denoting the reference Hamiltonian (assumed to be
time independent) that determines the available excitations
of the reaction system. V̂int (t ) is the time-dependent external
interaction that drives the dynamic excitation processes.

In this work we focus on a subset of the nuclear inelastic
scattering problems. For such problems, we assume that V̂int (t )
can be divided according to, e.g., different sources, and/or
characteristics (e.g., time structure and scale):

V̂int (t ) =
m∑

i=1

V̂i(t ), (3)

where i = 1, 2, . . . , m is the summation index. We take the
total number of such terms to be m. We note that, for general
applications in nuclear reaction theory, m is determined by a
few key characteristics of possible reaction channels. As only
a limited number of such characteristics (e.g., symmetries)
control the reaction dynamics, we expect m to be a small num-
ber (e.g., m = 2 would be sufficient for the model problem

1In this work, we adopt the natural units and take h̄ = c = 1.
For notation, we use Û , U , Ũ to denote the operator, its matrix
representation, and the corresponding gate in the quantum circuit,
respectively.

discussed in Sec. IV as well as its extension to a realistic
scattering problem presented in Ref. [37]). Furthermore, we
assume that each term V̂i(t ) can be factorized into two parts:
the time-dependent external part ai(t ) (e.g., due to the external
time-varying fields) and the time-independent part Ŵi that
characterizes the intrinsic properties of the reaction system

V̂i(t ) = ai(t )Ŵi. (4)

The state vector of the system at t � t0 can be solved based
on Eq. (1) as

|ψ ; t〉 = Û (t ; t0)|ψ ; t0〉

= T̂

{
exp

[
− i

∫ t

t0

( Ĥ0 + V̂int (t
′))︸ ︷︷ ︸

≡Ĥ (t ′ )

dt ′
]}

|ψ ; t0〉, (5)

where Û (t ; t0) is the time-evolution operator that propagates
the system from t0 to t . T̂ is the time-ordering operator.

B. Basis representation

For a full Hamiltonian of Nd degrees of freedom (or dimen-
sion of the Hamiltonian in a matrix representation), quantum
computers take a poly(Nd ,�t ) number of gates to simulate
the time-evolution operator for a given time increment �t .
For practical calculations, it is important to select a repre-
sentation that efficiently accounts for the essential degrees of
freedom of the full Hamiltonian. While the lattice representa-
tion [23,40] and the particle-number representation (see, e.g.,
Refs. [19,41]) could also work in reducing the dimension of
reaction problems, we suggest that the basis representation is
advantageous because of its capacity to incorporate both the
bound and scattering channels of nuclear systems [37,42].

The construction of a basis representation suitable for the
initial applications that we contemplate has been detailed
in our previous works [35–37]. In particular, we solve the
eigenequation of a reference Hamiltonian Ĥ0 [Eq. (2)] of the
reaction system:

Ĥ0|β j〉 = Ej |β j〉, (6)

where Ej denotes the eigenenergy corresponding to the eigen-
vector |β j〉. The subscript “ j” is an index which runs over
individual state vectors. The eigenbasis set {|β j〉} is then
adopted to construct the basis representation for the reaction
system that will be subject to the external interaction char-
acterized by V̂int (t ). In principle, the basis set has infinite
dimension, so approximations based on the details of the
application enter into consideration. For our test application,
we apply an importance truncation scheme to regulate the
basis size while retaining the predominant inelastic scattering
physics (see, e.g., an example in Ref. [37], where we veri-
fied the independence of the obtained results from the basis
parameters and from the basis cutoff).

Within the basis representation, we evaluate the matrix
element of the reference Hamiltonian Ĥ0 in Eq. (2) as

〈β j |Ĥ0|βk〉 = Ejδ jk . (7)

The basis set {|β j〉} constructed from Ĥ0 characterizes only
the intrinsic degrees of freedom of the reaction system, and
the matrix element of V̂int (t ) in the basis representation admits
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the form

〈β j |V̂int (t )|βk〉 =
m∑

i=1

ai(t ) 〈β j |Ŵi|βk〉, (8)

where we have applied the assumptions of additivity and
factorization [Eqs. (3) and (4)].

The state vector of the reaction system in the basis repre-
sentation is

|ψ ; t〉 =
∑

j

Cj (t )|β j〉, (9)

with the amplitude Cj (t ) ≡ 〈β j |ψ ; t〉 corresponding to the
basis |β j〉.

In general, the expectation value for the operator Ô repre-
senting an observable of the reaction system can be expressed
using the fully entangled state vector of the reaction system as

〈ψ ; t |Ô|ψ ; t〉 =
∑

j,k

Cj
∗(t )Ck (t )〈β j |Ô|βk〉. (10)

In this work we limit our discussion to scalar operators Ô,
for which 〈β j |Ô|βk〉 = 0 if j �= k in our chosen basis repre-
sentation. This enables us to avoid evaluating the interference
terms (with j �= k), which requires additional research efforts
beyond the scope of the current work. An experiment corre-
sponding to this operator makes a projection onto an available
state in the basis space of the reaction system, leading to a
measurement of the expectation value 〈Ô(t )〉 according to the
formalism of the ensemble average:

〈Ô(t )〉 =
∑

j

p j (t )〈Ô〉 j, (11)

where p j (t ) ≡ |Cj (t )|2 and 〈Ô〉 j ≡ 〈β j |Ô|β j〉. As in Ref. [35],
we remark that the asymptotic value 〈Ô(t f )〉 (at the end of
the scattering when the external field is sufficiently weak) is
the quantity for experimental interrogations, while evaluations
at intermediate times expose quantal effects, such as those
due to virtual excitations, that are not directly measurable
in experiments. In this work we adopt Eq. (11) to evaluate
observables of the reaction system.

III. ALGORITHM

In this section, we show our time-dependent quantum
algorithm to simulate the subset of the nuclear inelastic scat-
tering problems. We divide the discussion into seven parts:
(1) the preparation of the initial state; (2) the approximation
of the time-evolution operator; (3) the decomposition of the
time-evolution operator in the basis representation; (4) the
construction of the complete time evolution; (5) the construc-
tion of the quantum circuit; (6) the quantum simulation and
measurement; and (7) the complexity of the tBFQ algorithm.
In the following, we present the details of these topics.

A. Preparation of the initial state

For our protocol of quantum simulating the subset of the
nuclear inelastic scattering problems, we first prepare the
initial state of the reaction system. In this work we map the
basis states {|β j〉} to a number of qubit configurations which

are formed by various sequences of binaries with each binary
corresponding to one qubit in the quantum register. Following
this compact encoding scheme, as an example we have the
mapping from the basis states {|0〉, |1〉, |2〉, |3〉} to the two-
qubit configurations as follows:

|0〉 �→ |00〉, |1〉 �→ |10〉, |2〉 �→ |01〉, |3〉 �→ |11〉. (12)

In general, it takes 
log2 Nd� qubits, as the minimum, to rep-
resent the basis space of dimension Nd .

In the basis representation, the initial state vector of the
reaction system, |ψ ; t0〉, is a superposition of the bases, as
illustrated by Eq. (9). In the quantum simulations, the qubit
configuration that corresponds to |ψ ; t0〉 can be created by ap-
plying a sequence of elementary gates, e.g., the Pauli-X and/or
the Hadamard gate(s) [2], to the initial qubit configuration
(usually defaulted as |000 · · · 〉) in the quantum register.

B. Approximation of the time-evolution operator

We start with the discretization of the scattering time. In
particular, the scattering duration [t0, t f ] is discretized into n
partitions, with the equal time-step length �t = (t f − t0)/n.
The time-evolution operator [Eq. (5)] can then be approxi-
mated as

Û (t f ; t0) ≈ T̂ {exp[−i[Ĥ (t f )�t + · · · + Ĥ (tk )�t + · · ·
+ Ĥ (t2)�t + Ĥ (t1)�t]}. (13)

Note that the accuracy of this approximation depends on the
magnitude of �t . In principle, we require ||Ĥ (ti )|| · �t 
 1
for any moment during the scattering, i.e., ti ∈ [t0, t f ].

We further approximate Û (t f ; t0) by a series of unitary
evolution operators according to the first-order Trotterization
[2]:

Û (t f ; t0) = e−iĤ (t f )�t · · · e−iĤ (tk )�t · · · e−iĤ (t2 )�t e−iĤ (t1 )�t

+ O(�t2), (14)

with tk being the discretized scattering time (k = 1, 2, . . . , n
and tn = t f ). The accuracy of the first-order Trotterization is
up to (�t )2 [2]. In principle, a finer time step improves the
accuracy in the Trotterization at the cost of computational
resources. Note that our approximation of Û (t f ; t0) can be
improved by applying higher-order Trotterization formalism
[43,44]. As in Refs. [13,14], we take e−iĤ (t )�t to vary with
the discretized scattering time, while every e−iĤ (tk )�t holds the
same for the time step [tk−1, tk].

For the subset of the nuclear inelastic scattering prob-
lems specified by the additivity and factorization assumptions
in Eqs. (3) and (4), we can further approximate the time-
evolution operator for a single time step as [2]

e−iĤ (tk )�t = e−i(Ĥ0+
∑m

i=1 V̂i (tk ))�t

= e−iĤ0�t e−iV̂1(tk )�t e−iV̂2 (tk )�t · · ·e−iV̂m (tk )�t+O(�t2).
(15)

C. Decomposition of the time-evolution operator
in the basis representation

We start with the expression of the unitary U (tk ), which
is the matrix of the time-evolution operator for a single time
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step at tk , e−iĤ (tk )�t , in the basis representation. Indeed, the
element of U (tk ) can be obtained from Eq. (15) by inserting
the identity operators

∑
j |β j〉〈β j | as

〈β j |e−iĤ (tk )�t |βl〉 ≈
∑

pqr···s
〈β j |e−iĤ0�t |βp〉〈βp|e−iV̂1(tk )�t |βq〉

× 〈βq|e−iV̂2(tk )�t |βr〉 · · · 〈βs|e−iV̂m (tk )�t |βl〉.
(16)

In the matrix form, Eqs. (15) and (16) read

U (tk ) ≈ UH0,dUV1 (tk )UV2 (tk ) · · ·UVm (tk ), (17)

where the element of UH0,d is 〈β j |e−iĤ0�t |βl〉 and that of
UVi (tk ) is 〈β j |e−iV̂i (tk )�t |βl〉 (with i = 1, 2, . . . , m).

Next, we seek to decompose the unitary U (tk ) such that
(1) the time-dependent parts and the time-independent parts
factorize and (2) the time-dependent parts are directly param-
eterized according to the scattering time (or Trotter time).
In doing so, the resulting unitaries are convenient for the
quantum circuit construction. In the following we discuss the
formalism of the U (tk ) decomposition leading to our result in
Eq. (23).

In particular, we proceed with the following prescriptions:
(1) The matrix element of UH0,d can be evaluated based on

Eq. (7) as

〈β j |e−iĤ0�t |βl〉 = e−iE j�tδ jl . (18)

The unitary UH0,d is hence diagonal2 in the basis represen-
tation. We note that UH0,d is independent of the scattering
time. That is, UH0,d is the same for all the time-evolution steps
during the scattering.

(2) The unitary UVi (tk ) (with i = 1, 2, . . . , m) can be
evaluated based on the eigenequation of the operator Ŵi:

Ŵi|ζiα〉 = wiα|ζiα〉, (19)

where wiα is the eigenvalue that corresponds to the eigenbasis
|ζiα〉, with α being the label. Since Ŵi is time independent
[Eq. (4)], neither the eigenbasis set {|ζiα〉} nor the correspond-
ing eigenvalue set {wiα} depend on the scattering time. The set
{|ζiα〉} forms the time-independent eigenrepresentation of Ŵi.

For each eigenvector |ζiα〉, the following identity holds
[45]:

e−iV̂i (tk )�t |ζiα〉 = e−iai (tk )Ŵi�t |ζiα〉 = e−iai (tk )wiα�t |ζiα〉. (20)

The matrix element of the operator e−iV̂i (tk )�t in the basis
representation can then be evaluated as

〈β j |e−iV̂i (tk )�t |βl〉 =
∑
α,γ

〈β j |ζα〉〈ζα|e−iai (tk )Ŵi�t |ζγ 〉〈ζγ |βl〉

=
∑

α

〈β j |ζα〉e−iai (tk )wiα�t 〈ζα|βl〉. (21)

Based on Eq. (21), the unitary UVi (tk ) factorizes as

UVi (tk ) = UiUi,d (tk )U †
i , (22)

2In this work, we use the subscript d to denote diagonal matrix.

where the transformation matrix Ui is constructed from the
amplitudes {〈β j |ζiα〉}, which characterizes the transformation
between the basis representation and the eigenrepresentation
of the operator Ŵi. Ui,d (tk ) is a diagonal unitary with entries
{e−iai (tk )wiα�t }.3

(3) According to Eqs. (16), (18), and (22), in the basis
representation, the matrix of the time-evolution operator for
a single time step at tk can be decomposed into a series of
unitaries:

U (tk ) ≈UH0,d U1U1,d (tk )U †
1︸ ︷︷ ︸

UV1 (tk )

U2U2,d (tk )U †
2︸ ︷︷ ︸

UV2 (tk )

· · ·UmUm,d (tk )U †
m︸ ︷︷ ︸

UVm (tk )

.

(23)

We note that Ui (with i = 1, 2, . . . , m) and UH0,d are time
independent. Once the set of eigenenergies {Ej}, the basis
sets {|β j〉} and {|ζiα〉} are determined according to Eqs. (6)
and (19), Ui and UH0,d are fixed for all the time-evolution
steps during the scattering. On the other hand, we note that
the diagonal unitary Ui,d (tk ) is time dependent. However, this
time dependence is simple: it is determined only by ai(tk ) in
the exponents of the entries of Ui,d (tk ), i.e., {e−iai (tk )wiα�t }. It
is therefore easy to update Ui,d (tk ) according to the scattering
time.

D. The construction of the complete time evolution

In essence, the decomposition shown in Eq. (23) provides a
scattering-time-parameterized module to construct the unitary
for every time-evolution step in the simulation of scattering
dynamics. The unitary of the complete time-evolution opera-
tor Û (t f ; t0) can be calculated as a sequence of such modules
according to Eq. (14):

U (t f ; t0)

= U (t f ) · · ·U (tk ) · · ·U (t1) + O(�t2)

= UH0,d U1U1,d (t f )U †
1 U2U2,d (t )U †

2 · · ·UmUm,d (t f )U †
m︸ ︷︷ ︸

U (t f )

× · · ·UH0,d U1U1,d (tk )U †
1 U2U2,d (tk )U †

2 · · ·UmUm,d (tk )U †
m︸ ︷︷ ︸

U (tk )

× · · ·UH0,d U1U1,d (t1)U †
1 U2U2,d (t1)U †

2 · · ·UmUm,d (t1)U †
m︸ ︷︷ ︸

U (t1 )

+ O(�t2). (24)

We note that the complete time evolution for the scattering
problem in the time-dependent external fields [represented by
Eqs. (3), (4), and (5)] does not involve classical computation
at intermediate steps. That is, the tBFQ algorithm involves
only quantum computation, without any hybrid computation
at intermediate time steps.

3Note that, throughout this paper, we write explicitly the argument
tk to denote those unitaries and gates that are parameterized by the
scattering time. For example, in Eq. (22), Ui (and the corresponding
gate Ũi) does not depend on the scattering time (holds the same for
the entire dynamics simulation), while Ui,d (tk ) [and the correspond-
ing gate Ũi,d (tk )] is a function of the scattering time.
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FIG. 1. Schematic quantum circuit design of Ũ (t f ; t0 ) for the
complete time evolution according to Eq. (24) on an Nq-qubit quan-
tum register. The circuit operates from left to right. The gate Ũ (tk ),
with tk = t1, t2, . . . , tn and tn = t f , corresponds to the time-evolution
operator of a single time step at scattering time tk . Though varying
with tk , the Ũ (tk ) is considered to be time invariant during each short
time step [tk−1, tk]. |q〉⊗Nq denotes the Nq-qubit register.

E. Quantum circuit construction

We follow a compact encoding scheme described in
Sec. III A and qubitize the basis representation (see also in
Sec. V below for a detailed illustration). Following this com-
pact encoding scheme, the number of qubits required for
representing Nd bases is 
log2 Nd�. We construct the quantum
circuit based on this encoding scheme. For the purpose of
illustration, we show in Fig. 1 the schematic quantum cir-
cuit that corresponds to the time-evolution operator of the
complete scattering Û (t f ; t0) [Eq. (14)]. We recall that the
underlying idea of simulating Û (t f ; t0) is (1) discretizing the
scattering time into short time steps and (2) approximating
Û (t f ; t0) by the Trotter decomposition, where the resulting se-
quence of time-evolution operators Û (tk ) (tk = t1, t2, . . . , tn
and tn = t f ) varies with scattering time tk , while every Û (tk )
is considered to be time invariant on the very time step it
acts. Correspondingly, in Fig. 1 the circuit of Û (t f ; t0) is
constructed from a sequence of gates Ũ (tk ), where each Ũ (tk )
is taken to be the same throughout the short time step [tk−1, tk],
while Ũ (tk ) varies between different times steps in the simu-
lation.

Next, we construct the circuit to realize Ũ (tk ), which
evolves the reaction system for the time step [tk−1, tk]. We
achieve this by applying the decomposition principle in
Eq. (23), whereas each of the unitaries on the right-hand side
of Eq. (23) corresponds to a specific quantum gate (e.g., the
unitary UH0,d corresponds to the gate ŨH0,d ). As a result, Ũ (tk )
becomes the combination of gates Ũi, Ũ †

i , ŨH0,d , and Ũi,d (tk )
(i = 1, 2, . . . , m). For the purpose of illustration, we show
the schematic circuit design of Ũ (tk ) for the case m = 2 on
a Nq-qubit quantum register in Fig. 2. Acting from the left

and comparing with Eq. (23), the first three gates correspond
to the unitary UV2 (tk ) = U2U2,d (tk )U †

2 , while the second three
gates correspond to the unitary UV1 (tk ) = U1U1,d (tk )U †

1 . The
rightmost gate corresponds to the unitary UH0,d .

We can construct the circuit of Ũ (tk ) such that it is of
fixed structure with gate parameters being explicit functions
of the scattering time. This can be seen from the components
of Ũ (tk ): (1) the unitaries Ui, U †

i , and UH0,d are all time
independent, and the corresponding gates Ũi, Ũ †

i , and ŨH0,d

are hence fixed for all the time-evolution steps; and (2) the
other type of unitary, Ui,d (tk ) (diagonal), is explicitly scaled
by the scattering time [see the explanation below Eq. (23)];
the corresponding Ũi,d (tk ) can be realized with a circuit of
fixed structure with parameters determined by the scattering
time (see, e.g., Appendix for a naïve approach).

Ũ (tk ) serves as a module to construct the complete circuit
Ũ (t f ; t0) for the scattering process. Since all such modules
can be realized by simply tuning the scattering time tk with
the circuit structure being the same, the quantum computer
can automatically construct Ũ (t f ; t0) with the module Ũ (tk )
without aid from classical computers at intermediate steps
during quantum simulation.

F. Quantum simulation and measurement

With the prescriptions described above, we construct the
complete quantum circuit for the scattering. As illustrated
in Fig. 1, the complete circuit consists of a sequence of
modules sorted according to the scattering time, where (1)
these modules share the same scattering-time-invariant part
(of which both the circuit structure and the gate parameters are
the same); and (2) the remaining time-dependent part in each
module is of fixed circuit structure with gate parameters being
functions of the scattering time. Overall, the structure of a
module repeats with only scattering time altered, such that the
entire circuit for the dynamics simulation can be automatically
generated on the quantum computer.

We then evolve the initial state according to the complete
quantum circuit for simulating the scattering. At the end of
each evolution, we measure all the qubits simultaneously and
therefore collapse the wave function of the reaction system.
After a set of such simulations, we collect the probabilities
of basis states {|Cj (t f )|2}, which represent our knowledge of
the reaction system at the end of the scattering. According to
the probabilities {|Cj (t f )|2}, the observables of the reaction
system can then be computed.

FIG. 2. Schematic circuit design for the time-evolution operator of a single time step, Û (tk ), for the case with m = 2 on a Nq-qubit quantum
register. |q〉⊗Nq denotes the Nq-qubit register. The circuit operates from the left to right. The circuit illustrates the idea to design the gate Ũ (tk )
[see in Fig. 1] according to the decomposition principle Eq. (23). More complicated cases (with larger m) can be generalized based on this
design. See details in the text.
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We can also evolve the initial state to a fixed inter-
mediate time tk during the scattering. The corresponding
quantum circuit can be constructed by combining a sequence
of scattering-time-parameterized modules up to the time tk ,
according to Fig. 1. As such, the probabilities of basis states
{|Cj (tk )|2} and the quantity 〈Ô(tk )〉 at intermediate times of the
scattering can also be obtained from the quantum simulations
and measurements. We remark these values at the intermedi-
ate time during the scattering are quantal effects for tracking
the dynamics and they are not experimentally measurable.

G. The complexity of the tBFQ algorithm

We focus on the applications of the tBFQ algorithm to a
subset of the nuclear inelastic scattering problems that are
of physical interest (see definitions in Sec. II A). For such
problems, the time-dependent, full Hamiltonian H (t ) = H0 +∑m

i=1 Vi(t ) is sparse and its norm ||H (t )|| bounded for the
entire scattering t ∈ [t0, t f ]. In particular, within the basis
representation, we find that (1) H0 is diagonal with ||H0||
bounded due to the importance truncation scheme applied to
regulate the basis set (see discussions in Sec. II B); (2) each
Vi(t ) (with i = 1, 2, . . . , m) is a sparse matrix due to the
selection rules of the transition operator [46]; and (3) for real-
istic scatterings, ||Vi(t )|| is bounded, while the total number of
interaction channels and types m is limited (e.g., taking m = 2
to account for the low-energy Coulomb excitation processes in
Sec. IV is sufficient).

For the time-evolution step at arbitrary time tk during the
scattering, the unitary of time evolution U (tk ) in the basis
representation can be decomposed into 3m + 1 unitaries ac-
cording to Eq. (23). We recall that (1) UH0,d is diagonal
(sparsity 1); (2) the transformation unitary Ui, together with
the diagonal unitary Ui,d (tk ) (sparsity 1), is solved from the
spectral decomposition of the corresponding sparse matrix
Vi(tk ) = ai(tk )Wi(tk ) [Eq. (19)]. In this work, we assume that
Ui is both row and column sparse and take the sparsity of Ui as
Di.4 Then, according to Refs. [47,48], each one of these 3m +
1 unitaries can be simulated to precision ε using a circuit of
size bounded by poly(log2 Nd , T, Dmax, 1/�t, 1/ε), where Nd

denotes the dimension of the basis space, and T = t f − t0
represents the total scattering duration. Dmax is the maximal
sparsity of all the transformation unitaries in Eq. (23), i.e.,
Dmax = maxi{Di} with i = 1, 2, . . . , m. Note that Dmax is a
constant that applies to all the time-evolution steps according
to the analysis of Eq. (23).

Altogether, we sum over the cost of simulating all the time-
evolution steps, and our approximation of the complete circuit
size is bounded by poly(log2 Nd , T, Dmax, 1/�t, 1/ε). On the
other hand, the classical algorithms for solving such initial
value problems, where the final state vector is obtained by
sequential matrix-vector multiplications, the complexity can
be approximated by (Nd )2 (operations for a single time step of
evolution) times the number of time-evolution steps T/�t . By
comparing the tBFQ and the classical algorithms, we would

4We define Di as the larger one of the row sparsity and the column
sparsity of Ui.

FIG. 3. Setup for the Coulomb excitation of the deuteron in the
peripheral collision with a heavy ion (adopted from Refs. [35,36]).
See the text for more details.

expect an exponential speedup for simulating complicated
inelastic scattering problems.

IV. MODEL PROBLEM

We demonstrate our algorithm by applying it to a model
problem: the Coulomb excitation of the deuteron in a periph-
eral collision with a heavy ion. In our previous papers, we
introduced the time-dependent basis function (tBF) method
and solved this test problem on classical computers [35,36].
Here, we only describe some of the necessary details to make
our discussion self-contained.

Our setup of the model problem is shown in Fig. 3. We
work in the center-of-mass frame of the deuteron target and
take the scattering plane to be the xz plane. For the purpose of
illustration, we place the deuteron target in a weak harmonic
oscillator trap. This trap regulates the continuum states and lo-
calizes the center-of-mass motion of the deuteron to simplify
the problem. We assume that the neutron and proton are both
pointlike and the proton carries the unit charge +e. �r denotes
the position vector of the proton with respect to the neutron.
The separation between the two nucleons is then r ≡ |�r|. The
projectile is a heavy ion, which carries charge Ze and travels
with a constant velocity �v parallel to the ẑ axis. �R denotes the
position vector of the heavy ion from the origin. The impact
parameter is b.

In this demonstration problem, we neglect nuclear interac-
tions between the target and the projectile and focus only on
the deuteron target scattered by the external electromagnetic
field produced by the heavy ion. Following our analyses in
Refs. [35,36], the total time-dependent Hamiltonian of the
target is given by Eq. (2), where H0 is taken as the reference
Hamiltonian that describes the intrinsic motion of the target:

Ĥ0 = T̂rel + V̂NN + Ûtrap, (25)

with T̂rel being the relative kinetic energy of the neutron and
the proton and V̂NN the nucleon-nucleon interaction. Ûtrap

denotes the external harmonic oscillator trap acting on the
intrinsic degree of freedom of the target.

As explained in Sec. II B, we employ Ĥ0 to solve for the
eigenbasis set of the target {|β j〉}. While the deuteron can
be solved easily by numerous techniques, we adopt the tech-
niques of the no-core shell model [30–33], anticipating the
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applications of this formalism for larger systems of nucleons.
We neglect the excitations of the center of mass of the two-
body system in this model application and focus on its internal
excitations. In more realistic applications, the center-of-mass
motion is not constrained by a trap, and there is no effect of a
trap on the intrinsic motion [37].

At the limit of low incident speed |�v|, the external interac-
tion V̂int (t ) can be approximated by the dominant contribution
from the electric dipole (E1) component of the time-varying
Coulomb field [46,49]. In the basis representation, the external
interaction in the Schrödinger picture reads

〈β j |V̂int (t )|βk〉 = 4π

3
Ze2

+1∑
μ=−1

Y ∗
1μ(�R)

|R(t )|2

×
∫

d�r〈β j |�r〉 r

2
Y1μ(�r )〈�r|βk〉︸ ︷︷ ︸

≡I( j,k,μ)

, (26)

where Yλμ denotes the spherical harmonics [50], and λ = 1
denotes the E1 component of the Coulomb field. The solid an-
gles �R and �r are specified by the polar and azimuth angles
of �R and �r, respectively. Note that we factorize the interaction
matrix element into the time-dependent part, which results
from the time-varying external field, and the time-independent
part, which comes from the intrinsic motion of the deuteron
[i.e., I ( j, k, μ)].

As for the current model problem, we sort the terms in
Eq. (26) according to μ:

〈β j |V̂int (t )|βk〉 =
√

2π

3
Ze2 sin θ (t )

R2(t )︸ ︷︷ ︸
≡a1(t )

× [I ( j, k, μ = −1) − I ( j, k, μ = +1)]︸ ︷︷ ︸
≡〈β j |Ŵ1|βk〉

+
√

4π

3
Ze2 cos θ (t )

R2(t )︸ ︷︷ ︸
≡a2(t )

I ( j, k, μ = 0)︸ ︷︷ ︸
≡〈β j |Ŵ2|βk〉

, (27)

where the trigonometric functions can be evaluated based on
the scattering setup in Fig. 3 as

sin θ (t ) = b

R(t )
, cos θ (t ) = −L0 + vt

R(t )
, (28)

with R(t ) =
√

b2 + (−L0 + vt )2. Note that we also factorize
the time-dependent term ai(t ) resulting from the time-varying
external field and the time-independent term 〈β j |Ŵi|βk〉 that
characterizes the intrinsic properties of the deuteron system.
Equation (27) can hence be rewritten as

〈β j |V̂int (t )|βk〉 = 〈β j | a1(t )Ŵ1︸ ︷︷ ︸
≡V̂1(t )

|βk〉 + 〈β j | a2(t )Ŵ2︸ ︷︷ ︸
≡V̂2(t )

|βk〉. (29)

We remark that, in the basis representation, the matrices W1,
W2, and hence Vint (t ) are all sparse due to the E1 selection
rules. Since H0 is diagonal, the full time-dependent Hamilto-
nian of the model problem can then be sorted into three sparse
matrices as

H (t ) = H0 + a1(t )W1 + a2(t )W2. (30)

As discussed in Sec. III, in the basis representation, the uni-
tary of the time-evolution operator for the time step [tk−1, tk]
can be computed or decomposed as

U (tk ) ≈ UH0,d U1U1,d (tk )U †
1︸ ︷︷ ︸

UV1 (tk )

U2U2,d (tk )U †
2︸ ︷︷ ︸

UV2 (tk )

. (31)

As explained above, the unitaries U1, U †
1 , U2, U †

2 , and UH0,d

are fixed for all the time-evolution steps according to the
choice of the basis set {|β j〉} and the eigenenergies {Ej} of the
reference Hamiltonian H0 together with that of the eigenbasis
{|ζiα〉} of each operator Wi. On the other hand, U1,d (tk ) and
U2,d (tk ) are directly parameterized according to the scattering
time. The unitary U (tk ) and its decomposition serve as an el-
ementary, scattering-time-parameterized module to construct
the unitary of the complete time-evolution operator.

The quantum circuit for an arbitrary time-evolution step
can be designed according to Eq. (31). The so-constructed
quantum circuit is of fixed structure, with gate parame-
ters being explicit functions of scattering time, as shown in
Fig. 2. We note that this circuit can be implemented as a
scattering-time-parameterized module to construct the com-
plete or partial circuit for simulating the complete and/or
partial scattering process, as shown in Fig. 1.

V. SIMULATION CONDITIONS

We take the projectile to be a bare (all electrons removed)
uranium nucleus, U 92+, which is treated as a pointlike source
of the time-varying external Coulomb potential. The incident
speed is set to be 0.1 in units of the speed of light, while
the impact parameter is chosen to be 5 fm. We also take the
exposure time to be from –3 to 3 MeV−1, which corresponds
to a time duration of approximately 4.0×10−21 s. That is, the
time evolution starts when the uranium is about 60 fm before
its closest approach to the origin and concludes when the
uranium is in the position 60 fm after the closest approach.
Beyond this region, the induced intrinsic excitations of the
target are negligible, since the Coulomb field is sufficiently
weak compared with the available excitations.

We choose the same basis representation as in our previous
works, see Refs. [35,36]. In particular, we obtain the basis
states (or reaction channels) of the target {|β j〉} according to
Eq. (6). For the purpose of demonstration, we trim the basis
size and retain only the lowest seven states in three interaction
channels: (3S1,

3D1), 3P0, and 3P1. These states are listed in
Table I, based on which we construct the basis representation
for our model problem. Our basis representation can be di-
rectly mapped to a qubit representation, as provided in the last
column in Table I.

We construct the quantum circuit for our model problem
based on the scattering-time-parameterized modules, as dis-
cussed in Sec. IV. For this exploratory work, we decompose
the relevant gates in the module as follows.5 We apply the

5We remark that improving the circuit design, e.g., by reducing the
circuit depth and the controlled-NOT gate counts, will be an effort
of future work. Our focus here is to illustrate the methodology of
simulating nuclear inelastic scattering on quantum computers.
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TABLE I. Selected basis states of the deuteron target in the
model problem. The target is confined in an external harmonic os-
cillator trap of strength 5 MeV, and the center-of-mass motion of
the target is restricted to the lowest state of the trap. The first and
second columns present the quantum numbers of the selected states.
The third and fourth columns present, respectively, the eigenenergy
and the rms point-charge radius of each state: they contribute to the
intrinsic energy and rms point-charge radius of the target according
to Eq. (11). The last column shows the three-qubit configurations
corresponding to these selected states.

Magnetic Qubit
Channel substate 〈E〉 (MeV) 〈r2〉 1

2 (fm) configuration

M = −1 |000〉
(3S1,

3D1) M = 0 −0.65289 1.47222 |100〉
M = +1 |010〉

3P0 M = 0 12.0733 3.13427 |110〉
M = −1 |001〉

3P1 M = 0 12.7585 3.27644 |101〉
M = +1 |011〉

column-by-column decomposition scheme (see Ref. [51] and
references therein) to obtain the circuits of the time-invarying

gates Ũ1, Ũ2, Ũ †
1 , Ũ †

2 , and ŨH0,d from the respective unitaries
U1, U2, U †

1 , U †
2 , and UH0,d in Eq. (31). In practice, we apply the

UNIVERSALQCOMPILER package [52] to obtain these circuits.
As for the time-dependent gates Ũ1,d (tk ) and Ũ2,d (tk ), we ob-
tain the corresponding circuits by decomposing the respective
diagonal unitaries U1,d (tk ) and U2,d (tk ) following the prescrip-
tions in Refs. [51,53]. In particular, for the current three-qubit
model problem, we present the details of our preliminary
decomposition scheme in Appendix.

We choose the initial state of the deuteron system in our
simulations to be (3S1,

3D1), M = −1, which corresponds to
the |000〉 state of the quantum register. We take the evolution
time step to be �t = 0.01 MeV−1. We simulate our model
problem on an ideal quantum simulator provided by IBM
QISKIT [38,39]. That is, we do not consider the limitations of
the real-world quantum computers, such as the gate noise and
the decoherence effect, in this work.

VI. RESULTS AND DISCUSSION

The transition probabilities of all the retained channels
(Table I) are presented in panels (a)–(g) of Fig. 4. For compar-
ison, we also show the results computed based on a classical
algorithm, the time-dependent basis function (tBF) [35]. We

FIG. 4. Transition probabilities and scattering observables calculated by the tBF method and the tBFQ method. Panels (a)–(g) [panel
(a) presenting the initial state] are the transition probabilities of the selected basis states in Table I. Panels (h) and (i) show the excitation of
intrinsic energy and the expansion of the state-average rms point-charge radius of the deuteron system arising from the Coulomb excitation,
where the results are obtained by both the classical tBF method (smooth red lines in each panel) and the tBFQ method via quantum simulations
on IBM QISKIT (discrete blue points in each panel).

012611-8



QUANTUM SIMULATION OF NUCLEAR INELASTIC … PHYSICAL REVIEW A 104, 012611 (2021)

find good agreement between the results calculated by the
quantum and classical algorithms.6

We work with the ideal quantum simulator. Besides the
error from the approximation of the first-order Totterization,
which is at the order of (�t )2, there is the expected variance
from quantum-mechanical measurement, which is statistical.
For the current work, we take ten quantum simulations, each
with 107 measurements, for every chosen evolution time
shown in Fig. 4. (Note that the number of measurements per
simulation can be adjusted according to the requirement of
the simulation precision; we can reduce the number of mea-
surements per simulation for a lower precision requirement.)
The resulting statistical errors are less than 1% for most of the
retained states, except for 3P0, M = 0 and 3P1, M = 0, where
such errors are less than 4%. We remark that these statistical
errors are expected to decrease with increasing number of
simulations. In Fig. 4 we do not show the error bars explicitly
since they are smaller than the size of the symbols in the plots.

In Fig. 4 we also present the results of the two selected
observables, i.e., the intrinsic energy [panel (h)] and the state-
average rms point-charge radius of the deuteron target [panel
(i)] throughout the Coulomb excitation process.7 We obtain
these results according to Eq. (11). As explained in Sec. II B,
we note that only the asymptotic values of these observables
(i.e., when the Coulomb field is sufficiently weak at the end
of the scattering) are subject to experimental interrogations,
while the intermediate results obtained in the middle of the
scatterings (when the external field is effective and the in-
trinsic transitions take place) are quantal effects which are
not experimentally measurable. As may be expected from
the good agreement in the state population obtained from the
quantum and the classical methods, the corresponding results
of the observables also show a good agreement. Working with
the ideal quantum computer simulator, we note that the error
bars of the results from the quantum simulations come mainly
from the statistics in quantum measurement. These error bars
are smaller than the size of the symbols and are hence omitted.

Finally, we remark that the quantum evolution according
to the tBFQ algorithm is fully coherent. That is, the wave
function of the deuteron evolves in a fully coherent way
during the simulation until it collapses in measurement. This
is one of the appealing aspects of Feynman’s original idea
[1] of simulating one quantum system via another one, in
which the full coherence (and also entanglement) is preserved
naturally. In addition, tBFQ reveals the nonperturbative fea-
tures of the scattering process. By keeping only the dominant
E1 multipole component of the Coulomb field, one would

6As a crosscheck, we also calculate the “Trotterized” evolution via
the classical approach. This is achieved by sequentially multiplying
matrices of dimension 23×23 according to Eq. (24). We find that the
classical Trotterization results agree well with the tBF results (within
the error of less than 1% for each state). Since in panels (a)–(g) of
Fig. 4 the curves of the tBF and the classical Trotterization results
overlap with each other, we do not explicitly present the classical
Trotterization results.

7We remark that the state-average rms point-charge radius of the
deuteron target is measured with respect to the center of mass, so
this radius is 1/2 of the separation r defined in Fig. 3.

expect populations in the states 3P0, M = 0, 3P1, M = −1, and
3P1, M = 0, according to the E1 selection rule [recall that
we prepare the initial state to be (3S1,

3D1), M = −1]. How-
ever, tBFQ keeps all the higher-order effects (e.g., sequential
E1 excitations) as well, which contributes to a complicated
transition network among all the retained states. As a result,
this network feeds the “E1-forbidden” states that cannot be
directly populated from the initial state, such as (3S1,

3D1),
M = +1, during the Coulomb excitation.

VII. CONCLUSION AND OUTLOOK

We present the time-dependent quantum algorithm for the
basis function treatment of nuclear inelastic scattering on
qubits (tBFQ). This algorithm employs the output from clas-
sical nuclear structure calculations (e.g., eigenbasis set and
eigenenergies). It provides an approach for quantum simu-
lating a subset of the nuclear inelastic scattering problems,
where the internal degrees of freedom of the reaction system
are excited by the external interaction.

For tBFQ, we work in the Schrödinger picture and di-
vide the full Hamiltonian of the reaction system undergoing
scattering into the reference Hamiltonian (presumably time
independent), which determines the available excitations of
that system, and the time-dependent external interaction,
which drives the dynamical excitation processes. For the sub-
set of the nuclear inelastic scattering problems, we assume
that the external interaction can be divided according to a
sum of (dominant) terms, where each of the terms couples the
time-dependent part from the external actions (e.g., fields) and
the time-independent part that acts on the intrinsic degrees of
freedom of the reaction system.

We solve for the eigenbases of the reference Hamiltonian
and apply an importance truncation to reduce the size of the
basis set. This trimmed basis set is used to construct the
basis representation, within which we solve the full Hamil-
tonian and the time-evolution operator. We qubitize the basis
representation via a compact encoding scheme and design
the quantum circuit that is directly parameterized according
to the scattering time based on the time-evolution operator.
According to the measurements of the simulations, we obtain
the transition probabilities (which in turn determine the inelas-
tic scattering cross section) and the other observables of the
reaction system undergoing scattering. For the subset of the
inelastic scattering problems that are of physical interest, we
expect that the tBFQ algorithm would achieve an exponential
speedup in simulating complicated scattering problems which
classical algorithms would find intractable.

For illustrative purposes, we demonstrate this algorithm
with a model problem—the Coulomb excitation of the
deuteron in a peripheral collision with a heavy ion. The results
of the transition probabilities and the selected observables
computed by the tBFQ algorithm applying the IBM QISKIT

quantum simulator agree well with the corresponding results
computed by classical methods.

The promise of quantum computers is that the computa-
tional complexity of many-body Hamiltonian dynamics can
be exponentially reduced. However, many challenges exist.
Going forward, the optimization of the algorithm, e.g., con-
structing efficient quantum circuits [54,55], will be necessary
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for simulations of general reaction problems on real quantum
computers. The general features of our algorithm also allow its
use for studying many-body Hamiltonian dynamics in atomic
and subatomic physics [29].
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APPENDIX: DECOMPOSITION OF DIAGONAL UNITARY

In this section we follow Refs. [51,53] and present our pre-
liminary prescription to decompose a diagonal unitary matrix
of size 23×23 with time-varying entries into the corresponding
quantum circuit. To be specific, the unitary matrix is of the
form

P(t ) =

000
001
010
011
100
101
110
111

000 001 010 011 100 101 110 111⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−ia(t )

e−ib(t )

e−ic(t )

e−id (t )

e−ie(t )

e−i f (t )

e−ig(t )

e−ih(t )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A1)

where a(t ), b(t ), c(t ), d (t ), e(t ), f (t ), g(t ), and h(t ) are real
functions of time t . To proceed, we label the columns and
rows by the binary configurations 000, 001, . . . , 111. We take
the leftmost (middle) qubit to be the most (second) significant
qubit and apply them to control the least significant (right-
most) qubit.

We decompose P(t ) as the circuit below,

where the uppermost/middle/lowermost line denotes the
most/second/least significant qubit. In the matrix form, these
gates are

Ua(t ) =
(

e−ia(t )

e−ib(t )

)
, Ub(t ) =

(
e−ic(t )

e−id (t )

)
,

(A2)

Uc(t ) =
(

e−ie(t )

e−i f (t )

)
, Ue(t ) =

(
e−ig(t )

e−ih(t )

)
.

(A3)

The decomposition of Eq. (A1) can then be done with the
following circuit identity [51,53]:

,

where Ũx is a general unitary gate. Ã, B̃, C̃ are special unitary
gates, and Ẽ is the phase gate (see Ref. [53] for details). As a
special case in this work, we consider

Ux(t ) =
(

e−ix(t )

e−iy(t )

)
, (A4)

where x(t ) and y(t ) are real functions on time t . Then the gates
in the above circuit identity are

Ã = Ĩ, (A5)

B̃(t ) = R̃z[−δ(t )], B̃†(t ) = R̃z[δ(t )], (A6)

C̃(t ) = R̃z[δ(t )], C̃†(t ) = R̃z[−δ(t )], (A7)

Ẽ (t ) = |0〉〈0| + eiα(t )|1〉〈1|, Ẽ†(t ) = |0〉〈0| + e−iα(t )|1〉〈1|,
(A8)
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with the time-dependent parameters δ(t ) = x(t )−y(t )
4 and

α(t ) = − x(t )+y(t )
4 . Ĩ denotes the identity gate, while R̃z[θ ] is

the rotational gate about the ẑ axis, with the angle θ being the
parameter. In the matrix form, these gates are [2]

I =
(

1
1

)
, Rz[θ ]=

(
e−iθ/2

eiθ/2

)
, E (α)=

(
1

eiα

)
. (A9)

Since a gate controlled on |1〉 can be transformed
into a gate controlled on |0〉 using two Pauli σ̃x gates

[51], e.g.,

,

the other parts of the matrix P(t ) can be decomposed follow-
ing the procedures described above.
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