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Ultrahigh-fidelity composite rotational quantum gates
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Composite pulse sequences, which produce arbitrary predefined rotations of a qubit on the Bloch sphere, are
presented. The composite sequences contain up to 17 pulses and can compensate up to 8 orders of experimental
errors in the pulse amplitude and the pulse duration. Composite sequences for three basic quantum gates,
X (NOT), Hadamard and arbitrary rotation, are derived. Three classes of composite sequences are presented: one
symmetric and two asymmetric. They contain as their lowest members two well-known composite sequences:
the three-pulse symmetric SCROFULOUS pulse and the four-pulse asymmetric BB1 pulse, which compensate
first- and second-order errors, respectively. The shorter sequences are derived analytically, and the longer ones
numerically (instead by nesting and concatenation, as usually done hitherto). Consequently, the composite
sequences derived here match or outperform the existing ones in terms of either speed or accuracy, or both.
For example, we derive a second-order composite sequence, which is faster (by about 13%) than the famous
BB1 sequence. For higher-order sequences, the speedup becomes much more pronounced. This is important for
quantum information processing as the sequences derived here provide more options for finding the sweet spot
between ultrahigh fidelity and high speed.
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I. INTRODUCTION

Quantum rotation gates, such as the Hadamard gate and the
X (or NOT) gate, are central elements in any quantum circuit
[1–3]. Traditionally, a general rotation at an angle θ is imple-
mented by a resonant pulsed field with a temporal area of θ ,
hence the name θ pulses. In particular, the Hadamard gate is
implemented by a resonant π/2 pulse, and the X gate is im-
plemented by a resonant π pulse, which are the theoretically
fastest means for producing these gates. However, resonant
driving is prone to errors in the experimental parameters, e.g.,
the pulse amplitude, duration, and detuning.

Various proposals have been made in order to generate
rotation gates that are resilient to experimental errors, at the
expense of being longer, and hence slower. Adiabatic tech-
niques are the traditional remedy for tackling such errors [4].
Ever since 1932 [5–8], adiabatic evolution via a level crossing
is the ubiquitous adiabatic method to produce complete popu-
lation inversion and hence the X gate. More recently, adiabatic
evolution via a half-crossing has gained popularity as a means
for producing half-excitation, and hence the Hadamard gate
[9–13]. This idea has been used in a technique known as
half-SCRAP (Stark-chirped rapid adiabatic passage) [9] and
the closely related two-state STIRAP (stimulated Raman adia-
batic passage) [10], which has been successfully implemented
in a trapped-ion experiment [11]. In both cases, pulse shaping
and chirping are designed such that their time dependencies
resemble the delayed-pulse ordering of conventional STIRAP
[14]. In a variation of these, an adiabatic technique has been
proposed [12] which generates arbitrary coherent superposi-
tions of two states, which is controlled by the initial and final
ratios of the field’s amplitude and its detuning. An extension
of this half-crossing technique to three states has been exper-

imentally demonstrated in a trapped-ion experiment, with an
error of about 1.4×10−4, i.e., close to the quantum compu-
tation benchmark level [13], which was achieved by using
pulse shaping. Another proposal used a sequence of two half-
crossing adiabatic pulses split by a phase jump, which serves
as a control parameter to the created superposition state [15].

In three-state Raman-coupled qubits, a very popular tech-
nique is fractional STIRAP [16–18], in which the Stokes
pulse arrives before the pump pulse but the two pulses vanish
simultaneously. This leads to the creation of a coherent super-
position of the two end states of the chain. Tripod-STIRAP
[19–21], an extension of STIRAP wherein a single state is
coupled to three other states, has also been used for the gener-
ation of coherent superpositions of these three states or two of
them. We also note a technique for creation of coherent super-
position states and for navigation between them by quantum
Householder reflections [22,23].

While adiabatic techniques provide great robustness to
parameter errors, in general they struggle to deliver the ul-
trahigh fidelity required in quantum computation. A powerful
alternative to achieve ultrahigh fidelity while featuring robust-
ness to parameter errors is the technique of composite pulses
[24–26]. The composite pulse sequence is a finite train of
pulses with well-defined relative phases between them. These
phases are control parameters, which are determined by the
desired excitation profile. Composite pulses can shape the
excitation profile in essentially any desired manner, which
is impossible with a single resonant pulse or adiabatic tech-
niques. In particular, one can create a broadband composite
π pulse, which delivers transition probability of 1 not only
for a pulse area A = π and zero detuning � = 0, as a
single resonant π pulse, but also in some ranges around these
values [24,25,27–37]. Alternatively, narrow-band composite

2469-9926/2021/104(1)/012609(12) 012609-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2092-4257
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.012609&domain=pdf&date_stamp=2021-07-21
https://doi.org/10.1103/PhysRevA.104.012609


HAYK L. GEVORGYAN AND NIKOLAY V. VITANOV PHYSICAL REVIEW A 104, 012609 (2021)

pulses [35–44] squeeze the excitation profile around a certain
point in the parameter space: they produce excitation that is
more sensitive to parameter variations than a single pulse,
with interesting applications to sensing, metrology, and spatial
localization. A third family of composite pulses, pass-band
pulses, combine the features of broadband and narrow-band
pulses: they provide highly accurate excitation inside a cer-
tain parameter range and negligibly small excitation outside
it [36,41,45–48].

Composite pulses have been developed in nuclear magnetic
resonance (NMR) in the 1980s. However, similar ideas have
been introduced in polarization optics much earlier, in the
1940s [49–51]: by stacking several ordinary wave plates at
specific angles with respect to their fast polarization axes
one can design either achromatic (broadband) polarization
retarders and rotators or polarization filters [49–59]. In the last
two decades, composite pulses have spread out to most ex-
perimental quantum information platforms far beyond NMR.
Applications include qubit control in trapped ions [60–67],
neutral atoms [68], doped solids [33,69,70], quantum dots
[71–76], and NV centers in diamond [77], high-accuracy opti-
cal clocks [78], cold-atoms interferometry [79–81], optically
dense atomic ensembles [82], magnetometry [83], optome-
chanics [84], etc.

There are no universally applicable composite pulses to
all kinds of problems and physical platforms because the
requirements in different applications are different. For in-
stance, in NMR, composite pulses which compensate errors
in very broad parameter ranges with only modest accuracy are
ubiquitous. On the contrary, in quantum information, very
high accuracy is required within some moderately large pa-
rameter ranges. Composite pulses are particularly suitable for
quantum information because they are quite unique in pro-
viding both ultrahigh fidelity and resilience to experimental
errors. No other quantum control method offers this combi-
nation of high fidelity and robustness to errors and, therefore,
composite pulses might be the key enabling control technol-
ogy for high-fidelity qubit operations which are mandatory in
scalable quantum computing.

In this paper, we present several sets of single-qubit
rotation quantum gates constructed with composite pulse se-
quences. There are two classes of composite rotations, named
variable and constant rotations [24,25]. Variable-rotation
composite pulses (sometimes called class B) compensate pa-
rameter errors only in the transition probability p (or the
population inversion w = 2p − 1). Recently [85], several
classes of arbitrarily accurate analytic composite sequences
for variable rotations have been presented. Constant-rotation,
or phase-distortionless [86], composite pulses (sometimes
called class A) compensate parameter errors in both the tran-
sition probability and the phases of the created superposition
state (i.e., in the Bloch vector coherences u and v). The latter
are obviously more demanding and require longer sequences
for the same order of compensation. However, in quantum
information processing wherein phase relations are essential,
constant rotations are clearly the ones to be used for quantum
rotation gates [87].

In this paper, we focus on the derivation of ultrahigh-
fidelity composite rotation gates, including the X, Hadamard,
and general rotation, which compensate pulse-area errors up

to eighth order. The X and Hadamard gates are special cases
of general rotations but they are treated separately due to their
importance in quantum information.

Our results extend earlier results on some of these gates
using shorter pulse sequences. The first phase-distortionless
composite pulse was designed by Tycko [38] which produces
a composite X gate. It consists of three pulses of total nominal
area of 3π and provides a first-order error compensation. A
second-order error compensation composite pulse was con-
structed by Wimperis, the well-known BB1 (broadband of
type 1) pulse [31,36]. It consists of four pulses with a total
nominal pulse area of 4π + θ and it produces a constant
rotation at an arbitrary angle θ . More recently, Wimperis
and co-workers developed several phase-distortionless anti-
symmetric composite π pulses designed for rephasing of
coherence [88–90]. Jones and co-workers have devoted a great
deal of attention to composite X gates, with an emphasis of
geometric approaches for derivation of such sequences, which
work up to 5 and 7 pulses [87,91–93]. We point out that our
results supplement earlier results by our and other groups on
different gates, i.e., composite quantum phase gate [94], the
controlled-NOT (CNOT) [95–97], Toffoli [98], and Cn-NOTgates
[98].

Composite rotation gates with a pulse-area error compen-
sation of third and higher order have been constructed using
nesting and concatenation of shorter composite sequences.
For larger error order, this procedure produces (impractical)
composite sequences of extreme length. Here we use analytic
approaches and brute-force numerics to derive three classes
of composite sequences for X, Hadamard, and rotation gates
which achieve error compensation of up to eighth order with
much shorter sequences than before.

This paper is organized as follows. In Sec. II we explain the
derivation method. Composite π rotations, representing the
X gate, are presented in Sec. III. Composite implementations
of the Hadamard gate are given in Sec. IV, and composite
rotation gates in Sec. V. Finally, Sec. VI presents the conclu-
sions.

II. COMPOSITE ROTATION GATES: DERIVATION

A. Composite rotation gates

Our objective is to construct the qubit rotation gate R̂y(θ ) =
ei(θ/2)σ̂y , where θ is the rotation angle and σ̂y is the Pauli’s y
matrix. In matrix form,

Ry(θ ) =
[

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

]
. (1)

The rotation gate (1) is equivalent to the rotation gate R̂x(θ ) =
ei(θ/2)σ̂x or, in matrix form,

Rx(θ ) =
[

cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

]
. (2)

Indeed, R̂x(θ ) can be obtained from R̂y(θ ) by the simple
phase transformation R̂x(θ ) = F̂ (π/4)R̂y(θ )F̂ (−π/4). Here
F̂ (φ) = eiφσ̂z or, in matrix form,

F(φ) = Rz(φ) =
[

eiφ 0
0 e−iφ

]
. (3)
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We shall use the gate (1) because it is real and because it
coincides with the ubiquitous definition of the rotation ma-
trix. Therefore, hereafter we drop the subscript y for the
sake of brevity.

The propagator of a coherently driven qubit is the solution
of the Schrödinger equation,

ih̄∂t U(t, ti ) = H(t )U(t, ti ), (4)

subject to the initial condition U(ti, ti ) = I, the identity matrix.
If the Hamiltonian is Hermitian, the propagator is unitary. If
the Hamiltonian is also traceless, then the propagator has the
SU(2) symmetry and can be represented as

U0 =
[

a b
−b∗ a∗

]
, (5)

where a and b are the complex-valued Cayley-Klein
parameters satisfying |a|2 + |b|2 = 1. A traceless Hermi-
tian Hamiltonian has the form Ĥ (t ) = 1

2 h̄[�(t ) cos(φ)σ̂x +
�(t ) sin(φ)σ̂y + �σ̂z], where �(t ) (assumed real and posi-
tive) is the Rabi frequency quantifying the coupling, φ is its
phase, and � is the field-system detuning.

On exact resonance (� = 0) and for φ = 0, we have a =
cos(A/2), b = −i sin(A/2), where A is the temporal pulse
area A = ∫ tf

ti
�(t )dt . For a system starting in state |1〉, the

single-pulse transition probability is p = |b|2 = sin2(A/2).
A single resonant pulse of temporal area A = θε =

θ (1 + ε) produces the propagator R̂(θε ) = ei[θ (1+ε)/2]σ̂y =
R̂(θ )[1 + O(ε)], i.e., it is accurate up to zeroth order O(ε0) in
the pulse-area error ε. Our approach is to replace the single
θ pulse with a composite sequence of pulses of appropri-
ate pulse areas and phases, such that the overall propagator
produces the rotation gate (1) with an error of higher order,
i.e., R̂(θ )[1 + O(εn+1)]. Then we say that the corresponding
composite rotation gate is accurate up to, and including, order
O(εn).

B. Derivation

The derivation of the composite rotation gates is done in
the following manner. A phase shift φ imposed on the driving
field, �(t ) → �(t )eiφ , is imprinted onto the propagator (5) as

Uφ =
[

a beiφ

−b∗e−iφ a∗

]
. (6)

A train of N pulses, each with area Ak and phase φk (applied
from left to right),

(A1)φ1 (A2)φ2 (A3)φ3 . . . (AN )φN , (7)

produces the propagator (acting, as usual, from right to left)

U = UφN (AN ) . . . Uφ3 (A3)Uφ2 (A2)Uφ1 (A1). (8)

Let us assume that the nominal (i.e., for zero error) pulse
areas Ak have a systematic error ε, i.e., Ak → Ak (1 + ε). If
all nominal pulse areas are the same, as it is the case for many
composite sequences, this is the natural assumption because
the apparatus will produce possibly imperfect but identical
pulses. If the pulse areas are different, this is also a reasonable
assumption in many cases. For example, if a trapped ion is
addressed by an imperfectly pointed laser beam then it will

“see” the same systematic deviation from the perfect field am-
plitude (and hence pulse area) for any chosen target pulse area.
Atoms in atomic clouds in magneto-optical or dipole traps or
ions in doped solids (e.g., for optical memories) addressed by
electromagnetic fields offer another example: they will “see”
different field amplitude due to spatial inhomogeneity depend-
ing on their position in the sample, but this field amplitude will
deviate from the optimal one by the same relative systematic
error ε regardless of the value of the optimal amplitude if the
atoms do not move much during the duration of the composite
sequence.

Under the assumption of a single systematic pulse-area
error ε, we can expand the composite propagator (8) in a
Taylor-Maclaurin series versus ε. Because of the SU(2) sym-
metry of the overall propagator, it suffices to expand only two
of its elements, say U11(ε) and U12(ε). We set their zero-error
values to the target values,

U11(0) = cos(θ/2), U12(0) = sin(θ/2), (9)

and we set as many of their derivatives with respect to ε, in
the increasing order, as possible,

U (m)
11 (0) = 0, U (m)

12 (0) = 0 (m = 1, 2, . . . , n), (10)

where U (m)
jl = ∂m

ε U jl denotes the mth derivative of U jl with
respect to ε. The largest derivative order n satisfying Eq. (10)
gives the order of the error compensation O(εn).

Equations (9) and (10) generate a system of 2(n + 1) equa-
tions for the nominal pulse areas Ak and the composite phases
φk (k = 1, 2, . . . , N). The equations are complex-valued and
generally we have to solve 4(n + 1) equations with the 2N
free parameters (nominal pulse areas and phases). Because
of the normalization condition |U11|2 + |U12|2 = 1, an error
compensation of order n requires a composite sequence of
N = 2n + 1 pulses (or N = 2n in some lucky cases).

As stated above, the derivation of the composite sequences
requires the solution of Eqs. (9) and (10). For a small number
of pulses (up to about five), the set of equations can be solved
analytically. For longer sequences, Eq. (9) and the first two
equations (n = 1) of Eq. (10) can still be solved analytically,
but the higher orders in Eq. (10) they are solved numerically.
We do this by using standard routines in MATHEMATICA.

C. Quantum gate fidelity

If Eqs. (9) and (10) are satisfied, then the overall propagator
can be written as

U (ε) = R(θ ) + O(εn+1), (11)

with R(θ ) = U (0). Then the Frobenius distance fidelity

F = 1 − ‖U (ε) − R(θ )‖ = 1 −
√√√√1

4

2∑
j,k=1

|U jk − Rjk|2

(12)

is accurate up to the same error order O(εn) as the propagator,
F = 1 − O(εn+1). As shown by Jones and co-workers [3] for
the composite X gates, the trace fidelity

FT = 1
2 Tr [U (ε)R(θ )†] (13)
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has a factor of 2 higher error order O(ε2n), i.e., FT =
1 − O(ε2n+1). The reason is that in the Frobenius distance,
all information of the actual propagator is involved, while in
the trace distance some of this information is lost. Therefore,
throughout this paper we shall use the Frobenius distance
fidelity (12), which is a much more strict and unforgiving to
error fidelity measure; moreover, its error is of the same order
as the propagator error.

We note here that for variable rotations, Eqs. (9) and (10)
have to be satisfied for only one of the propagator elements,
say U12. This means that with the same number of pulses one
can achieve a factor of 2 higher order of error compensation
for variable rotations than for constant rotations. However,
this error compensation applies to the transition probability
only, but not to the propagator phases. For variable rota-
tions the overall propagator cannot be written in the form of
Eq. (11) and, consequently, neither of the fidelities (12) or (13)
is of the form 1 − O(εn+1).

D. Composite pulse sequences

We have performed extensive numeric simulations which
have returned numerous solutions. We have categorized them
in three types of composite sequences: one symmetric and two
asymmetric.

(i) Each symmetric sequence consists of a sequence of
2n − 1 nominal π pulses, sandwiched by two pulses of areas
α, with symmetrically ordered phases,

αφ1πφ2πφ3 . . . πφn−1πφnπφn−1 . . . πφ3πφ2αφ1 . (14)

These sequences generalize the three-pulse SCROFULOUS
sequence [87], which is of this type, to more than three pulses.

(ii) The first type of asymmetric sequences consists of a
sequence of nominal π pulses, preceded (or succeeded) by a
pulse of area θ ,

πφ1πφ2πφ3 . . . πφN−1θφN . (15)

These sequences generalize the five-pulse BB1 sequence [36],
which is of this type, to more than five pulses.

(iii) The second type of asymmetric sequences consists
of a sequence of N − 2 nominal π pulses, preceded (or suc-
ceeded) by single pulses of areas α and β,

αφ1πφ2πφ3 . . . πφN−1βφN . (16)

To the best of our knowledge, this type of composite sequence
has not been reported in the literature hitherto.

Following, we consider these three classes of composite
sequences and test their performance by using the Frobe-
nius distance (12). We consider three figures of merit to be
essential.

(1) The most important parameter is the order of error
compensation O(εn). The larger n, the broader the high-
fidelity range and the larger the errors ε, which can be
compensated.

(2) The second most important parameter is the total pulse
area Atot = ∑N

k=1 |Ak|. It determines the length of the se-
quences and hence the speed of the gates. Usually, the peak
Rabi frequency is limited either by the experimental apparatus
or by the qubit properties, e.g., too large Rabi frequency can
cause unwanted couplings to other levels or to other qubits

(cross-talk). Therefore, for a fixed peak Rabi frequency, the
total pulse area determines the total duration of the composite
sequence.

(3) Another consideration is the number of pulses N in the
sequence. Unless there are issues with the implementation of
the phase jumps, this argument is of far less importance than
the other two. However, if the phase jumps require some time
to implement or cannot be implemented with high accuracy,
then sequences of fewer pulses are preferable. For this reason,
we often give several different CPs for each error order.

III. X (NOT) GATE

The X or NOT gate is defined as[
0 1
1 0

]
= σ̂x. (17)

Because the determinant of this matrix is −1, it is not of SU(2)
type. Instead, we shall construct the SU(2) gate

X =
[

0 1
−1 0

]
, (18)

which is related to the gate (17) by a phase transformation
and it is equivalent to it. The gate (18) is also equivalent to the
often used gate

ei(π/2)σ̂x =
[

0 i
i 0

]
, (19)

which can be obtained from Eq. (18) by a phase transforma-
tion too. However, we prefer to use the gate (18) because it
is real and also because it is a special case of the general
rotation gate (1).

As it is well known, such a gate can be produced by a
resonant pulse of temporal area π . The propagator of a π pulse
reads as

U =
[

cos[π (1 + ε)/2] sin[π (1 + ε)/2]
− sin[π (1 + ε)/2] cos[π (1 + ε)/2]

]
, (20)

where ε is the pulse-area error. The Frobenius distance fidelity
(12) reads as

F = 1 −
√

2

∣∣∣∣ sin
πε

4

∣∣∣∣. (21)

For comparison, the trace fidelity is

FT = 1 − 2 sin2 πε

4
= cos

πε

2
. (22)

Obviously, the error stemming from the Frobenius distance
fidelity (21), which is of order O(ε), is far greater than the
value of the error stemming from the trace fidelity (22), which
is of order O(ε2), as noted by Jones and co-workers [87].

The three types of composite sequences (14), (15), and
(16) coalesce into a single type sequences of π pulses. Below
we consider these sequences, in the increasing order of error
compensation.

A. First-order error compensation

The careful analysis of Eqs. (9) and (10) shows that the
shortest possible composite pulse (CP) which can compensate
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FIG. 1. Frobenius distance fidelity F (solid) and trace distance
fidelity FT (dashed) of composite X gates. The numbers N on the
curves refer to composite sequences XN listed in Table I.

first-order errors consists of three pulses, each with a pulse
area of π , and symmetric phases

πφ1πφ2πφ1 . (23)

Solving Eq. (9) along with Eq. (10) for the first derivatives
gives two solutions for the phases:

π 1
6 ππ 5

6 ππ 1
6 π , (24a)

π 5
6 ππ 1

6 ππ 5
6 π . (24b)

These two sequences generate the same propagator and
hence the same fidelity. The Frobenius distance and trace
distance fidelities read as

F = 1 − I1, (25a)

FT = 1 − I2
1 , (25b)

where the Frobenius distance infidelity is

I1 =
√

2

(
1 + 2 cos2

πε

4

)
sin2 πε

4
. (26)

Obviously, the Frobenius distance infidelity I1 is of order
O(ε2) and it is much larger than the trace distance infidelity
I2

1 , which is of order O(ε4).
The Frobenius distance fidelity and the trace fidelity are

plotted in Fig. 1 for X gates produced by a single pulse and

composite sequences of 3 and 5 (see below) pulses. The three-
pulse composite X gate (24) produces much higher fidelity
that the single-pulse X gate. Obviously, the trace distance
fidelity is much higher than the Frobenius distance fidelity:
compare the curves with labels 1 and 1T ; 3 and 3T ; 5 and 5T .
In fact, as seen in the figure, the trace distance fidelity for a
single pulse (label 1T ) almost coincides with the Frobenius
distance fidelity for the three-pulse composite sequence (la-
bel 3). With respect to the quantum computation benchmark
fidelity value of 1–10−4, the Frobenius distance fidelity (25a)
for the three-pulse composite X gates of Eqs. (24) remains
above this value in the pulse-area interval (0.992π, 1.008π ),
i.e., for relative errors up to |ε| < 0.008. For comparison, the
trace distance fidelity (25b) remains above this value in the
pulse-area interval (0.919π, 1.081π ), i.e., for relative errors
up to |ε| < 0.081, a factor of 10 larger. This is the reason why
in this work we will use the much more restrictive Frobenius
distance fidelity.

B. Second-order error compensation

For sequences of four pulses, it becomes possible to annul
the second-order derivatives in Eq. (10). A number of solu-
tions exist, some of which are

(2π )3χππ+χπ 1
2 ππ−χ , (27a)

ππ+χ (2π )3χππ+χπ 1
2 π , (27b)

π 1
2 πππ+χ (2π )3χππ+χ , (27c)

π−χπ 1
2 πππ+χ (2π )3χ , (27d)

where χ = arcsin( 1
4 ) ≈ 0.0804π . The second and third se-

quences are related to the BB1 sequence of Wimperis [36].
Note that all these sequences have a total nominal pulse area
of 5π , and can be considered as five-pulse sequences because
the effect of (2π )3χ is the same as π3χπ3χ .

The Frobenius fidelity for all these sequences reads as F =
1 − I2, with the infidelity

I2 =
√

8 + 9 cos
πε

2
+ 3 cos2

πε

2

∣∣∣∣ sin
πε

4

∣∣∣∣
3

. (28)

Obviously, this fidelity is accurate up to order O(ε2), as the er-
ror is of order O(ε3). The trace fidelity reads as FT = 1 − I2

2 .
The trace fidelity is accurate up to order O(ε5), as the error is

TABLE I. Phases of symmetric composite sequences of N = 2n + 1 nominal π pulses, which produce the X gate with a pulse-area error
compensation up to order O(εn). The last column gives the high-fidelity range [π (1 − ε0 ), π (1 + ε0 )] of pulse-area error compensation wherein
the Frobenius distance fidelity is above the value 0.9999, i.e., the fidelity error is below 10−4.

Name Pulses O(εn) Phases φ1, φ2, . . . , φn (in units π ) High-fidelity error correction range

Single 1 O(ε0) 1
2 [0.99991π, 1.00009π ]

X3 3 O(ε) 1
6 , 5

6 [0.992π, 1.008π ]
X5 5 O(ε2) 0.0672, 0.3854, 1.1364 [0, 964π, 1.036π ]
X7 7 O(ε3) 0.2560, 1.6839, 0.5933, 0.8306 [0.925π, 1.075π ]
X9 9 O(ε4) 0.3951, 1.2211, 0.7806, 1.9335, 0.4580 [0.883π, 1.117π ]
X11 11 O(ε5) 0.7016, 1.1218, 1.8453, 0.9018, 0.3117, 0.1699 [0.843π, 1.157π ]
X13 13 O(ε6) 0.1200, 0.3952, 1.5643, 0.0183, 0.9219, 0.4975,1.1096 [0.807π, 1.193π ]
X15 15 O(ε7) 0.5672, 1.4322, 0.9040, 0.2397, 0.9118, 0.5426, 1.6518, 0.1406 [0.773π, 1.227π ]
X17 17 O(ε8) 0.3604, 1.1000, 0.7753, 1.6298, 1.2338, 0.2969, 0.6148, 1.9298, 0.4443 [0.743π, 1.257π ]
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of order O(ε6). Obviously, the trace infidelity is much smaller
than the Frobenius distance infidelity, as for the three-pulse
composite sequences.

The same second-order error compensation, and the same
fidelity, can be obtained by composite sequences of five pulses
of area π each,

πφ1πφ2πφ3πφ4πφ5 . (29)

Hence, the total pulse area is 5π , the same as the four-pulse
sequences above. Because of the additional phase compared to
the four-pulse sequences, various phase choices are possible.
For example, an asymmetric sequence of the kind (29) has
the phases φ1 = 0, φ2 = arcsin( 14+√

31
20 ) ≈ 0.4337π , φ3 =

π + arcsin( 9
√

31−19
80 ) ≈ 1.1271π , φ4 = arcsin( 9

√
31+19
80 ) ≈

0.3320π , φ5 = arcsin( 14−√
31

20 ) ≈ 0.1385π .
We have derived also the symmetric sequence

πφ1πφ2πφ3πφ2πφ1 , (30)

with φ1 = arcsin(1 − √
5/8) ≈ 0.0672π , φ2 =

arcsin((3
√

10 − 2)/8) ≈ 0.3854π , φ3 = 2φ2 − 2φ1 +
π/2 ≈ 1.1364π . For these five-pulse sequences the Frobenius
infidelity I2 is given again by Eq. (28), and the trace
infidelity by I2

2 . The respective fidelities are plotted in Fig. 1.
Obviously, they are much larger than the respective fidelities
for a single pulse and the three-pulse composite sequence
(24).

The Frobenius distance infidelity (28) remains below the
quantum computation fidelity threshold 10−4 in the pulse-
area interval (0.964π, 1.036π ), i.e., for relative errors up
to |ε| < 0.036. On the other hand, the trace distance infi-
delity I2

2 remains above this value in the pulse-area interval
(0.832π, 1.168π ), i.e., for relative errors up to |ε| < 0.168,
a factor of almost 5 larger. As for the three-pulse composite
X gate, as seen in Fig. 1, the Frobenius distance fidelity is
much more demanding error measure as its error is much
larger than the error of the trace distance fidelity.

Hereafter, we will leave out the trace distance fidelity (13)
and will use only the Frobenius distance fidelity (12) because
it is a much stricter measure of the gate error.

We conclude this section by noting that the availability
of various four- and five-pulse symmetric and asymmetric
sequences which produce the same fidelity is not a redun-
dancy because they may have rather different sensitivity to
phase errors, as has been shown recently for other composite
sequences [99].

C. Higher-order error compensation

For composite sequences of more than five pulses, the
equations for the composite phases quickly become very cum-
bersome and impossible to solve analytically. They repeat the
pattern of the sequences of four and five pulses above: the
composite sequences of 2n and 2n + 1 pulses have a total
pulse area of (2n + 1)π , with all pulses in the sequence being
nominal π pulses, with the exception of one of the pulses
in the 2n-pulse sequence which has a nominal pulse area of
2π . Either sequence of 2n and 2n + 1 pulses produce error
compensation of the order O(εn) and identical fidelity profiles.

The (2n + 1)-pulse sequences have an additional free
phase which can be used to make the composite sequence
symmetric as in Eq. (14), viz.,

πφ1πφ2πφ3 . . . πφn−1πφnπφn−1 . . . πφ3πφ2πφ1 . (31)

The propagators generated by the symmetric composite se-
quences (31) feature two important properties:

(1) All even-order derivatives U (2k)
11 (0) of the diagonal el-

ements in Eq. (10) vanish, and so do all odd-order derivatives
U (2k+1)

12 (0) of the off-diagonal elements.
(2) The remaining nonzero derivatives in Eq. (10) are ei-

ther real or imaginary: U (2k+1)
11 (0) are real, whereas U (2k)

12 (0)
are imaginary.

Therefore, Eqs. (9) and (10) reduce to a set of n + 1
real trigonometric equations for n + 1 free phases. There are
multiple solutions for the phases for every (2n + 1)-pulse
composite sequence.

Two of the phases can be found analytically. The solution
of the zeroth-order (9) reads as

φn+1 = π

2
+ 2[φn − φn−1 + φn−2 − φn−3 + · · · + (−)nφ1].

(32)
Given this relation, the equation U (1)

11 (0) = 0 reduces to

2
n∑

k=1

sin(k ) = (−)n+1, (33)

with

k = 2
k−1∑
j=1

(−) j+1φ j + (−)k+1φk

= 2[φ1 − φ2 + φ3 + · · · + (−)kφk−1] + (−)k+1φk, (34)

from where we can find φn. For example, for 3, 5, and 7 pulses
we have, respectively,

sin(φ1) + sin(2φ1 − φ2) = − 1
2 , (35a)

sin(φ1) + sin(2φ1 − φ2) + sin(2φ1 − 2φ2 + φ3) = 1
2 ,

(35b)

sin(φ1) + sin(2φ1 − φ2) + sin(2φ1 − 2φ2 + φ3)

+ sin(2φ1 − 2φ2 + 2φ3 − φ4) = − 1
2 . (35c)

From each of these we can find two solutions for the
phase with the largest subscript. The remaining n − 1 phases
φ1, φ2, . . . , φn−1 can be determined numerically.

We have derived numerically the composite phases of sym-
metric sequences of an odd number of pulses [Eq. (31)].
They are presented in Table I. The fidelity of these composite
X gates is plotted in Fig. 2. It is clear from the table and the
figure that a single pulse has very little room for errors as the
high-fidelity X gate allows for pulse-area errors of less than
0.01%. The three-pulse composite X gate offers some leeway,
with the admissible error of 0.8%. The real pulse-area error
correction effect is achieved with the composite sequences of
5 to 9 pulses, for which the high-fidelity range of admissi-
ble errors increases from 3.6% to 11.7%. Quite remarkably,
errors of up to 25% can be eliminated, and ultrahigh fidelity
maintained, with the 17-pulse composite X gate. Note that
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FIG. 2. Frobenius distance fidelity F (top) and infidelity
(bottom) of composite X gates. The infidelity is in logarithmic scale
in order to better visualize the high-fidelity (low-infidelity) range.
The numbers N on the curves refer to composite sequences XN listed
in Table I.

these error ranges are calculated by using the rather tough
Frobenius distance fidelity (12). Had we used the much more
relaxed trace distance fidelity (13), these ranges would be
much broader (see the numbers for 1, 3, and 5 pulses above).

That said, very long sequences are barely practical because
the gate is much slower. Moreover, it is hard to imagine
a quantum computer operating with 25% pulse-area error.
Therefore, the composite sequences of 5, 7, and 9 pulses
seems to offer the best fidelity-to-speed ratio.

IV. HADAMARD GATE

We shall use the following form of the Hadamard gate
(known as pseudo-Hadamard form):

H = Ry(π/2) = ei(π/4)σ̂y = 1√
2

[
1 1

−1 1

]
. (36)

It is SU(2) symmetric and it is equivalent to the more common
Walsh-Hadamard form

1√
2

[
1 1
1 −1

]
, (37)

which is not SU(2) symmetric. The gate (36) is equiva-
lent to the often used SU(2)-symmetric gate (known as the

Splitter gate)

Hx = ei(π/4)σ̂x = 1√
2

[
1 i
i 1

]
, (38)

which is related to it by a phase transformation.1

The Hadamard gate can be generated by an ideal resonant
π/2 pulse, which is, however, prone to experimental errors.
In order to construct the composite Hadamard gate, we have
considered all three types of composite sequences (14), (15),
and (16). Below we consider these sequences, in the increas-
ing order of error compensation.

A. First-order error correction

The shortest pulse sequence that can provide a first-order
error compensated Hadamard gate consists of three pulses

αφ1πφ2αφ1 . (39)

Equations (9) result in the equations

− sin(α) cos(φ1 − φ2) = 1√
2
, (40a)

e−iφ1 [sin(φ1 − φ2) − i cos(α) cos(φ1 − φ2)] = 1√
2
. (40b)

The first derivatives of Eq. (10) are annulled by the single
equation

2α cos(φ1 − φ2) + π = 0. (40c)

From Eqs. (40a) and (40c) we find

sin α

α
=

√
2

π
. (41)

Therefore, the value of the pulse area α is given by an inverse
sinc function of

√
2/π , which gives α ≈ 0.6399π . Given α,

we can find φ1 − φ2 from Eqs. (40a) or (40c), and then φ1

from
√

2 sin(φ1 − φ2) = cos(φ1), (42)

which is the real part of Eq. (40b) [after multiplying it by
eiφ1

√
2]. The values are φ1 ≈ 0.8442π and φ2 ≈ 0.0587π .

Therefore, this composite pulse reads as

(0.6399π )0.8442ππ0.0587π (0.6399π )0.8442π . (43)

In terms of degrees, it reads as 115◦
152◦180◦

11◦115◦
152◦ .

This composite sequence is related to the well-known
sequence SCROFULOUS [87]: 115◦

62◦180◦
281◦115◦

62◦ ; the

1In the quantum information literature it is often preferred to use
U(2), rather than SU(2), gates, e.g., the Hadamard, S, and T gates are
all U(2) but not SU(2) gates. In a quantum circuit it does not matter as
long as the same type of gates are used in the same circuit. The reason
is that the Hadamard gate is involutory, i.e., it is equal to its inverse,
and it is very convenient to write a quantum circuit in terms of Ĥ
only, rather than with Ĥ and Ĥ † = ĤT . However, from a physical
point of view it is more natural to use SU(2) gates, which have
det = 1 (while the determinant of the Hadamard gate is −1). The
reason is that in a closed qubit (with only two states and no ancilla
states) the Hamiltonian is symmetric, Ĥ (t ) = 1

2 h̄[�(t ) + �σ̂z], and
then the propagator (i.e., the gate) is SU(2) symmetric.
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TABLE II. Phases of three types of composite sequences, which produce the Hadamard gate with a pulse-area error compensation up to
order O(εn). The total pulse area Atot and the high-fidelity range [π − ε0, π + ε0] wherein the Frobenius distance infidelity remains below
10−4 are listed in the last two columns.

Symmetric sequences αφ1πφ2 . . . πφnπφn+1πφn . . . πφ2αφ1

Notation N O(εn) α φ1, φ2, . . . , φn (in units π ) Atot Range

H3s 3 O(ε) 0.6399 0.8442, 0.0587 2.28π [0.988, 1.012]π
H5s 5 O(ε2) 0.45 1.9494, 0.5106, 1.3179 3.90π [0.952, 1.048]π
H7s 7 O(ε3) 0.2769 1.6803, 0.2724, 0.8255, 1.6624 5.55π [0.905, 1.095]π
H9s 9 O(ε4) 0.2947 1.2711, 0.1069, 0.5283, 1.1283, 1.9884 7.59π [0.857, 1.143]π
H11s 11 O(ε5) 0.2985 1.7377, 0.1651, 0.9147, 0.1510, 0.9331, 1.6415 9.60π [0.814, 1.186]π
H13s 13 O(ε6) 0.5065 0.0065, 1.7755, 0.7155, 0.5188, 0.2662, 1.2251, 1.3189 12.01π [0.776, 1.224]π
H15s 15 O(ε7) 0.3132 1.2316, 0.9204, 0.2043, 1.9199, 0.8910, 0.7381, 1.9612, 1.3649 13.63π [0.740, 1.260]π

Asymmetric sequences (π/2)φ1πφ2πφ3 . . . πφN−1πφN

Notation N O(εn) α, β φ1, φ2, . . . , φN (in units π ) Atot Range

H5w 5 O(ε2) 0.5, 1.0 0.5, 1.0399, 0.1197, 0.1197, 1.0399 4.50π [0.952, 1.048]π
H7w 7 O(ε3) 0.5, 1.0 0.5, 1.4581, 0.7153, 0.1495, 1.3738, 0.2568, 0.7752 6.50π [0.905, 1.095]π
H9w 9 O(ε4) 0.5, 1.0 0.5, 1.1989, 0.3621, 0.6006, 1.6772, 1.7779, 0.6774, 0.4125, 1.2732 8.50π [0.857, 1.143]π
H11w 11 O(ε5) 0.5, 1.0 0.5, 0.7807, 0.1769, 1.4678, 0.1085, 1.0174, 0.2988, 0.8883,

1.2697, 0.3773, 1.6775 10.50π [0.814, 1.186]π
H13w 13 O(ε6) 0.5, 1.0 0.5, 1.3795, 0.5435, 0.5111, 1.3032, 0.4295, 1.7578, 1.4181,

0.3340, 0.4403, 1.7563, 0.6707, 1.1544 12.50π [0.776, 1.224]π

Asymmetric sequences αφ1πφ2πφ3 . . . πφN−1βφN

Notation N O(εn) α, β φ1, φ2, . . . , φN (in units π ) Atot Range

H4a 4 O(ε2) 0.7821, 1.3914 1.8226, 0.6492, 1.2131, 0.3071 4.17π [0.952, 1.048]π
H6a 6 O(ε3) 0.5917, 1.1305 1.5943, 0.2860, 0.8435, 1.6553, 0.7962, 0.2523 5.72π [0.905, 1.095]π
H8a 8 O(ε4) 0.4954, 0.9028 1.5971, 0.7674, 0.5721, 1.8487, 1.0592, 1.9612, 0.3824, 0.9846 7.40π [0.857, 1.143]π
H10a 10 O(ε5) 0.6041, 1.1819 1.3480, 0.9259, 0.0292, 0.7288, 0.0996, 1.3909, 0.0183, 0.9322,

0.2169, 0.7975 9.79π [0.814, 1.186]π
H12a 12 O(ε6) 0.4328, 0.8408 1.6454, 1.0054, 0.3481, 1.0545, 0.2507, 1.8691, 1.0037, 1.7159,

0.5202, 1.8924, 0.7059, 0.8561 11.27π [0.776, 1.224]π

two sequences can be obtained from each other by adding 90◦
to all phases in our sequence.

B. Second-order error correction

Second-order error compensation is obtained by a compos-
ite sequence of at least four pulses. A popular CP is the BB1
pulse of Wimperis [36],

BB1 = (π/2)0πχ (2π )3χπχ , (44)

where χ = arccos(−1/8) ≈ 0.5399π , which produces the
gate (38), with a total pulse area of 4.5π . It can be viewed
as identical to the five-pulse sequence

(π/2)0πχπ3χπ3χπχ . (45)

We have derived a different asymmetric four-pulse CP,

H4a = αφ1πφ2πφ3βφ4 , (46)

where α = 0.7821π , β = 1.3914π , φ1 = 1.8226π , φ2 =
0.6492π , φ3 = 1.2131π , φ4 = 0.3071π . This pulse has a total
area of about 4.17π , i.e., it is faster than the BB1 pulse. It is
accurate up to the same order O(ε2) and produces essentially
the same fidelity profile as BB1.

We have also derived a five-pulse composite Hadamard
gate by using the symmetric sequence

H5s = αφ1πφ2πφ3πφ2αφ1 , (47)

with α = 0.45π , φ1 = 1.9494π , φ2 = 0.5106π , φ3 =
1.3179π . It delivers again the second-order error
compensation O(ε2), however, with a total pulse area of
just about 3.9π . Therefore, it is considerably faster than the
BB1 pulse, by over 13%, while having a similar performance.

C. Higher-order error correction

Similarly to the second order, the third-order error com-
pensation is obtained in several different manners, requiring
at least six pulses. The six-pulse sequence with the minimal
pulse area of about 5.72π reads as

H6a = αφ1πφ2πφ3πφ4πφ5βφ6 , (48)

with α = 0.5917π , β = 1.1305π , and the phases given in
Table II. The same error correction order is achieved with the
symmetric seven-pulse sequence

H7s = αφ1πφ2πφ3πφ4πφ3πφ2αφ1 , (49)
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with α = 0.2769π , and the phases given in Table II. It pro-
duces the same fidelity profile as the six-pulse sequence but
it is a little faster as its pulse area is about 5.55π . Another
seven-pulse composite sequence is built similarly to the BB1
sequence (44),

H7w = (π/2)π/2πφ2πφ3πφ4πφ5πφ6πφ7 , (50)

with the phases given in Table II. It achieves the same error
order compensation O(ε3), however, with a larger total pulse
area of 6.5π compared to the previous two CPs.

Fourth-order error compensation is obtained by at least
eight pulses. The eight-pulse sequence with the minimal pulse
area of about 7.40π reads as

H8a = αφ1πφ2πφ3πφ4πφ5πφ6πφ7βφ8 , (51)

with α = 0.4954π , β = 0.9028π , and the phases are given in
Table II. The same error correction order is achieved with the
symmetric nine-pulse sequence

H9s = αφ1πφ2πφ3πφ4πφ5πφ4πφ3πφ2αφ1 , (52)

with α = 0.2947, with the phases in Table II. Its total pulse
area is 7.59π . The BB1-like nine-pulse composite sequence,

H9w = (π/2)π/2πφ2πφ3πφ4πφ5πφ6πφ7πφ8πφ9 , (53)

with the phases in Table II, achieves the same fourth-order er-
ror compensation O(ε4), however, with the largest total pulse
area of 8.5π compared to the previous two CPs.

The same pattern is repeated for the longer pulse sequences
presented in Table II: for the same order of pulse-area error
compensation, the fastest sequences, with the smallest to-
tal pulse area are either the asymmetric HNa or symmetric
HNs sequences, and the BB1-like sequences HNw are the
slowest ones.

The fidelity and the infidelity of the composite Hadamard
gates of up to seventh-order error compensation are plotted in
Fig. 3. Obviously, as the number of pulses in the composite
sequences, and hence the compensated error order, increase
the fidelity and infidelity profiles improve and get broader.

V. GENERAL ROTATION GATE

A. First-order error correction

The shortest pulse sequence that can provide a first-order
error compensation for the general rotation gate (1), as for the
X and Hadamard gates, consists of three pulses

αφ1πφ2αφ1 . (54)

Equations (9) result in the equations

− sin(α) cos(φ1 − φ2) = cos(θ/2), (55a)

e−iφ1 [sin(φ1 − φ2) − i cos(α) cos(φ1 − φ2)] = sin(θ/2).

(55b)

The first derivatives of Eq. (10) are annulled by the single
equation

2α cos(φ1 − φ2) + π = 0. (55c)

FIG. 3. Frobenius distance fidelity (top) and infidelity (bottom)
of composite Hadamard gates produced by using the symmetric
composite sequences HNs from Table II.

From Eqs. (55a) and (55c) we find

π sin(α)

α
= 2 cos(θ/2). (56)

Therefore, the value of the pulse area α is given by an inverse
sinc function of (2/π ) cos(θ/2). Given α, we can find φ1 − φ2

from Eqs. (55a) or (55c), and then φ1 from

sin(φ1 − φ2) = sin(θ/2) cos(φ1), (57)

which is obtained from Eq. (55b).
This composite sequence is related to the SCROFU-

LOUS composite pulse [87], as mentioned above. The values
of the pulse area and the composite phases are given in
Table III.

B. More than three pulses

The symmetric five-pulse sequence

αφ1πφ2πφ3πφ2αφ1 (58)

provides a second-order error compensation. The sequences
with 7, 9, etc., pulses have the same symmetric structure and
deliver an error compensation of order 3, 4, etc. Generally, a
(2n + 1)-pulse symmetric sequence of this structure delivers
an error compensation up to order O(εn). Unfortunately, ana-
lytic expressions for the composite parameters for more than
three pulses are hard to obtain, if possible at all. Hence, we
have derived them numerically and their values are listed in
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TABLE III. Pulse area α and phases of symmetric composite pulse sequences which produce rotation gates of angle θ . The area α and all
phases are given in units π . The case of θ = 1

2 π repeats the symmetric Hadamard gates already presented in Sec. IV; they are given here for
the sake of comparison and completeness. Note that, for technical reasons, the rotation gates generated by these sequences are the transposed
of the gate (1). The phases which generate the original gate (1) can be obtained from the ones here by replacing all phases φk by 2π − φk .

3 pulses, O(ε) 5 pulses, O(ε2) 7 pulses, O(ε3) 9 pulses, O(ε4)
αφ1 πφ2 αφ1 αφ1 πφ2 πφ3 πφ2 αφ1 αφ1 πφ2 πφ3 πφ4 πφ3 πφ2 αφ1 αφ1 πφ2 πφ3 πφ4 πφ5 πφ4 πφ3 πφ2 αφ1

θ α; φ1, φ2 α; φ1, φ2, φ3 α; φ1, φ2, φ3, φ4 α; φ1, φ2, φ3, φ4, φ5

1
10 0.5061; 1.0389, 1.9892 0.4548; 0.6416, 1.5230, 0.4258 0.4625; 0.7317, 1.8366, 1.0783, 0.1821 0.5125; 1.9200, 0.8412, 1.5473, 0.2812, 1.1816
1
8 0.5096; 1.0483, 1.9865 0.4453; 0.6626, 1.5245, 0.4168 0.4500; 0.7069, 1.8222, 1.0860, 0.1970 0.5101; 1.9490, 0.8687, 1.5489, 0.2665, 1.1618
1
6 0.5169; 1.0636, 1.9819 0.4315; 0.6964, 1.5259, 0.4032 0.4277; 0.6691, 1.8020, 1.0976, 0.2183 0.5022; 1.9918, 0.9092, 1.5502, 0.2455, 1.1340
1
5 0.5242; 1.0754, 1.9782 0.4225; 0.7231, 1.5263, 0.3934 0.4090; 0.6404, 1.7886, 1.1061, 0.2334 0.4926; 0.0229, 0.9382, 1.5502, 0.2308, 1.1148
1
4 0.5375; 1.0921, 1.9726 0.4129; 0.7630, 1.5259, 0.3796 0.3803; 0.5977, 1.7717, 1.1181, 0.2536 0.4729; 0.0661, 0.9770, 1.5491, 0.2110, 1.0894
1
3 0.5653; 1.1173, 1.9628 0.4087; 0.8293, 1.5231, 0.3583 0.3336; 0.5212, 1.7505, 1.1370, 0.2836 0.4269; 0.1326, 1.0314, 1.5448, 0.1815, 1.0525
1
2 0.6399; 1.1558, 1.9413 0.4500; 0.9494, 1.5106, 0.3179 0.2769; 0.3197, 1.7275, 1.1745, 0.3376 0.2947; 0.2711, 1.1069, 1.5283, 0.1283, 0.9884
2
3 0.7365; 1.1779, 1.9155 0.5563; 1.0329, 1.4886, 0.2746 0.3410; 0.1020, 1.7252, 1.2168, 0.3923 0.1700; 0.5700, 1.1449, 1.5009, 0.0735, 0.9254
3
4 0.7925; 1.1827, 1.9000 0.6322; 1.0585, 1.4728, 0.2498 0.4269; 0.0309, 1.7317, 1.2421, 0.4230 0.2045; 0.8134, 1.1515, 1.4816, 0.0423, 0.8905
4
5 0.8288; 1.1834, 1.8895 0.6857; 1.0688, 1.4613, 0.2332 0.4947; 0.0017, 1.7386, 1.2595, 0.4436 0.2726; 0.9091, 1.1514, 1.4674, 0.0212, 0.8672
5
6 0.8542; 1.1829, 1.8819 0.7251; 1.0735, 1.4526, 0.2210 0.5474; 1.9872, 1.7446, 1.2725, 0.4586 0.3336; 0.9507, 1.1495, 1.4564, 0.0055, 0.8501
7
8 0.8874; 1.1812, 1.8717 0.7795; 1.0770, 1.4401, 0.2044 0.6234; 1.9741, 1.7542, 1.2907, 0.4795 0.4275; 0.9853, 1.1446, 1.4404, 1.9837, 0.8264
9

10 0.9083; 1.1795, 1.8650 0.8154; 1.0777, 1.4316, 0.1934 0.6759; 1.9689, 1.7613, 1.3030, 0.4935 0.4952; 0.9992, 1.1402, 1.4291, 1.9688, 0.8103

Table III. The fidelity of these sequences behaves similarly to
the ones for the X and Hadamard gates.

For arbitrary theta rotations, using the systematic approach
of derivation described in Sec. II B, one can find three types
of composite sequences (see Sec. II D), as for the Hadamard
gate. The symmetric pulse sequences (14) remain the best
ones for general rotations, providing the shortest total pulse
area.

VI. COMMENTS AND CONCLUSIONS

In this work we presented a number of composite pulse
sequences for three basic quantum gates: the X gate, the
Hadamard gate, and arbitrary rotation gates. The composite
sequences contain up to 17 pulses and can compensate up
to eight orders of experimental errors in the pulse amplitude
and duration. The short composite sequences are calculated
analytically and the longer ones numerically.

Three classes of composite sequences have been derived:
one symmetric and two asymmetric. For the X gate, the
three classes coalesce into a single set of symmetric se-
quences of nominal π pulses presented in Table I. For the
Hadamard gate (cf. Table II), two of the classes contain as
their lowest members two well-known composite sequences:
the three-pulse symmetric SCROFULOUS pulse [87] and the
four-pulse asymmetric BB1 pulse [36], which compensate
first- and second-order pulse-area errors, respectively. The
third, asymmetric class of composite sequences, does not
contain members published before. All three classes produce
essentially identical fidelity profiles for the same order of error
compensation. In general, the SCROFULOUS-like symmetric
sequences HNs and the asymmetric sequences HNa require
the least total pulse area and hence are the fastest, whereas the
asymmetric BB1-like sequences HNw are the slowest. For
the general rotation gates, the three classes behave similarly,
although we have presented only the symmetric sequences in
Table III for the sake of brevity.

The composite rotations derived here outperform the exist-
ing composite rotations in terms of either speed or accuracy,
or both. Although we could not improve the first-order SCRO-
FULOUS sequence, we have derived second-order composite
sequences which are faster (by over 13%) than the famous
BB1 sequence [36]: our second-order error compensated
Hadamard gate has a total nominal pulse area of about 3.9π ,
which is substantial improvement over the BB1 pulse, which
delivers the same error order with a total pulse area of 4.5π

[36]. The longer composite sequences are derived by brute
numerics and they are much shorter than previous sequences
with the same order of error compensation obtained by nesting
and concatenation of short sequences. To this end, our nth-
order error-compensated X gates are constructed by 2n + 1
nominal π pulses, which is much shorter than the concate-
nated composite sequences. For example, the fifth-order error
compensation is produced by a concatenated 15-pulse se-
quence, whereas we achieve this by an 11-pulse sequence.
Similar scaling applies to the Hadamard and the rotation gates.

The results presented in this work demonstrate the remark-
able flexibility of composite pulses accompanied by extreme
accuracy and robustness to errors, three features that cannot
be achieved together by any other coherent control technique.
We expect these composite sequences, in particular the X and
Hadamard gates, to be very useful quantum control tools in
quantum information applications because they provide a va-
riety of options to find the optimal balance between ultrahigh
fidelity, error range, and speed, which may be different in
different physical systems.

We note that in this paper we have assumed an exact
resonance. In many experiments, this condition is well jus-
tified because the qubit frequency and the frequency of the
driving field are controlled extremely accurately. The fluctua-
tions in the Rabi frequency, deriving from fluctuations in the
radiation intensity, either due to source instabilities (typical
for lasers) or spatial inhomogeneities (e.g., pointing errors
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in laser-controlled trapped ions, spatial intensity variations
in rf- or microwave-controlled doped solids, etc.) are much
more significant sources of errors. Nonetheless, in certain
situations it may be necessary to compensate detuning errors
too and one should use composite pulses with double error
compensation.
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