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Impacts of noise and structure on quantum information encoded in a quantum memory
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As larger, higher-quality quantum devices are built and demonstrated in quantum information applications,
such as quantum computation and quantum communication, the need for high-quality quantum memories to
store quantum states becomes ever more pressing. Future quantum devices likely will use a variety of physical
hardware, some being used primarily for processing of quantum information and others for storage. Here we
study the correlation of the structure of quantum information with physical noise models of various possible
quantum memory implementations. Through numerical simulation of different noise models and approximate
analytical formulas applied to a variety of interesting quantum states, we provide comparisons between quantum
hardware with different structure, including both qubit- and qudit-based quantum memories. Our findings point
to simple, experimentally relevant formulas for the relative lifetimes of quantum information in different quantum
memories and have relevance to the design of hybrid quantum devices.
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I. INTRODUCTION

In many quantum information science technologies, quan-
tum memories, which store quantum states until they are
required, are an integral part of the overall architecture [1,2].
For instance, in quantum computing applications, the ability
to store a state between computations is necessary for increas-
ing the overall fidelity of a quantum algorithm [3]. In quantum
communication protocols, quantum memories make up a key
part of several quantum repeater designs [4,5]. Quantum error
correction offers the ability to create an arbitrarily long-lived
quantum memory, with the overhead depending on the size
and complexity of the quantum hardware [6], through various
protocols such as surface codes [7]. In the noisy intermediate-
scale quantum (NISQ) era, however, the hardware overhead
from performing quantum error correction prevents its use [8].
Nevertheless, even without error correction, today’s quantum
hardware is already performing impressive demonstrations,
such as quantum supremacy [9], quantum calculations in
quantum chemistry [10–12], quantum simulations of many-
body physics [13–18], quantum dynamics [19,20], quantum
optimization [21,22], quantum machine learning [23,24],
quantum internet [25,26], and quantum networking demon-
strations over long distances using satellites [27,28], optical
fibers [29,30], and photonic quantum repeaters [31]. Going
beyond these impressive, albeit small-scale, demonstrations
will require high-quality quantum memories. Quantum mem-
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ories can be made out of many candidate hardware platforms,
including photonics [32], superconducting cavities [33], su-
perconducting qubits [34], vacancy centers [35], trapped ions
[36], and silicon quantum dots [37]. Each platform offers
various benefits and drawbacks, for instance, in coherence
times, fabrication difficulty, and interoperability.

Here we study the performance of storing a variety of quan-
tum states in various quantum memories with differing noise
models, exploring the correlation of the structure of the stored
quantum state with the structure of the noise model. We focus
primarily on the difference of storing quantum information in
qubit-based systems, where the state is stored in a possibly
entangled register of qubits, to many-level qudit-based sys-
tems, where the state can be stored in one single quantum
system with many levels. We provide extensive numerical
calculations of such systems under amplitude damping (T1)
and dephasing (T ∗

2 ) noise models, as well as simple analytic
formulas for predicting the coherence requirements for the
different systems and noise models to have the same mem-
ory performance. Our results point to qudit-based systems as
being viable candidates for high-quality quantum memories,
given the ability to engineer extremely coherent supercon-
ducting cavity systems [38–41].

II. THEORETICAL METHODS

In this section we describe the considered noise models,
how we encode quantum states, and the particular states we
considered. Furthermore, to complement our numerical anal-
ysis we introduce an analytical study based on approximating
the Lindblad master equation with a non-Hermitian formal-
ism.
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FIG. 1. Quantum memories can be made out of a variety of
quantum systems; here we schematically show the noise properties of
two quantum memories. Left: A quantum memory comprising qubits
subject to amplitude damping (also called T1, represented by the
waves flying out of the qubits) and pure dephasing (also called T ∗

2 ,
denoted by the arrows pointing in many directions). Each qubit adds
two noise channels, each with the same strength. Right: A quantum
memory comprising a single qudit subject to amplitude damping.
The noise grows as the number of levels increases.

A. Noise models

We consider the evolution of a quantum state under a noisy
channel using the Lindblad master equation,

dρ(t )

dt
=

∑
i

γiL(Ci )[ρ(t )], (1)

where ρ is the density matrix of the system, γi is a noise
rate, L(Ci )[ρ(t )] = (Ciρ(t )C†

i − 1
2 {C†

i Ci, ρ(t )}) is a Lindblad
superoperator, and Ci are operators representing various
noise processes. The Lindblad master equation is one of the
standard approaches for studying Markovian open quantum
systems [42,43] and has been used to study many physical
systems, such as superconducting qubits [44] and quantum
dots [45,46]. In this work we consider only incoherent evo-
lution of the system under various noise processes; thus, the
Hamiltonian is chosen to be zero. For any noise model, if
γi = 0, the state will be maintained perfectly in the quantum
system for all time. We study both amplitude damping noise
(T1), where the Ci are annihilation operators, and dephasing
(T ∗

2 ) noise, where the Ci are number operators. These are dom-
inant noise sources on a variety of NISQ hardware previously
used in a variety of studies [46–50]. Furthermore, we study
the difference between encoding the quantum information
into qubit-based hardware, where the quantum state is repre-
sented by a possibly entangled register of multiple two-level
systems, and into qudit-based hardware, where the quantum
state is represented by a possibly entangled register of d-level
systems. This is shown schematically in Fig. 1. Although
there are many possible combinations of amplitude damping,
dephasing, and number of levels of the quantum hardware,
we focus primarily on two specific combinations: qubit-based
systems with both amplitude damping and dephasing noise,
which is paradigmatic of superconducting transmon qubits
[51], and a single many-level qudit, with only amplitude
damping noise, which is paradigmatic of superconducting
cavities [38,52]. The specific Lindblad master equation for
the qubit-based noise model with both amplitude damping and

dephasing noise is then

dρ(t )

dt
=

nq∑
i

γ {L(σi)[ρ(t )] + L(σ †
i σi )[ρ(t )]}, (2)

where nq is the number of qubits necessary to store the
quantum state, σi is the annihilation operator for a two-level
system, and we have assumed that all the noise rates for all
qubits γ are the same. The specific Lindblad master equation
for the single qudit-based noise model with only amplitude
damping is

dρ(t )

dt
= γ L(b)[ρ(t )], (3)

where b is the annihilation operator for a d-level system large
enough to store the full quantum state. As an example, for a
qudit with d = 4, we use the matrix

b =

⎡
⎢⎢⎣

0
√

1 0 0
0 0

√
2 0

0 0 0
√

3
0 0 0 0

⎤
⎥⎥⎦. (4)

Larger qudits are similarly defined, with the matrix being
size d × d and bi,i+1 = √

i for every row but the last, which
has no nonzero elements. In the case of storing the same
state in both a qubit-based system and a single qudit-based
system, d = 2nq . Although we will focus primarily on these
two models, our analysis is easily generalized to other systems
(as we later discuss), such as qubit-based systems with only
dephasing, which could represent ion-trap quantum memories
[53], or a system with d < 2nq , which would represent an
array of possibly entangled qudits.

To quantify the performance of these noise models, we
study how well various quantum states are preserved after
evolution under the different Lindblad master equations, such
as Eqs. (2) and (3). We calculate the fidelity of the state as
it evolves under the noisy channel, and we directly compare
the time for various noise models to reach a fidelity target
of Ft . The ratio of times ta

tb
for some noise model a and a

different noise model b to reach the fidelity target provides a
direct comparison of the two noise models’ performance as
quantum memories. Furthermore, since we study only inco-
herent evolution under the Lindblad master equation with a
single parameter γ , the ratio ta/tb directly provides the needed
scaling in noise rates between the two models to have an equal
performance for the specified target fidelity. This allows us
to simply use γ = 1 in arbitrary units for all simulations and
then freely rescale the units of γ in post-processing, resulting
in only needing one simulation for each noise model for each
state. Finding the ratio ta/tb where the two noise models both
reach the target fidelity Ft , then directly provides the relative
scale of the two noise models γ , represented in the same units.
We define the fidelity between wave functions |ψ〉 and |φ〉 as
F = |〈ψ |φ〉|2. We choose a fidelity target of Ft = 0.75 for our
numerical studies because of its relevance in distinguishing
multipartite entangled states [54], but the results are not sensi-
tive to this choice, as we show in our approximate analysis and
in numerical studies in Appendix B. We use the open quantum
systems solver QuaC [55] to perform numerical integration
of the various Lindblad master equations. The QuaC code
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numerically propagates the Lindblad master equation using an
explicit Runge-Kutta time stepping scheme with an adaptively
selected time step size [56]. The density matrix is vectorized
and stored as a dense column vector. The Lindbladians are
stored in a sparse matrix format to reduce the memory over-
head.

B. Encoding quantum states

To evaluate the performance of the quantum systems as
quantum memories, we study the storage of a large variety
of interesting quantum states. A generic quantum state can be
written as

|ψ〉 =
∑

j

α j | j〉, (5)

where α j is the amplitude of state | j〉. We restrict our study
to only pure states. To map an arbitrary state to a specific
quantum system, whether it is based on qubits or qudits, we
map the amplitudes to various states of the quantum system.
In the case of qubit systems, we map the amplitude α j to
the qubit state represented by the binary representation of
the integer j. For example, α5 is mapped to the qubit state
|101〉. More generally, the state j is mapped to the d-nary
representation of the integer j. The specific states we study
in this work include multipartite entangled states such as
the Greenberger-Horne-Zeilinger (GHZ) and W states [57],
which find use in various quantum sensing protocols [58], the
equal superposition state, which is used in the initialization
of many quantum algorithms [59] such as the Deutsch-Jozsa
algorithm [60], Fock states, the coherent state (abbreviated
“Coh.” in figures) which sees use in quantum algorithms for
machine learning [23] and simulations of quantum field theo-
ries [61], the ground and first excited state of H2, H4, LiH, and
H2O, which are the result of quantum chemistry algorithms
such as the variational quantum eigensolver (VQE) [12,62],
the result of running the quantum approximate optimization
algorithm (QAOA) on the MaxCut problem [63,64], states
with random amplitudes on each state | j〉 (abbreviated “Arb.”
in figures), and the tensor product of random qubit states
(abbreviated “Unent.” in figures). Further description of these
states can be found in Appendix C.

C. Non-Hermitian analysis

In addition to our numerical studies, we provide an analysis
based on the approximation of the Lindblad master equation,
Eq. (1), with a non-Hermitian formalism. Such formalism has
been previously used to study the contributions of both ampli-
tude damping [45] and dephasing [65] and can be identified
as the first stage of the Monte Carlo wave function approach
before a stochastic collapse [66]. In this approach, instead of
studying the time evolution of the density matrix, we study
the evolution of the wave function under a non-Hermitian
Hamiltonian,

d|ψ (t )〉
dt

=
∑

i

−γi

2
C†

i Ci|ψ (t )〉, (6)

where |ψ (t )〉 is the wave function of the state, γi and Ci are
the same as in Eq. (1), and we have used units such that h̄ = 1.

Note that, because we are using a non-Hermitian formalism,
there is no imaginary unit i in this equation. Evolution of
this non-Hermitian system leads to loss of the overall norm
of the wave function, which is the primary source of error,
since the norm is never recovered [65]. This formalism is
a powerful tool, however, allowing for approximate analysis
of the evolution of the fidelity for arbitrary states and exact
solutions for a small handful of states. For example, the evo-
lution of the fidelity of the qubit-based noise model with both
amplitude damping and dephasing under the non-Hermitian
approximation is

√
F (t ) =

∑
j

|α j |2e−γw( j)t , (7)

where the initial state |ψ (0)〉 = ∑
j α j | j〉 for eigenstates | j〉

and w( j) is the Hamming weight of the integer j. The evo-
lution of the fidelity of the qudit-based noise model with only
amplitude damping under the non-Hermitian approximation is

√
F (t ) =

∑
j

|α j |2e− γ

2 jt . (8)

Full derivations of both equations can be found in
Appendix A. We use these solutions both to predict how the
fidelity will evolve for systems larger than can be reasonably
simulated and to provide intuition and a simple approximate
formula for predicting relative performance between various
noise models. We note that the non-Hermitian formalism is
used only as a tool in the analytic derivations. All numerically
simulated data are produced using the full Lindblad equation.

III. RESULTS

In this section we compare qubit and qudit quantum mem-
ory architectures with their associated noise models. We
concentrate at first on the GHZ initial state, showing numeri-
cal results and the analytical prediction for the ratio of times
for the state to reach the target fidelity in the two quantum
memory systems. We then expand the explanation to include
other initial quantum states of interest. For many quantum
states, the surprisingly simple analytical approximation is in
close agreement with the numerical simulation.

A. GHZ state

The GHZ state is one of the primary genuine multipartite,
maximally entangled states [57] and is one of the canonical
states used for entanglement-enhanced quantum sensing [58].
We choose to initially focus on the GHZ state as an explicit
example of carrying out all of the steps of our analysis. It
has many appealing features as an initial demonstration, in-
cluding a simple description when mapped to both qubit and
qudit memories which aids in the analytic derivation. For a
collection of nq qubits, the GHZ state is defined as

|GHZ〉 = |0〉⊗nq + |1〉⊗nq

√
2

. (9)

That is, the GHZ state is a superposition of all the qubits
in the |0〉 state with all the qubits in the |1〉 state. When
using a qubit-based hardware, the mapping of the GHZ state
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is directly given by the definition of state, Eq. (9). Map-
ping to the qudit state by the construction mentioned above
gives 1√

2
(|0〉 + |2nq − 1〉). Given that this state has only two

amplitudes, it is simple to apply the non-Hermitian analysis
described above. The fidelity for the qubit-based quantum
memory with both amplitude damping and dephasing, follow-
ing Eq. (7), is approximately

√
F (t ) = 1

2
(1 + e−γ nqt ). (10)

The fidelity for the qudit-based quantum memory with only
amplitude damping, on the other hand, following Eq. (8), is
approximately

√
F (t ) = 1

2
(1 + e−γ (2nq −1)t ). (11)

Comparing the two quantum memory architectures, the
qubit-based [Eq. (10)] and the qudit-based [Eq. (11)], one
immediately sees that the qudit-based quantum memory will
perform exponentially worse as the number of qubits grows,
since its effective decay rate is exponentially larger. This also
follows the intuition behind the two different noise models,
shown schematically in Fig. 1. For the qubit-based quan-
tum memory, each additional qubit adds another independent
channel of amplitude damping and dephasing with rate γ . In
contrast, for the qudit-based quantum memory, encoding an
additional qubit’s worth of information requires doubling d ,
the total size of the qudit. Each additional level of the qudit
decays faster than the previous. Doubling the number of levels
effectively doubles the decay rate. In the GHZ state, where
only the lowest level (|0〉) and the highest level (|2nq − 1〉)
are included, this effect is clearly demonstrated. To quantify
the difference in performance, we calculate the ratio of the
qubit-based quantum memory to reach a target fidelity Ft

(denoted tb) and the time for the qudit-based quantum memory
to reach the same (denoted td ). Through simple algebra we
find

tb
td

= 2nq − 1

2nq
, (12)

assuming that both quantum memories have the same noise
rate γ . For the GHZ state under the non-Hermitian approx-
imation, this ratio is independent of the target fidelity. As
discussed in the Methods section, this ratio provides a direct,
quantifiable comparison of the two quantum memories. It
can also be interpreted as the decrease in noise necessary to
make the qudit-based quantum memory perform as well as
the qubit-based quantum memory.

Figure 2 shows the analytic ratio of Eq. (12), as well as
the numerically simulated ratio using the full Lindblad master
equations of the qubit-based quantum memory [Eq. (2)] and
the qudit-based quantum memory [Eq. (3)] with target fidelity
Ft = 0.75. The ratio needed for both the analytic formula
and the numerical simulations grows exponentially with the
number of qubits, as expected. The analytic formula slightly
underestimates the scaling ratio needed; this is to be ex-
pected since the inclusion of dephasing in the non-Hermitian
formalism has been shown to significantly increase the ap-
proximation error [65].

FIG. 2. Scaling ratio for the qudit-based quantum memory to
perform as well as the qubit-based quantum memory versus the
number of qubits for the GHZ state. The ratio grows exponentially
as the number of qubits grows.

B. Predicted ratio

The GHZ state, a superposition of only two states, is the
simplest state in this study. Generally, the coefficients α j can
take any (normalized) set of values. To provide an approx-
imate ratio for an arbitrary state, we start with the general
expression of the fidelity using the solution to the Schrödinger
equation, Eq. (A1),

√
F (t ) = ∣∣〈ψ (0)|e− ∑

j
γ j
2 C†

j Cj |ψ (0)〉∣∣. (13)

Equation (13) is valid for any initial condition |ψ (0)〉 and any
system with any noise operators Ci. To obtain an approximate
solution for this equation, we expand the exponential for some
target fidelity Ft ,

√
Ft =

∑
k

∑
j

(−γ jt )k

2kk!

〈
mk

j

〉
, (14)

where 〈mk
j〉 = |〈ψ (0)|(C†

j Cj )
k|ψ (0)〉| are the moments of the

operator C†
j Cj for the state |ψ (0)〉. This is valid for any state

|ψ (0)〉 and set of noise operators Ci. For example, using a
qudit-based quantum memory with only amplitude damping,
we have only one noise operator b whose moments are simply
the moments of the number operator for a qudit 〈nk

d〉. We can
rewrite the fidelity expansion of Eq. (14) as

√
Ft =

∑
k

(−γ td )k

2kk!

〈
nk

d

〉
. (15)

A similar expansion can be obtained for qubit-based quantum
memories,

√
Ft =

∑
k

(−γ tb)k

k!

〈
nk

b

〉
, (16)

where, analogous to the qudit-based quantum memory, 〈nk
b〉 =

〈ψ (0)|( ∑
i σ

†
i σi )

k|ψ (0)〉. The difference in the factor of 2k is
due to the inclusion of dephasing in the qubit-based quantum
memory noise model. Since we have chosen a specific target
fidelity Ft , these two equations, Eqs. (15) and (16), can be

012605-4



IMPACTS OF NOISE AND STRUCTURE ON QUANTUM … PHYSICAL REVIEW A 104, 012605 (2021)

equated, and an approximation for the ratio of the times to
reach the target fidelity can be obtained by truncating the sum
to first order:

tb
td

≈ 〈nd〉
2〈nb〉 . (17)

We have shown here that the ratio of the times for the two
quantum memories to reach the target fidelity can simply be
approximated as the ratio of the average number of excitations
in the qudit-based quantum memory compared with double
the average number of excitations in the qubit-based quantum
memory. To first order, the ratio does not depend on the target
fidelity. Higher-order truncations will depend on the target
fidelity. For example, keeping terms to second order gives the
following equation:

tb
td

≈ 〈nd〉
2〈nb〉 + γ

〈nb〉td
(
t2
b

〈
n2

b

〉 − t2
d

〈
n2

d

〉)
, (18)

which is a transcendental equation, that, in general, is not
solvable in closed form. However, specifying a specific tar-
get fidelity Ft and solving truncated forms of Eqs. (15) and
(16) via, e.g., a root-finding technique, is possible. From this
second-order expansion, we can see that the our simpler for-
mula [Eq. (17)] is accurate to first order in the decay rate γ and
has terms that depend on the second moments of the specific
quantum state.

The simple first order equation [Eq. (17)] can be intuitively
understood as representing the correlation of the quantum
state and the noise models that were used to describe the
quantum memories. For example, in the qubit-based quantum
memory, each excitation (i.e., the qubit in the |1〉 state) of
an individual qubit contributes to the overall noise by being
subject to an amplitude damping and dephasing noise channel.
However, if the qubit is not excited (i.e., the qubit is in the
|0〉 state), there is no contribution to the overall noise. A
superposition of being excited (|1〉) and not being excited (|0〉)
would contribute only partially to the total amount of noise.
Therefore, under this intuitive argument, we can say that the
total amount of noise goes as 2γ 〈nb〉. Similar arguments can
be made for the qudit-based noise model, leading to the total
amount of noise being, intuitively, γ 〈nd〉. The ratio of the
total amount of noise between the two quantum memories
should then give some insight into their relative performance.
As derived in Eq. (17), this ratio is approximately the ratio of
times to reach any target fidelity.

Figure 3 plots the ratio from data simulated by using the
Lindblad master equations for the qubit-based [Eq. (2)] and
the qudit-based [Eq. (3)] quantum memories over a wide range
of interesting quantum states and sizes. The set of states is
discussed in the Theoretical Methods section. System sizes
range from 24 to 215. The line y = x is also indicated on the
plot; the closer the points are to this line, the better the predic-
tion of the approximate formula, Eq. (17). The simulated and
predicted ratios are highly correlated for most of the states.
The coherent and equal superposition states stray far from the
line y = x. Notably, these two states are the states in which
the non-Hermitian dynamics diverges from the full dynamics
of the Linblad master equation, as we show in Appendix D.
The failure of our predicted ratio is thus because of the failure
of the non-Hermitian approximation. For the coherent state,

FIG. 3. Comparison of the numerically simulated and analyt-
ically predicted scaling ratios between a qubit-based quantum
memory with both amplitude damping and dephasing and a qudit-
based quantum memory with only amplitude damping, for a wide of
variety of interesting quantum states. The dashed black line is y = x;
the closer the points are to this line, the better the prediction.

specifically, this is perhaps to be expected, as the full dissipa-
tive dynamics have a simple analytically derivable form [43],
which is very different than our approximate non-Hermitian
form.

This level of agreement is remarkable, given that the
derivation of the approximate ratio involves multiple levels
of approximation, including both the non-Hermitian approx-
imation used to derive the fidelity equations, Eqs. (15) and
(16), as well as their truncation to first order. The contribution
of the truncation was discussed above. To understand the
error from the non-Hermitian formalism used to derive the
fidelity equations, we compare the full Lindblad dynamics and
the non-Hermitian dynamics in Appendix D for the various
states studied. Our approximate ratio is surprisingly simple
and comprises quantities that can be easily measured in an
experimental setting for an arbitrary, unknown quantum state.
The use of such a formula is not limited to just the two
quantum memories studied here; it is easily generalized to
other architectures and can help inform possible strategies for
extending the lifetimes of quantum information in quantum
memories.

IV. DISCUSSION

Using either the formal derivation or intuitive arguments,
one can easily generate ratios for the performance of other
quantum memories. For instance, another potential architec-
ture for a quantum memory is an array of qudits of some
intermediate size between a qubit (d = 2) and a single qudit
(d = 2nq ). For illustrative purposes we choose an array of two
qudits with d = 2nq−1. The predicted ratio is then

tb
tint

≈ 〈nint〉
2〈nb〉 , (19)

where the subscript int denotes the “intermediate” qudit sys-
tem 〈nint〉 = 〈∑i c†

i ci〉 and ci is the annihilation operator for
the intermediate qudit. Similar comparisons between the inter-
mediate qudit-based quantum memory and single qudit-based
quantum memory can also be performed. Figure 4 shows
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FIG. 4. Comparison of the numerically simulated and analyt-
ically predicted scaling ratios between a qubit-based quantum
memory with both amplitude damping and dephasing and an array of
two qudits with only amplitude damping, for many quantum states.
The dashed black line is y = x; the closer the points are to this line,
the better the prediction.

the comparison of the simulated and predicted scaling ratios
between a qubit-based quantum memory with both ampli-
tude damping and dephasing and the intermediate qudit-based
quantum memory with only amplitude damping. Similar to
the comparison to the single qudit-based quantum memory
(see Fig. 3), the predicted and simulated ratios are in good
agreement. The magnitude of the ratios, both simulated and
predicted, are considerably smaller since the average num-
ber of excitations in the intermediate qudit-based quantum
memory (〈nint〉) is considerably smaller than that in the single
qudit-based quantum memory (〈nd〉). Approximate perfor-
mance ratios for other noise models can also be generated
within this framework. For example, in many qubit-based
quantum devices, the noise rates vary between qubits [67] or
even in time [68]. In such a disordered system, our assump-
tion of an equal noise rate γ for all channels breaks down.
In this case, instead of using the overall average number of
excitations 〈nb〉, the average excitation per qubit needs to be
weighted by its overall noise contribution, giving

√
Ft =

∑
k

∑
j

(−γ jtdis)k

k!

〈
nk

j

〉
, (20)

where 〈nk
j〉 = |〈ψ (0)|(σ †

j σ j )
k|ψ (0)〉| and we have assumed

that the dephasing and amplitude-damping rates are the same
for a given qubit but different between qubits. Comparing an
ordered qubit register with a disordered qubit register, we find
that the approximate ratio of times to reach a target fidelity is,
to first order,

tb
tdis

=
∑

j γ j〈n j〉
γ 〈nb〉 . (21)

Architectures with other noise channels, beyond amplitude
damping and dephasing, can also be included as long as they
can be written in the non-Hermitian formalism. There is no
guarantee that every noise channel will lead to as simple a
formula as Eq. (17), but many will because of the simple
relationship of the fidelity to the moments of the operators. A

FIG. 5. Performance enhancement from reordering the quantum
information in a qudit-based quantum memory with amplitude damp-
ing. The simulated performance gain grows with increasing average
number of excitations in the original state.

two-qubit correlated amplitude damping channel, for instance,
would give a contribution of 〈nb,inb, j〉 (in addition to any
single-qubit noise).

Our analysis of the correlation of the noise model and the
structure of the quantum information can help provide insights
into ways to potentially extend the lifetime of quantum states
stored in quantum memories. The overall noise, to first order,
goes as the number of excitations in the system (regardless
of the architecture). Storing the quantum information such
that the largest amplitudes are in the lowest possible states
will greatly reduce the overall noise and thus increase the
effective lifetime of the quantum information. To demonstrate
this benefit, we numerically sorted the amplitudes of the quan-
tum states and simulated the performance of a qudit-based
quantum memory with only amplitude damping with both the
unsorted and sorted quantum states. The comparison between
the two layouts is shown in Fig. 5. Reordering states with
a small number of amplitudes that happen to be in highly
excited states, such as the GHZ and W states, provides a
large performance enhancement that grows with system size.
Random arbitrary and unentangled states see a modest perfor-
mance enhancement. The coherent state, on the other hand,
actually performs worse after reordering. After reordering, the
coherent state is no longer an eigenstate of the annihilation
operator and thus loses its superior performance. Reordering
the amplitudes of an arbitrary quantum state is generally very
expensive; a quantum sort of n items, for example, will take
at least O(n log(n)) steps [69]. However, in the case where
classical information is being loaded onto a quantum device
through, say, a QRAM technique [70], carefully arranging
the amplitudes can increase the performance of the quantum
memory, especially in a qudit-based system, where the decay
of high Fock states is significantly larger than lower Fock
states. Techniques, such as reordering, based on the corre-
lation of the structure of the quantum state with the noise
model, can be used in addition to quantum error correction
[6,7,71,72] and other error mitigation techniques [68,73,74].

The derived performance ratio [Eq. (17)] is an experimen-
tally accessible quantity, even for unknown quantum states,
and can be used to understand the relative performance and
engineering requirements between quantum architectures. For
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TABLE I. Simulated and predicted performance ratios between a
qubit-based quantum memory with both amplitude damping and pure
dephasing and a qudit-based quantum memory with only amplitude
damping, for a variety of states of size 210.

Simulated ratio Predicted ratio

Coherent 0.96 51.29
GHZ 51.67 51.15
W 44.62 51.15
Equal 8.92 51.15
Fock 366.00 256.00
VQE 19.05±2.04 14.41±3.88
QAOA 49.44±3.12 50.72±0.43
Arbitrary 49.08±0.14 51.53±0.38
Unentangled 86.15±20.89 58.93±9.32

some given quantum state, choosing between two candi-
date quantum memory architectures would involve measuring
the average number of excitations in either device, as well
as knowledge of underlying noise models of each quantum
memory. Measuring the average number of excitations is a
simple experimental technique that can be done with O(1)
experiments, in both qubits (through standard single-qubit
measurements [75]) and qudits (through multilevel quantum
tomography techniques [76,77] or other means), as long as
many copies of the quantum state are available. The relative
performance between the two quantum memories, assuming
equivalent noise rates, could then be predicted by using a
formula like Eq. (17). The relative performance could then be
compared with the relative noise rates to understand which
quantum architecture would perform better. As an explicit
example, we return to the qubit-based quantum memory with
amplitude damping and pure dephasing and the qudit-based
quantum memory with only amplitude damping. For one
instance of an arbitrary state of size 24 with random wave
function coefficients, we find that 〈nd〉 = 8.16 and 〈nb〉 =
2.08, leading to a performance ratio assuming equivalent
noise rates, according to Eq. (17), of ≈ 1.96 (the simulated
performance ratio for target fidelity Ft = 0.75 is 2.44); the
qubit-based quantum memory will have reliably stored the
quantum state for about twice as long as the qudit-based
quantum memory. Put another way, the qudit-based quantum
memory would need to have half the noise rate in order to
perform as well as the qubit-based quantum memory. Similar
comparisons can be made for other quantum states. Table I
shows the predicted and simulated performance ratios for a
variety of quantum states. We find performance ratios on the
order of 10–100 for most states of size 210, with the coherent
state and Fock states being strong outliers. Three-dimensional
(3D) cavity qudits can have T1 times that are more than 100×
longer than the T1 times of transmon qubits [41,52]. Thus,
for states of size 210 ≈ 1000, 3D cavity architectures will
likely perform better than qubit-based systems. Above that,
a qubit-based system will perform better.

V. CONCLUDING REMARKS

We presented a detailed study of the interplay between
the structure of quantum information and the physical noise
models of various quantum memories. We demonstrated

simple and experimentally relevant ways of comparing the
expected performance of quantum memory architectures for
specific quantum states. Although we focused primarily on
two paradigmatic devices, superconducting qubits with both
amplitude damping and dephasing channels and supercon-
ducting cavities with only amplitude damping, our methods
can easily be extended to other quantum systems such as
trapped ions and photonic systems. We utilized both numer-
ical simulations using the Lindblad master equation and an
approximate non-Hermitian formalism to analyze the behav-
ior of a wide variety of interesting and useful quantum states.
Our approximate non-Hermitian analysis provides a simple
formula that gives intuition on the performance of a given
quantum state stored in different devices. As a practical exam-
ple of the application of our method, we demonstrated that the
superconducting cavities are viable candidates for quantum
memories up to around 1000 levels for many classes of states
because of their significantly longer T1 times. Beyond that,
the increased decay from the higher levels lowers the overall
fidelity for many of the states, and an array of superconducting
qubits becomes a more viable quantum memory. Furthermore,
we showed that reducing the total number of excitations in the
mapping of data to a quantum state can help increase the over-
all lifetime of the state and thus provides a way, through state
engineering, to increase the performance of a quantum mem-
ory device. Our method, given its simplicity and experimental
relevance, could be used as part of a heuristic for a quantum
compiler for hybrid quantum devices. As long as multiple
copies of a state can be created, a simple interrogation of
the state, measuring the number of excitations when stored in
the various possible subcomponents of the overall device, can
be used to decide where to store a state. As the complexity
of hybrid quantum devices grows, simple heuristic methods
for understanding the performance of each subcomponent,
such as the method we present here, will be important for
maximizing the overall performance of the device and can
help in the initial design.
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APPENDIX A: DERIVATION
OF APPROXIMATE SOLUTION

To derive the approximate solutions of Eqs. (8) and (7),
we begin with the generic solution to the non-Hermitian
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Schrödinger equation of Eq. (6) with initial condition |ψ (0)〉,
|ψ (t )〉 = e− ∑

j
γ j
2 C†

j Cj |ψ (0)〉. (A1)

We seek to understand the evolution of the fidelity with
respect to the initial state,

F (t ) = |〈ψ (0)|ψ (t )〉|2. (A2)

We derive the following using the square root of the fidelity√
F (t ) because of the increased ease of typesetting. We can

expand the fidelity using the solution to Schrödinger equation
[Eq. (A1)],

√
F (t ) = |〈ψ (0)|e−∑

j
γ j
2 C†

j Cj |ψ (0)〉|. (A3)

The equation is valid for any initial condition |ψ (0)〉 and
any system with any noise operators Ci. We will now derive
specific formulas for several different noise models.

1. Single qudit with amplitude damping

A single qudit with amplitude damping has only a single
noise operator, the annihilation operator for an n-level system
b. We will also expand the initial state in terms of the basis
states of the qudit, leading to

√
F (t ) =

∑
k, j

|〈 j|α∗
j αke− γ

2 b†bt |k〉|. (A4)

To simplify this expression we expand the exponential

e− γ

2 b†bt |k〉 =
∑

l

( − γ t
2

)l
(b†b)l

l!
|k〉. (A5)

Because b†b|k〉 = k|k〉, we can rewrite this equation as

e− γ

2 b†bt |k〉 =
∑

l

( − γ t
2

)l
(k)l

l!
|k〉 = e− γ

2 kt |k〉, (A6)

which removes the operator from the exponential. We can now
use this simplification in the fidelity expression [Eq. (A4)].
Combining this with the orthonormality of the basis states,
we have √

F (t ) =
∑

j

|α j |2e− γ

2 jt , (A7)

which is the equation in the main text [Eq. (8)].

2. Qubits with amplitude damping and dephasing

The derivation for other noise models, such as a qubit
register with both amplitude damping and dephasing, follows
the same logic. The primary difference is the noise operators
Ci and how they act on the basis states | j〉. For example, on
a qubit register, the amplitude damping noise channels are a
sum of operators

∑
i σ

†
i σi, where σ is the annihilation opera-

tor for a two-level system. The expansion of the exponential
in Eq. (A5) changes. The basis states | j〉 are now bit strings
of length the number of qubits nq. If qubit i is in its excited
state |1〉, the action of its noise operator σ

†
i σi will return 1;

otherwise, it will return 0. The sum of the action of all the
amplitude damping noise channels is then just a count of the
number of excited qudits in the basis state. This number is

known as the Hamming weight w( j). The dephasing operator,
by similar arguments, contributes a term proportional to the
Hamming weight. Together, this gives the equation in the
main text, Eq. (7).

APPENDIX B: CHANGING Ft

Figure 6 shows the results of applying the analysis of the
main text [that is, using the predicted scaling ratio of Eq. (17)]
to the various quantum states studied at two target fidelities
(Ft = 0.75 and 0.9). These results, in addition to the results
of Fig. 3, all support the efficacy of the scaling prediction.
While the predicted ratio is insensitive to the target fidelity, the
simulated ratio is sensitive to it. Figure 7 shows the difference
between simulated ratios for the GHZ state. The exact position
of the simulated ratio changes for GHZ states with larger
numbers of excitations in the qudit, but the differences are
negligible on the studied scale.

APPENDIX C: DESCRIPTION OF QUANTUM STATES

In this Appendix we describe all the states used in the main
text. Unless mentioned otherwise, these states were generated
by using utilities available within the QuTiP [78] package.

GHZ state: The GHZ state is defined in Eq. (9).
W state: The W state for nq qubits is defined as the equal

superposition of all states, where one qubit is excited (|1〉) and
all other qubits are in their ground state (|0〉).

Equal superposition state: The equal superposition state
is defined as the state with an equal superposition of all possi-
ble basis states.

Fock states: A Fock state, or number state, is defined as
a state with a specific number of excitations. In this work we
use the Fock states |8〉, |16〉, |32〉, |64〉, |128〉, |256〉, and
|512〉, when represented as a qudit state.

Coherent states: A coherent state is generally defined as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (C1)

where α is generally a complex number. In this work, how-
ever, we focus on quantum systems that have a limit on the
number of excitations that can be in the system. We instead
use the following definition:

|α〉 = eα(a†−a)|0〉, (C2)

where a is a truncated annihilation operator. This definition
of the coherent state gives slightly different amplitudes from
those obtained with the analytic formula of Eq. (C1), espe-
cially in the small truncation limit. We use α = √

nt/2, where
nt is the maximum number of excitations allowed in the qudit
register and nt = 16, 32, 64, 128, 256, 512, and 1024.

Chemical states: To generate states relevant to quantum
chemistry studies, we use Qiskit’s Aqua [79] package using
parity mapping to map spin orbitals to qubits [80] for all
molecules. Rather than solve a variational quantum eigen-
solver instance, we instead use exact diagonalization to find
the exact ground and first excited states for all molecules. We
generate states for H2 with and without two-qubit reduction
[80], LiH with two-qubit reduction with and without a frozen
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(a) Ft = 0.7 (b) Ft = 0.9

FIG. 6. Comparison of the simulated and predicted scaling ratios between a qubit-based quantum memory with both amplitude damping
and dephasing and a qudit-based quantum memory with only amplitude damping, for a wide of variety of interesting quantum states. The two
different target fidelities here (in addition to Fig. 3) show that the specific target fidelity does not affect the overall conclusions.

core [10], H4 with and without two-qubit reduction, and H2O
with two-qubit reduction. These states span Hilbert space
sizes from 4 to 4096.

QAOA states: To generate quantum approximate opti-
mization algorithm (QAOA) states, we generate Erdős-Rényi
graphs [81] of size n with probability 0.5 of creating an edge
between any two nodes. We then use the QAOA solver within
Qiskit [79] with p = 4 steps to solve for the MaxCut of the
graph [64]. We generate and solve ten graphs each of size
n = 4, 5, 6, 7, 8, 9, 10, 11, and 12.

Arbitrary states: We randomly generate arbitrary states
by creating dense vectors of uniform random numbers in the
range [−0.5, 0.5] for both the real and imaginary parts and
then normalize the vectors. We create four random states for
each total Hilbert space size of 16, 32, 64, 128, 256, 512, and
1024.

FIG. 7. Comparison of the simulated and predicted scaling ra-
tios between a qubit-based quantum memory with both amplitude
damping and dephasing and a qudit-based quantum memory with
only amplitude damping for the GHZ state at three different target
fidelities. While the exact location of the simulated scaling changes,
the values are reasonably close.

Unentangled states: We randomly generate unentangled
states as described above for two-level systems and then take
the tensor products of several such qubit states to create ran-
dom, unentangled states. We generate four random states for
tensor products of size 4, 5, 6, 7, 8, 9, and 10 qubits.

APPENDIX D: COMPARISON OF NUMERICAL
AND ANALYTIC DYNAMICS

We compare the full Lindblad dynamics of both the qubit-
based [Eq. (2)] and qudit-based [Eq. (3)] quantum memories
with their respective non-Hermitian dynamics in Fig. 8. We
find that the non-Hermitian (NH) dynamics, at least for the
short times we are interested in, provides a good approx-
imation for many of the states. For some states, such as
the coherent and equal superposition states, the difference in
approximation error between the qubit and qudit models is
stark. For example, in the coherent state, the qubit system sees

FIG. 8. Comparison of the full Lindblad dynamics and the non-
Hermitian (NH) approximation for specific nq = 10 instances of the
various states studied.
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good agreement between the full Lindblad dynamics and the
approximate non-Hermitian dynamics, but the non-Hermitian
dynamics greatly underestimates the true Lindblad dynamics

for the qudit system. Correspondingly, this leads to the large
errors seen for some of the states in the predicted ratios (see
Table I).
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