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Passive side-channel attacks in quantum key distribution (QKD) aim at obtaining information about the
quantum signals without disturbing them and hence compromise real-world QKD security. Currently, there are
no reliable tools for the assessment of QKD signal generation imperfections. In this work we propose a generic
experimental method which allows to upper-bound QKD light-source imperfections and directly integrate them
into the modern security proofs. The method relies on Hong-Ou-Mandel interference between different emitted
signals: the maximum interference visibility reveals overall signal distinguishability that could lead to passive
side-channel information leakage. We apply it for the standard decoy-state BB84 protocol and calculate a lower
bound on the secret key rate for realistic values of interference visibility. The method can be readily implemented
in practical QKD setups and is especially relevant for multiple-laser QKD systems such as the one installed on
the Micius satellite.
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I. INTRODUCTION

Quantum key distribution (QKD) is a secure method
for distributing keys between distant users—the transmitter
(Alice) and the receiver (Bob). Although the security of QKD
is based on fundamental laws of quantum physics, the real-
world QKD implementations can significantly deviate from
their theoretical models and compromise the security state-
ment. The real devices which are used in QKD allow for
side-channel information leakage, which can be exploited by
an eavesdropper (Eve) to hack a QKD system [1,2].

Development of measurement-device-independent (MDI)-
QKD allowed to secure the receiving part; however, the sender
of the quantum states is still at risk [3]. The side-channel
attacks on Alice’s systems can be divided into two major
types: active and passive ones. In an active attack, or Tro-
jan horse attack (THA), Eve sends optical signals to Alice,
and tries to obtain information about the settings from the
reflected light. The natural technical countermeasures against
THA include optical isolation from the quantum channel, thus
the influence of the THA on the QKD security can be upper
bounded according to the level of isolation and maximum
optical power which can be injected into the optical fiber (for
recent comprehensive analysis of the THA see Refs. [4,5]).

The basic idea of passive side-channel attacks is to exploit
imperfections within the signal generation stage and measure
auxiliary degrees of freedom, such as signal timing or spectral
differences, which may leak information about the secret key.

*duplinskii@phystech.edu

A general model of possible passive leaks and flaws of Al-
ice’s setup includes modulation deviation and nonoperational
degrees of freedom (the quantum state outside of the single
mode space) [6]. Modulation deviation, i.e., deviations of the
actual quantum signal from the desired one, can be directly
measured in the experiment, as it deals only with the known
(operational) degree of freedom of the signals.

Even when the models include device imperfections, the
theoretical figures of merit are related to the fidelity of differ-
ent density matrices, which has no direct operational meaning
[6]. As a result, modern QKD implementations do not include
any part that allows to estimate such figures of merit; hence
theoretical security proofs are not fully taken up in practice.
As a simple example, the first-ever QKD setup used high-
voltage Pockels cells, which reveal their settings by acoustical
noise [7]. Talking about modern QKD, a common approach in
high-speed free-space systems is to use different laser sources
to encode different quantum states, without applying any ex-
ternal modulation [8–11]. Also, there are many fiber-optic
QKD setups that are based on multiple lasers; some of them
implement quantum cryptography beyond QKD [12,13]. Such
setups are immune to conventional THAs as they do not use
any modulators, but can be insecure because of information
leakage beyond the single-mode space. Even if two lasers
seem identical at first sight, the actual parameters of the
emitted light, such as spectrum, temporal, and spatial shape,
always vary [14].

The problem of potential distinguishability estimation of
quantum signals due to the passive side channels remains
open. Previous work proposed to perform individual measure-
ments of different degrees of freedom [2,14]. This approach,
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FIG. 1. An example of two nonoverlapping joint probability
distributions, colored red and blue, corresponding to a pair of
completely distinguishable quantum states. The partial distributions
(shown by red-blue gradient) perfectly coincide; hence any individ-
ual measurement fails to distinguish the quantum states.

however, fails to reveal the actual distinguishability of the sig-
nals. For example, the same temporal and spatial distributions
do not guarantee that the joint distributions of intensity in
time and space for two states also match. In addition, spectral
distribution may depend on time due to the frequency chirp
of a laser source [15]. A simple illustration of two completely
distinguishable quantum states that have identical partial dis-
tributions (and hence are indistinguishable within the existing
approaches) is shown in Fig. 1.

In contrast to individual measurements of separate degrees
of freedom, the effect of interference allows to study the
overall distinguishability of the pulses, since distinguishable
states do not interfere [16]. For example, fourth-order, or
Hong-Ou-Mandel (HOM), interference is a standard method
for characterization of single-photon sources [17,18]. The
possibility of utilizing HOM interference to characterize un-
measured degrees of freedom for the QKD sources with
multiple lasers has been mentioned in Ref. [19].

In this work, we show how to use the HOM interference
of optical pulses for estimation of their distinguishability in
the context of QKD, and upper bound the influence of passive
side-channel effects caused by the optical mode mismatch be-
tween different pulses. We calculate the secret key generation
rate of the BB84 protocol with phase-randomized weak coher-
ent pulses (PRWCPs), taking into account the realistic values
of visibility between different quantum states, and show the
practical applicability of the proposed method. The proposed
method allows to close the gap between security proofs and
the real-world QKD.

The paper is organized as follows. In Sec. II we describe
Hong-Ou-Mandel effect for PRWCPs from the quantum point
of view, and link visibility of HOM interference with distin-
guishability of interfering states. Next, in Sec. III the results of
the HOM interference are used to calculate the value of bases
imbalance. Then, in Sec. IV the value of bases imbalance
are used to correct estimation of the single-photon error rate,
and, finally, obtain the key generation rate for different values

of HOM visibility. Based on currently known experimental
results, the applicability of the proposed method is discussed
in Sec. V.

II. HONG-OU-MANDEL INTERFERENCE AND
NONORTHOGONALITY OF QUANTUM STATES

The fourth-order interference of single photons was intro-
duced by Hong, Ou, and Mandel in 1987 in order to measure
the time delay between single photons precisely [17]. The key
idea is that two indistinguishable single photons matched on
a 50:50 beam splitter always exit it pairwise. This is a purely
quantum effect, which is a result of two-photon wave function
interference [20]. Later experiments allowed to demonstrate
Hong-Ou-Mandel interference even for the photons emitted
by different atoms [21]. Schematics of the optical setup to
observe the effect is illustrated in Fig. 2.

Single photon detectors in both arms allow to count coin-
cidence clicks, when two photons leave the beam splitter in
different arms. While the time difference �t between single-
photon wave packets is large enough so that the photons do not
overlap, their behavior is independent from each other. As a
result, coincidence clicks are observed in half of the detection
events.

As soon as overlap becomes nonzero, the number of coinci-
dence clicks decreases. In the limit of perfectly mode-matched
pure single-photon states, coincidence clicks completely
vanish. In order to characterize the indistinguishability of
photons, the visibility of HOM interference is introduced as
the difference between the maximum and minimum numbers
of coincidence clicks, divided by the maximum number of co-
incidence clicks: V = (Nmax − Nmin)/Nmax (Fig. 2). It is easy
to see that visibility equals zero for completely orthogonal
(distinguishable) states and equals 1 in the case of perfect in-
distinguishability. In the case one knows the density matrices
of the single-photon states (ρ̂sp

1 and ρ̂
sp
2 ), the visibility can be

calculated as

Vρ̂
sp
1 ρ̂

sp
2

= Tr
(
ρ̂

sp
1 ρ̂

sp
2

)
. (1)

Most of the practical QKD systems utilize PRWCPs in-
stead of the single-photon states. Nevertheless, a HOM-like
effect also takes place for two PRWCPs as well, though
the coincidence clicks never totally disappear. The maximum
possible visibility obtained in this type of experiment is 0.5.
In contrast to the single-photon case, the HOM effect for
PRWCPs can be explained both from classical and quantum
points of view. It is quite natural as coherent states could be
treated as the “most classical” quantum states. Anyway, in this
paper we focus on the quantum approach and study how the
visibility depends on the characteristics of interfering states.

The PRWCPs can be expressed as a Poissonian combina-
tion of independent Fock states [22]. Let us consider two such
states ρ̂1 and ρ̂2 with equal intensity μ at a 50:50 beam splitter.
Their density matrices can be written in Fock basis as follows:

ρ̂ =
∞∑

n=0

ρnn|n〉〈n| =
∞∑

n=0

e−μ μn

n!
(â†)n|0〉〈0|(â)n. (2)

To simulate a real system one has to take into account
detection efficiency, including both optical losses and single-
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FIG. 2. Typical setup for the HOM experiment (left). Two single-photon pulses enter a beam splitter, while coincidence counts are
measured with two single-photon detectors (SPDs). Dependence of the number of coincidence counts on the time delay �t has a dip that
corresponds to the maximum overlap of photons on the beam splitter (right).

photon detector efficiency. Here we consider μ as the effective
intensity of states, corrected for detection imperfections.
Thereby the input state on a beam splitter is

ρ̂in = ρ̂1 ⊗ ρ̂2

= e−μ

(
|0102〉〈0102| + μ(|0112〉〈1102| + |1102〉〈0112|)

+ μ2

2
(|0122〉〈0122| + 2|1112〉〈1112| + |2102〉〈2102|)

+ O(μ3)

)
. (3)

We omit the terms higher than the second degree, as we
consider μ to be small. As soon as the terms with the total
photon number less than 2 do not contribute to coincidence
clicks, the only states that we need to study are

ρ̂ ′
in = e−μμ2

2
(|0122〉〈0122| + 2|1112〉〈1112| + |2102〉〈2102|).

(4)

In the case of orthogonal modes, all three terms |0122〉〈0122|,
|1112〉〈1112|, and |2102〉〈2102| contribute equally to coinci-
dence clicks. The middle term |1112〉〈1112| leads to the
standard single-photon HOM effect; i.e., for perfect node
matching, coincidences vanish. At the same time, coincidence
clicks due to the other terms, |0122〉〈0122| and |2102〉〈2102|,
never change, since there is no interference with vacuum.
Thus the maximum visibility value is 0.5. In the intermediate
case of partial distinguishability, the number of coincidence
clicks from the state |1112〉〈1112| reduces by the factor of (1 −
Vρ̂

sp
1 ρ̂

sp
2

), according to (1), resulting in visibility for PRWCPs:

Vρ̂1ρ̂2 = 1
2Vρ̂

sp
1 ρ̂

sp
2

= 1
2 Tr

(
ρ̂

sp
1 ρ̂

sp
2

)
. (5)

In these calculations we neglect high-order terms. To check
the applicability limit of the obtained result, we carry out
numerical simulations, including terms up to the 20th degree.
Simulation results (Fig. 3) show that for μ below 0.025 pho-
tons per pulse Eq. (5) is very close to the actual behavior. Even
for higher values of μ (e.g., 0.25) the dependence remains
very close to linear; however, the visibility limit should be
slightly corrected. For μ value more than 1 photon per pulse,
Eq. (5) is no longer applicable. Note that the mean photon
number used for the visibility measurement does not have

to be the same as the one used for quantum communication
signals in the QKD channel (see Fig. 6).

III. SIDE-CHANNEL INFORMATION
AND HOM VISIBILITY

Side channel is a collective name for vulnerabilities that
can cause information leakage to Eve, bypassing the com-
munication protocol. Here we address only the passive type
of side channels for Alice’s device, meaning that information
can be partially revealed via the distinguishability of pulses
in nonoperational degrees of freedom. In other words, we
consider mode mismatch between different optical signals,
emitted by Alice.

We address conventional BB84 protocol with decoy states
and study distinguishability between the two bases [4,23],
caused by the nonoperational degrees of freedom. This ap-
proach is sufficient to quantify all BB84 vulnerabilities caused

FIG. 3. HOM visibility of PRWCPs as a function of HOM visi-
bility for single-photon states within the PRWCPs. PRWCP visibility
can be measured directly in the experiment, while the single-photon
visibility is used to integrate the measurement results into the security
proof. The plot shows the dependence for different mean photon
numbers per pulse μ. Calculations are performed including the terms
(3) up to the 20th degree. Note that the use of large values of μ

(μ > 1) leads to the significant underestimation of the single-photon
visibility, and hence to the overestimation of the potential side chan-
nels and to the reduction of the secret key rate. On the other hand,
the choice of small values of μ leads to large statistical fluctuations
and long data acquisition time.
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by distinguishability, as it has been proven that for identical
bases density matrices all bit flaws cause an increase of the
respective error rate [24].

Ideally, the protocol implies that Eve is not able to dis-
criminate one basis from the other, as their density matrices
ρ̂x = 1

2 (|H〉〈+||V 〉〈)| and ρ̂z = 1
2 (|D〉〈+||A〉〈)| are supposed to

be the same. Nonperfect mode matching between the different
bits causes the differences in the bases’ density matrices,
resulting in a vulnerability that could be exploited by Eve.
The value that allows to quantify the impact of this effect is
the so-called bases imbalance [4,23]:

� = 1 − √
F (ρ̂x, ρ̂z )

2
, (6)

where F (ρ̂x, ρ̂z ) is the fidelity between the density matrices
[25,26],

F (ρ̂x, ρ̂z ) = (Tr
√√

ρ̂xρ̂z

√
ρ̂x )2 = (Tr|

√
ρ̂x

√
ρ̂z|)2. (7)

It is easy to see that in the perfect case, when ρ̂x and ρ̂z are
indistinguishable, � equals zero, whereas in the worst-case
scenario, it reaches its maximum value of 1/2.

We can express density matrices of X and Z bases as sums
of bits, each of which is a tensor product of density matrices
in operational and nonoperational degrees of freedom:

ρ̂x = 1

2

(
1 0
0 0

)
⊗ ρ̂λ

x,0 + 1

2

(
0 0
0 1

)
⊗ ρ̂λ

x,1, (8)

ρ̂z = 1

2

(
1/2 1/2
1/2 1/2

)
⊗ ρ̂λ

z,0 + 1

2

(
1/2 −1/2

−1/2 1/2

)
⊗ ρ̂λ

z,1,

(9)

where ρ̂λ
b,i accounts for nonoperational degrees of freedom for

the bit i in the basis b.
In Appendix B we construct a lower bound on fidelity

between X and Z bases depending on the fidelity between
density matrices of nonoperational degrees of freedom. Then,
using the triangle inequality for the Bures angle [27], we
obtain the result

arccos
√

F(ρ̂x, ρ̂z ) � arccos max
i, j∈0,1

√
F

(
ρ̂λ

x,i, ρ̂
λ
z, j

)

+
∑
b∈{x,z}

arccos
1 +

√
F

(
ρ̂λ

b,0, ρ̂
λ
b,1

)
2

.

(10)

Here the first term indicates the difference between the bases,
whereas the second term represents differences between the
bits within a basis. This result allows us to estimate bases
imbalance with only pairwise interference experiments with
separate pulses. To conduct an interference experiment on
nonoperational degrees of freedom, we only need to match the
bits in operational space. Figure 4 illustrates an example of a
possible optical setup that could be used to carry out such an
experiment for a QKD system with polarization encoding. A
delayed Mach-Zehnder interferometer allows two consequent
pulses to overlap on a beam splitter with two SPDs at the
output. A half-wave plate is used to match the polarization
of different bits. It can also be used instead of the time delay
to vary the degree of mode overlap.

FIG. 4. Concept of a possible optical scheme that can be used for
a HOM-based bases test of a polarization-encoding QKD system.
One of the interferometer arms is delayed, so that two consequent
pulses are matched on a beam splitter. A half-wave plate is used for
polarization matching of two states. This testing routine can be done
on the fly during a QKD session, and the photodetection events are
postselected to collect statistics on the desired pair of states within a
random pulse sequence.

Finally, we establish a connection between visibility and
fidelity. In Appendix A we derive an equation to calculate
fidelity for two arbitrary PRWCPs (ρ̂1, ρ̂2) with equal mean
photon number μ depending on their HOM visibility:√

F (ρ̂1, ρ̂2) = exp(μ(
√

2 Vρ̂1ρ̂2 − 1)). (11)

We substitute this result into Eq. (10). In principle, every
two pulses have their own value of visibility, but to simplify
the visualization of the final result, we demonstrate the special
case when every pair of bits has the same visibility value V :

1 − 2� � cos

(
2 arccos

1 + eμ(
√

2V −1)

2
+ arccos eμ(

√
2V −1)

)
.

(12)

IV. KEY GENERATION RATE

In the previous section we have shown how HOM experi-
ments’ results could be used for upper-bounding the degree of
distinguishability for both BB84 and decoy-state techniques.
The final goal of this procedure is to find the secret key rate,
depending on the measurement results. In this section we sim-
ulate the key generation rate for a system with BB84 protocol
and two decoy states (i.e., three intensities). The asymptotic
key generation rate can be lower bounded as follows [28]:

K � max
Is,Id

[
1
2

(
ps

1Y
s

1L

[
1 − h

(
es

1U

)] − f (Es)Qsh(Es)
)]

. (13)

Here maximization is done among the intensities of signal
(Is) and decoy (Id ) states. The second decoy-state intensity
is considered to be zero. The probability of generating a
single photon for a signal state is ps

1 = Ise−Is , according to the
Poisson distribution. The lower bound for the yield of a single
photon for signal states is Y s

1L, and es
1U is the upper bound

for the single-photon error rate within a signal state. Qs is the
signal state gain, f (Es) is the efficiency of error correction,
and h(Es) is the binary Shannon entropy with the signal error
rate Es as an argument.

The parameter affected by the bases imperfections is es
1U ,

as Eve has an ability to get more information with the same
overall error rate.

For simulation we use the error correction coefficient
f (Es) = 1.2 and fiber attenuation 0.2 dB/km, Bob’s device
losses 3 dB; and we use detector efficiency 25%, optical error
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rate 1%, and dark count probability per gate 10−5. These
values match with the ones used in previous simulations [4,5].

According to the state-of-the-art security models, Bob has
to perform active and continuous calibration on his optical
transmittance and single-photon detector efficiency to prevent
Eve from manipulating it [1,2,29]. This important requirement
allows to treat Bob’s losses as calibrated. If this assumption is
omitted, this means that Bob has no control on his efficiency
and in the limit can be under a blinding attack that totally
compromises the key [30].

Finally, to minimize the number of displayed parameters
we substitute the same visibility values for all pairs of sources
within the simulation.

To simulate the effect of bases distinguishability, we use
a method developed in Ref. [4]. The calculated imbalance
is corrected taking into account the ability of Eve to use a
lossless channel:

�′ = �

Ỹ s
1L

, (14)

where Ỹ s
1L is the minimum single-photon yield among two

bases, obtained using the decoy-state method. Here we as-
sume that the decoy-state method does not have any additional
vulnerabilities. Once corrected, the bases imbalance is in-
cluded in the upper bound of single-photon error of signal
state:(

es
1U

)′ = 4(1 − �′)�′(1 − 2es
1U

)
+ 4(1 − 2�′)

√
�′(1 − �′)es

1U

(
1 − es

1U

)
. (15)

With the help of the above estimations, we perform a
simulation of key generation rate. Visibility values used for
simulation are chosen so that they can be compared with cur-
rent experimental results that we discuss in the next section.

Simulation results shown in Fig. 5 indicate that the key
generation rate is highly sensitive to the distinguishability of
the bases of the BB84 protocol (Fig. 5). Even for pretty high
values of visibility like 0.495, the key rate drops significantly.
On the other hand, for visibility as low as 0.47, key generation
is still possible.

FIG. 5. Key generation rate depending on the communication
distance for different values of HOM visibility for mode-matched
states.

V. APPLICATIONS AND DISCUSSION

To check applicability of the proposed method for practical
setups, we take the best-to-date fourth-order PRWCP interfer-
ence visibilities from various experiments carried out for the
MDI-QKD [3,31–34] (Table I).

According to the results of the previous section, it is clear
that all listed results provide a positive key rate. It should be
also noted that the latest results saturate the theoretical limit
[34]. This fact allows to expect more precise experiments in
the future.

As it has been mentioned [34], one of the main reasons for
nonperfect interference between the pulses from independent
gain-switched semiconductor laser diodes is the combination
of frequency chirp and emission time jitter. While the for-
mer is a vulnerability that could be used by Eve to extract
information about the states, the latter can be truly quantum
as the time uncertainty includes spontaneous emission jitter.
This leads to possible underestimation of the key generation
rate, as quantum jitter dramatically decreases the interference
visibility but does not compromise the setup.

To date, the best visibility has been achieved with the help
of optical seeding, which leads to reduction of jitter from
approximately 30 to 10 ps [34]. Moreover, authors performed
postselection on the results, removing double clicks which are
separated by a time interval longer than the full width at half
maximum (FWHM) of the double click peak, and improved
the visibility up to 0.499 ± 0.004 saturating the theoretical
limit. Since we try to upper-bound all possible differences
between the pulses, it is not clear if this kind of postselection
can be used for distinguishability evaluation purposes. If we
are sure that jitter is mainly quantum and out of Eve’s control,
such a kind of postselection could be treated as removing
the events with the worst time overlap due to the quantum
randomness of the jitter. In this case we make a tighter bound
on Eve’s abilities. We have to be sure, however, that the jitter
is not caused by the classical effects, which Eve may possibly
account for.

The results by Comandar et al. [34] show that pulsed laser
seeding is a promising technology to design a modulator-free
polarization encoding device with multiple sources. Indeed,
the method proposed in this paper together with such a design
allows to construct a provably secure source, as an alternative
to current ones, used in satellite QKD.

It should also be mentioned that the proposed method is
limited by the single-photon detector wavelength sensitivity.
If the source contains side channels in the wavelength range
that are out of the detector’s sensitivity, or even not electro-
magnetic, this kind of side channel will not be detected by
the proposed approach. One such example is the first ever

TABLE I. Best-to-date HOM visibility results with PRWCPs.

HOM visibility

Ferreira da Silva et al. [31] 0.478
Rubenok et al. [32] 0.47 ± 0.01
Tang et al. [33] 0.475 ± 0.010
Comandar et al. [34] (without postselection) 0.487 ± 0.003
Comandar et al. [34] (with postselection) 0.499 ± 0.004
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FIG. 6. The proposed testing module for the visibility measure-
ment can be integrated into Alice’s protected area, so that verification
of indistinguishability can be carried out continuously. The light
intensities μtest and μQKD for the visibility measurement and for the
communication signal, respectively, can be optimized independently.
Optical isolation at the output of the device protects both the state
preparation part and the testing module from Eve’s potential light
injections.

QKD prototype, where one could hear which state has been
generated [7,35] due to the high-voltage power supply of the
Pockels cell.

Even if the laser sources have been perfectly matched at
some point, there is no guarantee that their behavior does
not change over a long time interval. To prevent this kind
of a loophole, one has to repeat the procedure described
above continuously. An automatized testing module can be
integrated into Alice’s device, which is shown in Fig. 6. After
the state preparation, optical signals enter a beam splitter that
takes a part of the signal to the testing module (shown sepa-
rately in Fig. 4). Variable optical attenuators can be used to set
two independent amplitudes μtest and μQKD for the visibility
measurement and for the communication signal, respectively.

The mean photon number per pulse, μQKD, varies depend-
ing on the quantum channel parameters (e.g., length of the
communication channel, bit error rate, etc.). The mean photon
number per pulse, μtest , used for testing can also be optimized.
If it is too small, then the time to collect statistics can be too
long. On the other hand, as it is shown in Sec. II, very high
mean photon number leads to a nonlinear dependence of the
single-photon visibility on the measurable PRWCP visibility
(see Fig. 3), and results in underestimation of the secret key
rate since PRWCP visibility is significantly lower than the
maximum value of 0.5.

This conceptual procedure allows Alice to control the
mismatch of her lasers on the fly and continuously monitor
potential passive side channels.

As far as the beam splitter is a part of Alice’s protected
area, the losses introduced by it should not be treated as quan-
tum channel losses. In other words the mean photon number
included in the model is the value measured outside the whole
system. To prevent Eve from having any influence on the
testing procedure, optical isolators that are used to bound the
THA [4,5] should be placed at the output of Alice, after the
beam splitter.

The procedure described above is analogous to the method
for calibration of Bob’s detection efficiency, mentioned in
the previous section [1]. Bob has his own light source to

check both his optical losses and single-photon detectors’
characteristics. The common idea between these methods is
that the legitimate parties use a verification module inside
their protected area to check the performance of the QKD
components.

The same approach can be straightforwardly implemented
for any other quantum cryptography tasks, which suffer from
the same kind of vulnerability because their optical setups
are usually similar. For example, experimentally demonstrated
quantum digital signatures use the same four laser schematics
together with the assumption of the states’ indistinguishability
to prevent Eve from forgery [13,36].

VI. CONCLUSION

We introduce an explicit method for an integral evalua-
tion of passive side-channel information leakage due to the
optical mode mismatch in the emitted pulses. We show that
for relatively small signal intensities, fourth-order interference
visibility linearly depends on the degree of nonorthogonality
between two PRWCPs. This allows us to relate the results of
Hong-Ou-Mandel experiments with the existing bases imbal-
ance security proofs. We include the typical experimentally
obtained visibility values in the security model, and calculate
the key generation rate.

Our results indicate that the secret key is highly sensitive to
the HOM interference visibility value. In order to maintain a
reasonably long communication distance, the visibility must
be very close to the theoretical limit of 0.5. We note that
the experimentally obtainable value of interference visibility
depends not only on the actual distinguishability of optical
signals, but also on various imperfections of the measurement
setup, i.e., the jitter of laser pulses. Thus our approach gives
an upper bound on signal distinguishability and hence a lower
bound on the secret key rate.

In this work we address the conventional BB84 protocol
with decoy states; however, the concept could be applied to
other protocols as well. Current experimental data have been
used to check the applicability of our method to real-world
systems. Future studies on this topic may include estima-
tion of distinguishability between signal and decoy states,
derivation of tighter bounds on the secret key rate, as well
as security analysis of other protocols. We anticipate the de-
veloped method is highly prospective in terms of real-world
QKD certification applications.
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APPENDIX A: FIDELITY ESTIMATION

In this section we calculate the fidelity for two PRWCPs with density matrices ρ̂1 and ρ̂2, from Eq. (2) as a function of HOM
visibility:

ρ̂1 =
∞∑

n=0

ρnn|n〉1〈n|1 =
∞∑

n=0

e−μ2 μn

n!
(â†

1)n|0〉〈0|(â1)n, (A1)

ρ̂2 =
∞∑

n=0

ρnn

n!
(
√

γ â†
1 +

√
1 − γ â†

⊥1)n|0〉〈0|(√γ â1 +
√

1 − γ â⊥1)n. (A2)

Here we decomposed the a†
2 operator into a sum of the a†

1 and a†
⊥1. Therefore, a†

⊥1 represents all the modes that are orthogonal
to a†

1. The parameter γ indicates the similarity of these states. We rewrite ρ̂2 as

ρ̂2 =
∞∑

n=0

ρnn

(
n∑

k=0

√
Ck

n (
√

γ )k (
√

1 − γ )n−k|k〉1|n − k〉⊥1

)(
n∑

q=0

〈q|1〈n − q|⊥1

√
Cq

n (
√

γ )q(
√

1 − γ )n−q

)
. (A3)

For simplicity we replace (1 − γ ) with a new letter, δ. Visualizing the density matrices ρ̂1 and ρ̂2, we have

ρ̂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ11

(
1 0
0 0

)

ρ22

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

ρ̂2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ11

(
γ

√
γ δ√

γ δ δ

)

ρ22

⎛
⎝ γ 2

√
2γ 3δ γ δ√

2γ 3δ 2γ δ
√

2γ δ3

γ δ
√

2γ δ3 δ2

⎞
⎠

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

According to the fidelity definition (7), we straightforwardly obtain the result

√
F (ρ̂1, ρ̂2) = ρ00 +

∞∑
n=1

ρnnγ
n
2 = exp(μ(

√
γ − 1)). (A6)

Now we address the visibility equation (5) and find that Vρ̂1ρ̂2 = γ

2 . So the final result is√
F (ρ̂1, ρ̂2) = exp(μ(

√
2Vρ̂1ρ̂2 − 1)). (A7)

APPENDIX B: BASES IMBALANCE ESTIMATION

To include bases flaw into the security model one needs to
calculate the fidelity between two bases (F (ρ̂x, ρ̂z )). Density
matrices of the X and Z bases could be expressed as follows:

ρ̂x = 1

2

(
1 0
0 0

)
⊗ ρ̂λ

x,0 + 1

2

(
0 0
0 1

)
⊗ ρ̂λ

x,1, (B1)

ρ̂z = 1

2

(
1/2 1/2
1/2 1/2

)
⊗ ρ̂λ

z,0 + 1

2

(
1/2 −1/2

−1/2 1/2

)
⊗ ρ̂λ

z,1.

(B2)

Here, ρ̂λ
i, j represents density matrices of nonoperational de-

grees of freedom.
We calculate the fidelity between the bases in two steps.

First, we introduce a set of auxiliary density matrices; we then
calculate the fidelity between the initial and auxiliary states

and then, between auxiliary matrices for different bases. After
that, we use the distance and apply triangle inequalities, that
allow us to bound the fidelity between the initial states. The
idea of the estimation is illustrated in Fig. 7.

We define auxiliary density matrices as bases for which
nonoperational degrees of freedom are the same for both bits:

ρ̂
j
i = 1

2

(
1 0
0 0

)
⊗ ρ̂λ

i, j + 1

2

(
0 0
0 1

)
⊗ ρ̂λ

i, j . (B3)

We calculate the fidelity between ρ̂x and an auxiliary
matrix, which for both bits are the same in nonoperational
degrees of freedom. Without loss of generality, we start with
a case when both bits have a density matrix ρ̂λ

x,0 for nonoper-

ational parameters: ρ̂0
x = 1

2 (1 0
0 1) ⊗ ρ̂λ

x,0,

F
(
ρ̂x, ρ̂

0
x

) = F

(
1

2

(
ρ̂λ

x,0 0
0 ρ̂λ

x,1

)
,

1

2

(
ρ̂λ

x,0 0
0 ρ̂λ

x,0

))
. (B4)
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FIG. 7. Scheme of bases fidelity estimation. A pair of auxiliary
matrices for each basis allow to bound the distance using two triangle
inequalities. The distance between two closest auxiliary matrices is
used.

As a result, using the fidelity definition, we obtain

√
F

(
ρ̂x, ρ̂0

x

) =
1 +

√
F

(
ρ̂λ

x,0, ρ̂
λ
x,1

)
2

=
√

F
(
ρ̂x, ρ̂1

x

)
. (B5)

The fidelities between the initial ρ̂x and both auxiliary
states ρ̂0

x and ρ̂1
x are the same. A similar result can be obtained

for the Z basis as a Hadamard transformation can be applied

to the operational degree of freedom for ρ̂z, so the resulting
fidelity is the same:

√
F

(
ρ̂z, ρ̂0

z

) =
1 +

√
F

(
ρ̂λ

z,0, ρ̂
λ
z,1

)
2

=
√

F
(
ρ̂z, ρ̂1

z

)
. (B6)

Now, to apply the triangle inequality, we use the Bures
angle [27], which constitutes a metric in Hilbert space:

A(ρ̂1, ρ̂2) = arccos
√

F (ρ̂1, ρ̂2). (B7)

As soon as we find the fidelity values between the initial
states and the auxiliary ones, we need to look for a pair of
auxiliary matrices from both bases that have maximum fidelity
(minimum distance).

As a result of two triangle inequalities we obtain a result:

arccos
√

F (ρ̂x, ρ̂z ) � arccos max
i, j∈0,1

√
F

(
ρ̂λ

x,i, ρ̂
λ
z, j

)

+
∑
b∈{x,z}

arccos
1 +

√
F

(
ρ̂λ

b,0, ρ̂
λ
b,1

)
2

.

(B8)

The final result is expressed as follows:

� � 1

2
− 1

2
cos

⎛
⎝arccos max

i, j∈0,1

√
F

(
ρ̂λ

x,i, ρ̂
λ
z, j

) +
∑
b∈{x,z}

arccos
1 +

√
F

(
ρ̂λ

b,0, ρ̂
λ
b,1

)
2

⎞
⎠. (B9)

In the special case when all fidelities equal the same value F , Eq. (B9) simplifies to

� � 1

2
− 1

2
cos

(
2 arccos

1 + √
F

2
+ arccos

√
F

)
. (B10)
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