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Continuous-variable cluster states (CVCSs) can be supplemented with Gottesman-Kitaev-Preskill (GKP)
states to form a hybrid cluster state with the power to execute universal, fault-tolerant quantum computing
in a measurement-based fashion. As the resource states that comprise a hybrid cluster state are of a very
different nature, a natural question arises: Why do GKP states interface so well with CVCSs? To answer
this question, we apply the recently introduced subsystem decomposition of a bosonic mode, which divides
a mode into logical and gauge-mode subsystems, to three types of cluster state: CVCSs, GKP cluster states,
and hybrid continuous-variable (CV)-GKP cluster states. We find that each of these contains a “hidden” qubit
cluster state across their logical subsystems, which lies at the heart of their utility for measurement-based
quantum computing. To complement the analytical approach, we introduce a simple graphical description of
these CV-mode cluster states that depicts precisely how the hidden qubit cluster states are entangled with the
gauge modes, and we outline how these results would extend to the case of finitely squeezed states. This work
provides important insight that is both conceptually satisfying and helps to address important practical issues
like when a simpler resource (such as a Gaussian state) can stand in for a more complex one (like a GKP state),
leading to more efficient use of the resources available for CV quantum computing.
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I. INTRODUCTION

Measurement-based models of quantum computation [1–7]
are appealing avenues towards fault-tolerant, universal quan-
tum computing as they do not require active control over
interactions from nonlinear effects. In the context of cluster-
state quantum computing [5–8], gates are implemented by
performing local, adaptive measurements on an entangled
state that is prepared in advance. This procedure is simple
in continuous-variable cluster-state (CVCS) quantum com-
puting [7,9], where homodyne measurements on a CVCS,
which is built from squeezed momentum states [10,11], are
used to implement any Gaussian unitary [12–15]. Extending
to universal continuous-variable (CV) operations requires at
least one non-Gaussian resource, and even then the scheme
is not necessarily compatible with error correction as the
latter requires discretized quantum information. One solu-
tion to both these problems is to supplement the CVCS
with a bosonic code, which encodes digital quantum infor-
mation into the CV mode [16–20]. This has the additional
benefit that universal, discrete-variable quantum computa-
tion can be straightforwardly performed; i.e., the suite of
quantum algorithms designed for qubits can be implemented
within the the continuous-variable Hilbert space of a bosonic
mode.

Promising proposals for measurement-based, fault-
tolerant, universal quantum computation with CV modes
[21–23] take advantage of a specific bosonic code—the
Gottesman-Kitaev-Preskill (GKP) code, known for its
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resilience to common forms of CV noise, including
displacement noise [24] and bosonic excitation loss [25].
These proposals rely on the interplay between CVCSs and the
GKP encoding, each using as the entangled computational
resource state a hybrid cluster state, where some of the nodes
in a CVCS are replaced with specific GKP states. Thus, in
this setting GKP states play two roles: (1) they serve as the
carriers of qubit-encoded quantum information, and (2) they
enable CV error correction [21,26], which is the foundation
for fault tolerance.

However, it is still puzzling that CVCSs—Gaussian CV
states with no explicit qubit encoding—act as the substrate
for discrete-variable quantum computing. Why is it the GKP
code and not some other bosonic code that interfaces so
well with CVCSs to the point where CVCS nodes may be
freely replaced with GKP states? Conversely, why is it that in
proposals based on GKP cluster states [23,27], some of the
modes may be replaced with squeezed states? A major factor
is that the GKP logical controlled-Z gate is the entangling
operation used to stitch together momentum squeezed into a
canonical CVCS [7,28] and GKP states into a GKP cluster
state [29–31]. Also, the GKP code is the only known code for
which the Clifford gate set is realized via Gaussian unitaries
[24], which homodyne detection implements on a CVCS.
Moreover, this can be extended to fault-tolerant universality
without additional non-Gaussian resources [32,33]. An al-
ternative perspective is given by a subsystem decomposition
(SSD) of a bosonic mode based on modular position [27]. In
the SSD picture, which divides a single CV mode’s Hilbert
space into that of a logical qubit and a remaining gauge
mode, any CV state contains a logical-qubit state. Each in-
finitely squeezed momentum node of an ideal CVCS contains
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a logical-qubit |+〉 state, the same logical-subsystem state that
an ideal |+GKP〉 does [34].

We take these single-mode state decompositions and an
SSD of the entangling CV controlled-Z gate to inspect the log-
ical content of CVCSs and of the larger class of hybrid cluster
states, including the limiting case of a GKP cluster state. We
find that all hybrid cluster states contain a “hidden” qubit
cluster state in their logical subsystems, whose entanglement
with the gauge subsystems is restricted to the neighborhood
of the non-GKP nodes in the cluster. We introduce a simple
graphical description for hybrid cluster states that reveals this
entanglement structure, and with it, we show how a logical
GKP qubit teleports successfully along a linear CVCS via
successive measurements, with the particular form of the GKP
state serving to “unzip” the logical cluster state from the gauge
modes at each measurement step.

This paper is structured as follows. In Sec. II, we briefly
review the subsystem decomposition we intend to use, and
we apply it to the various constituents of ideal hybrid clus-
ter states—the single-mode states at each node (infinitely
squeezed momentum states and ideal GKP states) and the
CV controlled-Z gate that entangles them. In Sec. III, we
decompose CVCSs and hybrid cluster states—including the
special cases of GKP cluster states and another that we refer
to as GKP-doped cluster states, where the fraction of GKP
states in the cluster is small [21,35]. We introduce graphi-
cal descriptions for the subsystem-decomposed single-mode
states and the various types of cluster state and use them to
examine the entanglement structure of said states. In Sec. IV,
in a GKP-doped cluster-state setting, we show that the GKP
states are the critical resource that “unzips” the remaining
modes to reveal a logical-qubit cluster state and allowing the
logical information to travel through the cluster state without
acquiring noise from the gauge-mode entanglement. Finally,
in Sec. V, we describe how to extend this work to the case of
physical resource states, i.e., finitely squeezed CVCSs (based
on squeezed states instead of momentum eigenstates) and
finitely squeezed GKP states.

II. SUBSYSTEM DECOMPOSITION

Bosonic-mode subsystem decompositions are a way to de-
compose the Hilbert space of a CV mode into that of two
virtual subsystems: (1) a discrete, logical subsystem of dimen-
sion d and (2) a gauge mode, i.e., HCV

∼= Cd ⊗ H′
CV [27,36–

38]. The SSD we consider here is based on a decomposition
of the position operator in terms of an integer and a modular
operator [39], inspired by—but not limited to—the periodic
position wave functions of the GKP encoding [24]. We briefly
outline the modular-position SSD, and we focus on the case of
logical qubit subsystems (d = 2). More details about the SSD
can be found in Ref. [34]. The standard position basis for a
bosonic mode comprises the set of eigenstates of the position
operator q̂ = 1√

2
(â + â†). Each eigenstate |x〉q is labeled by

real eigenvalue x ∈ R that can be written as a sum of three
numbers,

x = α� + 2αm + u, (2.1)

where α is a fixed positive number known as the bin size,
m ∈ Z and u ∈ [−α/2, α/2) are the gauge quantum numbers,

and � ∈ {0, 1} is the logical quantum number. These quantum
numbers result from two subsequent modular decompositions
of x; details can be found in Refs. [27,34].

The modular-position SSD is a change of basis from
the position-quadrature basis to a tensor-product basis con-
structed by realizing that the quantum numbers in Eq. (2.1)
label two virtual subsystems:

|x〉q = |�〉L ⊗ |m, u〉G. (2.2)

In the context of quantum computing, the logical subsystem—
spanned by the |�〉L basis—plays the role of an encoded qubit,
and the gauge subsystem—spanned by |m, u〉G—is a (virtual)
bosonic mode [27,34].

It may seem unusual that the gauge mode is specified
by two separate quantum numbers (an integer m and a real
number in an interval u). A more standard description can be
recovered by writing the ordinary position eigenvalue xG of
the gauge mode as

xG = αm + u, (2.3)

which is a modular decomposition of xG with respect to α.
The bin number m labels the (centered) integer multiple of α,
and u labels the (centered) fractional remainder. Since m and
u describe a modular decomposition of the spectrum of the
gauge-mode position operator q̂G, the states |m, u〉G comprise
a basis for the gauge mode referred to as the partitioned-
position basis [27].

A different interpretation arises from noting that m and u
are completely independent quantum numbers, which means
they can be treated as acting on independent virtual subsys-
tems [27], i.e., at least formally,

|m, u〉G = |m〉G ⊗ |u〉G. (2.4)

This is a reflection of the fact that any CV mode’s Hilbert
space (in this case, that of the gauge mode) is isomorphic
to that of two planar rotors [34]. On the right-hand side of
Eq. (2.4), m labels the angular momentum states of one rotor,
and u labels the angular position of the other. (These two bases
are mutually unbiased when applied to the same rotor.)

The isomorphism between the Hilbert space of a CV mode
and that of two rotors exists even for the original CV mode,
and one can apply a partitioned-position decomposition there,
too, although we focus on the gauge mode here.1 In the
sections that follow, we employ descriptions of the gauge
subsystem both as a CV mode (in a partitioned-position basis)
and also as two separate rotor subsystems. The latter has a
tensor product description as

|x〉q = |�〉L ⊗ |m〉G ⊗ |u〉G, (2.5)

which is obtained by plugging Eq. (2.4) into Eq. (2.2). While
the physical system remains the same—a single physical
mode—the two decompositions, Eqs. (2.2) and (2.5), have
different conceptual meanings in terms of their treatment of

1In fact, the modular-position subsystem decomposition can equiv-
alently be interpreted as a decomposition of the original CV mode
into two rotors followed by an encoding of a qubit into one of the
rotors using the technique of Raynal et al. [36].
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the gauge subsystem—either as a single gauge mode or equiv-
alently as two gauge rotors. Throughout this work, we treat
the gauge subsystem as a mode broken into two subsystems:
the position bin-number subsystem (spanned by |m〉G) and the
modular position subsystem (spanned by |u〉G). This is to keep
the focus on the fact that the decomposition was originally
motivated by binned homodyne detection on the original CV
mode.

Several properties of the position-quadrature basis are in-
herited by the subsystem basis. First, orthogonality of the
position-quadrature basis, q〈x|x′〉q = δ(x − x′), induces the
orthogonality of the subsystem basis,

(L〈�|G〈m, u|)(|�′〉L|m′, u′〉G) = δ��′δmm′δ(u − u′). (2.6)

Second, the completeness of position eigenstates, ÎCV =∫
dx|x〉q q〈x|, means that the subsystem basis states are also

complete over the mode,

ÎCV =
∑

�∈{0,1}
|�〉L L〈�| ⊗

∑
m∈Z

∫ +α/2

−α/2
du|m, u〉G G〈m, u|. (2.7)

From the subsystem decomposition, Eq. (2.5), we construct
diagonal logical and gauge-subsystem operators,

�̂ :=
∑

�∈{0,1}
�|�〉L L〈�|, (2.8a)

m̂G :=
∑
m∈Z

m|m〉G G〈m|, (2.8b)

ûG :=
∫ +α/2

−α/2
du u|u〉G G〈u|, (2.8c)

which act only on the indicated subsystem, i.e., �̂ on the
logical qubit, m̂G on the gauge bin-number subsystem, and
ûG on the gauge modular-position subsystem, using the de-
composition in Eq. (2.5). We can recover the gauge position
operator as

q̂G = αm̂G + ûG. (2.9)

Furthermore, using Eqs. (2.8), along with Eq. (2.1) and
Eq. (2.7), we can reconstruct the original CV-mode position
operator,

q̂ = α�̂ + 2αm̂G + ûG. (2.10)

Operational descriptions of these operators can be found in
Ref. [34]. We will heavily rely on Eq. (2.10) when decompos-
ing operators that are diagonal in q̂.

A. Decomposing momentum eigenstates and ideal
Gottesman-Kitaev-Preskill states

In their original formulation [7], ideal CV cluster states
are composed of momentum eigenstates with eigenvalue zero,
written |0〉p. The position wave function for these zero-
momentum states is constant, meaning that it has equal
support in the position bins corresponding to the logical sub-
system states |0〉L and |1〉L. Moreover, the gauge-mode wave
functions associated with these logical states are identical and
are also constant, meaning that they describe another zero-
momentum state in the gauge mode. Both of these facts give

a simple SSD,

|0〉p = |+〉L ⊗ |0〉p,G (2.11)

= |+〉L ⊗
∑
m∈Z

|m〉G ⊗
∫ +α/2

−α/2
du |u〉G, (2.12)

where, in the second line, we have decomposed the gauge-
mode state as in Eq. (2.5). More details can be found in
Refs. [27,34]. The key point is that a zero-momentum state
contains a logical |+〉L state with respect to the modular-
position SSD.

The other type of CV resource state we consider is a
square-lattice Gottesman-Kitaev-Preskill (GKP) state [24],
which encodes an error-correctable qubit into a CV mode us-
ing periodic wave functions. GKP states carry digital quantum
information and interface seamlessly with the quantum-
computational protocol realized by measuring CV cluster
states with homodyne detection [26]. In this setting, GKP
states augment the computational power of CV cluster states
by providing two things: (1) encoded qubits and (2) a means
for error correction that ultimately allows for universality and
fault tolerance [21,32,40].

While the zero-momentum state, Sec. II A, is a single state,
GKP states are a type of state that encodes a qubit state in a
two-dimensional subspace of a CV mode. The computational
basis states, labeled by j ∈ {0, 1}, are described by periodic
superpositions of position eigenstates,

| jGKP〉 =
∑
m∈Z

|α(2m + j)〉q. (2.13)

An arbitrary qubit state, specified by amplitudes c0 and c1

satisfying |c0|2 + |c1|2 = 1, is

|ψGKP〉 = c0|0GKP〉 + c1|1GKP〉. (2.14)

The modular-position SSD of GKP states emerges straight-
forwardly after realizing that each position eigenstate ap-
pearing in the sum in Eq. (2.13) decomposes simply as
|α(2m + j)〉q = | j〉L ⊗ |m, 0〉G. This gives the SSD for each
GKP computational basis state, | jGKP〉 = | j〉L ⊗ |+GKP〉G,
where we used |+〉G = ∑

m |m, 0〉G [34]. By linearity, the
arbitrary GKP state in Eq. (2.14) is a tensor-product state in
the modular-position SSD,

|ψGKP〉 = |ψ〉L ⊗ |+〉G (2.15)

= |ψ〉L ⊗
∑
m∈Z

|m〉G ⊗ |u = 0〉G, (2.16)

with logical-subsystem state |ψ〉L = c0|0〉L + c1|1〉L. We will
later investigate GKP cluster states, where each mode is pre-
pared in the specific GKP state that encodes a logical |+〉 state
(c0 = c1 = 1√

2
),

|+GKP〉 = |+〉L ⊗
∑
m∈Z

|m〉G ⊗ |u = 0〉G. (2.17)

Note that the only difference between the SSD of |+GKP〉 that
of the zero-momentum eigenstate in Sec. II A is that here the
gauge-u value is fixed to u = 0.
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B. Decomposing CV controlled-Z gates

To understand the entanglement structure of CV cluster
states at the subsystem level, we decompose a specific two-
mode unitary, the CV controlled-Z gate. For N modes, the
decomposed Hilbert space is (HCV)⊗N ∼= (Cd ⊗ H′

CV)⊗N =
(Cd )⊗N ⊗ (H′

CV)⊗N . Operators that act on several of these
modes decompose into pieces that may act exclusively in
the logical subsystems, exclusively in the gauge modes, or
across both logical and gauge subsystems. Below, we find that
a decomposed CV controlled-Z gate contains logical-only,
gauge-only, and logical-gauge interaction terms. We will find
that some of these terms can be “turned off” by tuning the
interaction strength.

Canonical continuous-variable cluster states are built from
zero-momentum eigenstates coupled together by two-mode
controlled-Z gates [7,28],

ĈZ [g] := eigq̂1⊗q̂2 , (2.18)

with interaction strength g and numbered subscripts labeling
the modes. Using the subsystem decomposition of the position
operator for both modes,

q̂i = α�̂i + 2αm̂G,i + ûG,i (2.19)

for i ∈ {1, 2}, we obtain

ĈZ [g] = eigα2 �̂1⊗�̂2 eig4α2m̂G,1⊗m̂G,2 eigûG,1⊗ûG,2

× eig2α2(�̂1⊗m̂G,2+m̂G,1⊗�̂2 )eigα(�̂1⊗ûG,2+ûG,1⊗�̂2 )

× eig2α(m̂G,1⊗ûG,2+m̂G,1⊗ûG,2 ), (2.20)

where we have explicitly included the symbol ⊗ to emphasize
the CV mode-wise tensor products inherited from Eq. (2.18).
Note that all of these exponentials commute. The top line
entangles subsystems of the same type across the two CV
modes, the second line entangles the logical subsystem of one
CV mode with the gauge mode of the other CV mode, and the
final line couples the gauge modes of the two CV modes.

We focus on a ĈZ [g] gate “tuned” to have weight g =
π
α2 commensurate with a chosen bin size α. This weight
simplifies Eq. (2.20), since the discrete operators �̂ and
m̂G have integer spectrum, so that exp(2π i�̂i ⊗ m̂G, j ) =
exp(4iπm̂G,i ⊗ m̂G, j ) = Î . The two-mode controlled-Z gate
decomposes into a product of logical-only, gauge-only, and
logical-gauge interaction terms:

ĈZ

[ π

α2

]
= ĈZ

LĈGĈint, (2.21)

each of which is an operator between different subsys-
tems across the two CV modes. The logical-only term is a
controlled-Z operator between the two qubit subsystems:

ĈZ
L := eiπ�̂1⊗�̂2 . (2.22)

This operator is critical in uncovering hidden qubit cluster
states within CVCSs, as it is the gate that provides the en-
tangling interaction between qubits.

The gauge-only term is

ĈG := ei π

α2 ûG,1⊗ûG,2 ei 2π
α

(m̂G,1⊗ûG,2+ûG,1⊗m̂G,2 ). (2.23)

This operator does not contain a m̂G,1 ⊗ m̂G,2 coupling due to
the chosen weight and the integer spectrum of the bin-number

operators, as described above. Finally, the interaction term,

Ĉint := ei π
α

(�̂1⊗ûG,2+ûG,1⊗�̂2 ), (2.24)

couples the logical subsystem of each CV mode to the mod-
ular gauge position of the other. The interaction operator can
also be expressed as a product of two “modular-shift” oper-
ators generated by modular position, exp(i π

2α
ûG,i ), and two

controlled logical-Z rotations, exp(−i π
2α

ẐL,i ⊗ ûG, j 	=i ), where
the control is the modular gauge position of the other mode.

The N-mode generalization of the controlled-Z operator,
Eq. (2.21), is

ĈZ [V] := exp

(
i

2
q̂TVq̂

)
, (2.25)

which describes position-position couplings between pairs of
modes with weights specified by a real, N × N , symmetric
adjacency matrix V, and where

q̂ := (q̂1, . . . , q̂N )T (2.26)

is an N-dimensional column vector of position operators. The
matrix transpose operation T reshapes vectors but does not act
at the operator level.

For concise notation, we introduce the matrix Kronecker
product

A ⊗ B, (2.27)

which produces a block matrix by replacing each entry Ajk

of A with the matrix AjkB. Importantly, A and B have no
restrictions on their size or shape.

We now turn our attention to the SSD of ĈZ [V], which
induces decompositions of q̂ and the matrix V that we will
make precise. Using Eq. (2.10), the position operator for mode
j can be written as an inner product of the two column vectors

α :=
⎛
⎝ α

2α

1

⎞
⎠ and q̂s, j :=

⎛
⎝ �̂ j

m̂G, j

ûG, j

⎞
⎠, (2.28)

representing, respectively, constant coefficients and a vector
of subsystem operators for physical mode j. Specifically,

q̂ j = αTq̂s, j . (2.29)

We can collect all of the q̂s, j into a 3N-component column
vector of subsystem operators,

q̂s := (
q̂T

s,1, . . . , q̂T
s,N

)T
(2.30)

= (�̂1, m̂G,1, ûG,1, . . . , �̂N , m̂G,N , ûG,N )T. (2.31)

Note that the separation into three-element blocks, one for
each mode, is maintained. For later use, we define N-
component column vectors of subsystem operators of a single
type:

�̂ := (�̂1, . . . , �̂N )T, (2.32a)

m̂G := (m̂G,1, . . . , m̂G,N )T, (2.32b)

ûG := (ûG,1, . . . , ûG,N )T. (2.32c)

(The vector q̂s may be obtained by interleaving these three
vectors together.)
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Using the Kronecker product, Eq. (2.27), we can write the
whole vector of physical position operators as

q̂ = (Î ⊗ αT)q̂s. (2.33)

The Kronecker product in parentheses represents the appro-
priate N × 3N matrix of coefficients that does the job. Now,
we can directly plug Eq. (2.33) into Eq. (2.25) to get

ĈZ [V] := exp

(
i

2
q̂T

s Vsq̂s

)
, (2.34)

where

Vs := (Î ⊗ α)V(Î ⊗ αT) = V ⊗ (ααT) (2.35)

= V ⊗
⎛
⎝ α2 2α2 α

2α2 4α2 2α

α 2α 1

⎞
⎠. (2.36)

This larger, 3N × 3N , adjacency matrix Vs describes coupling
between the subsystems and is given by the original adjacency
matrix V with each weight (entry) Vi j replaced by a network of
connections described by the matrix Vi jMs, which is known as
a matrix-valued weight in the corresponding graph [41]. (This
fact will be useful for visual illustration in the next section.)

For a subsystem decomposition based on bin size α for
every mode, we consider the tuned multimode controlled-Z
gate with V = π

α2 A, where A is a symmetric binary matrix
(i.e., symmetric with entries of zero or one [42]) with diagonal
elements set to zero.2 The adjacency matrix from Eq. (2.35),
written as

Vs = π

α2
A ⊗ (ααT) = A ⊗

⎛
⎝ π 2π π

α

2π 4π 2π
α

π
α

2π
α

π
α2

⎞
⎠, (2.37)

reveals that the �̂i ⊗ m̂G, j and m̂G,i ⊗ m̂G, j terms in the mul-
timode controlled-Z gate, Eq. (2.34), generate trivial phases
because the weights are integer multiples of 2π , and the
operator spectra are integers, just as in the two-mode case.
Expanding the right-hand side of Eq. (2.34) gives

ĈZ

[
π

α2
A

]
= ĈZ

L [A]ĈG[A]Ĉint[A], (2.38)

with

ĈZ
L [A] := exp

(
iπ

2
�̂

T
A�̂

)
, (2.39a)

ĈG[A] := exp

(
2iπ

α
m̂T

GAûG + iπ

2α2
ûT

GAûG

)
, (2.39b)

Ĉint[A] := exp

(
iπ

α
�̂

T
AûG

)
, (2.39c)

noting that the coefficients in each operator vary, and we

have used the facts that m̂T
GAûG = ûT

GAm̂G and �̂
T
AûG =

ûT
GA�̂ (by the symmetry of A) to reduce the total number

of terms. This decomposition generalizes the tuned two-mode

2The more general setting where different modes have different
bin sizes (and associated “natural” subsystem decompositions) is
straightforward, but we do not dwell on it here.

CV controlled-Z in Eq. (2.21), with all the same essential fea-
tures. In particular, the interaction term can also be interpreted
as a set of modular position shifts on each mode and a set of
logical rotations around the Z axis of each Bloch sphere that
are controlled by modular gauge positions.

III. SUBSYSTEM DECOMPOSITION OF CLUSTER STATES

Continuous-variable cluster states can be used for universal
CV quantum computing [43], i.e., to implement any unitary
of choice in the multimode Hilbert space (HCV)⊗N . Fault
tolerance is achievable if discrete-variable quantum informa-
tion is encoded into the modes using a bosonic code that
enables error correction and if the initial error rate is low
enough (which requires high enough squeezing) [21,23,44].
A bosonic code is a prescription for encoding d-dimensional
discrete quantum information into a mode, which can be done
by choosing states in HCV that span a d-dimensional subspace
[16,17,20,24,25]. The bosonic code that interfaces naturally
with CV cluster states is the GKP code [24], described briefly
above in Sec. II A. CV cluster states serve as the substrate for
fault-tolerant quantum computing when used in conjunction
with the GKP encoding [21].

We show here that every CV cluster state, which is
composed of simple zero-momentum eigenstates, Sec. II A,
coupled together using Gaussian unitary gates encodes a “hid-
den” qubit cluster state in the logical-subsystem degrees of
freedom. However, this qubit cluster state is entangled with
the gauge modes. Introducing GKP states into the cluster
state—thus forming a hybrid cluster state—changes the en-
tanglement structure between the logical cluster state and the
gauge modes. We show that a single GKP state can be used to
“unzip” a linear CV cluster state, exposing and isolating the
qubit cluster state hidden inside.

A. Decomposing CV cluster states

The simplest nontrivial canonical CVCS is the two-mode
state

|CVCS〉 = ĈZ [g]|0〉p,1 ⊗ |0〉p,2, (3.1)

where ĈZ [g] is a CV controlled-Z operator of weight g,
Eq. (2.18), and |0〉p is a zero-momentum eigenstate. We will
decompose this state and introduce a graphical representation
for this decomposition. This will be based on a hybrid of the
graphical representation of ideal CV cluster states [42,45,46]
and that of qubit-based graph states [47], suitably generalized
to apply to the subsystems in our decomposition.

A zero-momentum eigenstate, which we represent graphi-
cally as

|0〉p = , (3.2)

can be written as an unbiased superposition of position
eigenstates as |0〉p = (2π )−1/2

∫
dx |x〉q [the position wave

function is the constant (2π )−1/2]. Its subsystem decompo-
sition (see Sec. II A) is

|0〉p =
∑

�∈{0,1}
|�〉L ⊗

∑
m∈Z

|m〉G ⊗
∫ +α/2

−α/2
du |u〉G, (3.3)
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recalling that |+〉L = 1√
2
(|0〉L + |1〉L ). From this expres-

sion, we see that each factor of the decomposed zero-
momentum state—logical, gauge bin-number, and gauge
modular position—is itself a constant superposition over a set
of basis states for one of the subsystems. We represent each of
these graphically as

∑
�∈{0,1}

|�〉L = , (3.4a)

∫ +α/2

−α/2

du |u〉G = , (3.4b)

∑
m∈

|m〉G = . (3.4c)

Each symbol represents a specific state residing in a particular
subsystem. The filled square and circle represent unbiased
superpositions of all m̂G and ûG eigenstates, respectively,
whereas the filled diamond represents an unbiased superpo-
sition of all �̂ eigenstates (or, more simply, a logical |+〉L

state). The coloring identifies the subsystem (black for unde-
composed CV mode, blue for logical qubit, and red for gauge
mode). With this, the graphical description of Eq. (3.3) is

= . (3.5)

Diagrams representing tensor products in multimode Hilbert
spaces are obtained by simply appending more nodes. For
example, the three-mode zero-momentum eigenstate |0〉⊗3

p is
represented as

= . (3.6)

In this graphical description and those we present below,
each column (on either side of the equal sign) represents a
different CV mode. In the SSD on the right-hand side, each
row represents a different subsystem type from Eq. (2.5): the
logical qubit in the top row and the gauge mode divided into
bin-number and modular-position subsystems in the second
and third rows, respectively. Note that these final rows can also
be interpreted as representing rotor subsystems (as discussed
in Sec. II).

Using the decomposition of zero-momentum eigenstates,
Eq. (3.3), and of the ĈZ operator, Eq. (2.21), we decompose
the two-mode CV cluster state:

ĈZ

[
π

α2

]
|0〉p,1 ⊗ |0〉p,2 = Ĉint(|CS〉L ⊗ |�〉G), (3.7)

where

|CS〉L := ĈZ
L |+〉L,1|+〉L,2 (3.8)

is a logical two-qubit cluster state, which is entangled with the
gauge-mode state

|�〉G := ĈG|0〉p,G,1|0〉p,G,2 (3.9)

via the interaction Ĉint. The decomposition reveals that an
ordinary qubit cluster state is “hidden inside” the CV cluster
state [27], but it remains entangled with the gauge modes. In
what follows, we represent this fact graphically. Note that we
have suppressed the tensor-product notation ⊗ for brevity, a
convention we continue with henceforth.

The graphical representation of a simple two-mode CV
cluster state with weight g is [28,42]

.
g

ĈZ [g] |0〉p,1 |0〉p,2 = (3.10)

Filled black circles still represent zero-momentum eigen-
states. The line between the nodes is a CV controlled-Z gate
of weight g. Since the decomposition of the two-mode CVCS
in Eq. (3.7) relies on the specific weight g = π

α2 , we now con-
sider cluster states generated by these “properly tuned” CV
controlled-Z gates. To represent the decomposed two-mode
CVCS, we introduce graphical descriptions for various pairs
of entangled subsystems. Of primary interest to us is the hid-
den logical-qubit cluster state, Eq. (3.8), which is represented
by the following diagram:

|CS〉L = . (3.11)

This is the type of diagram used in cluster-state literature to
describe qubit-cluster states [8]. Similarly, we define graph-
ical representations for interactions between unbiased states
across different subsystem types:

eiπ(�̂⊗ ûG

α ) |+〉L
∫

du |u〉G = , (3.12)

eiπ(
ûG
α ⊗m̂G)

∫
du |u〉G

∑
m

|m〉G = . (3.13)

As in Eqs. (3.4a)–(3.4c), diamonds are unbiased logical states,
red circles are unbiased gauge modular position states, and
squares are unbiased bin-number states. Lines are interactions
of the type exp(iπ · ⊗ ·), where the placeholders “·” are filled
in depending on the interacting subsystems. In particular, we
have chosen to associate a circle node with ûG/α, a square
node with m̂G, and a logical node with �̂. With these asso-
ciations, any line connecting subsystem-decomposed nodes
is a gate with strength π . Using these definitions, we can
write down the graphical representation of the decomposed
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(a)

CV cluster state

(b) +

+

+

+

+

+

GKP cluster state

(c)

+

+

hybrid cluster state

FIG. 1. Graphical depictions of three types of six-mode cluster state and their subsystem decompositions. The top row shows cluster states
at the level of the CV modes, and the bottom row shows the same states in the SSD. For reference, a single mode and its SSD are circled
by dotted lines in each subfigure. (a) CV cluster state, Eq. (3.16). (b) GKP cluster state, Eq. (3.21). (c) Hybrid cluster state, Eq. (3.27). The
logical-qubit cluster state (blue diamonds) is the same for (a), (b), and (c); what differ are the state over the gauge modes and the logical-gauge
entanglement.

two-mode CVCS in Eq. (3.10) as

= ,
πα−2

(3.14)

where the double lines indicate two instances of the same gate.
From this description, it is again apparent that a two-mode
CVCS includes a two-qubit cluster state entangled with the
gauge modes—specifically, the gauge modular position.

The above two-mode description extends in a straightfor-
ward way to N-mode CV cluster states. Applying the ĈZ [ π

α2 A]
operator to N modes prepared in |0〉⊗N

p generates an N-mode
CV cluster state. Using the decomposition in Eq. (2.38),

∣∣CVCS π

α2 A
〉

:= ĈZ

[
π

α2
A

]
|0〉⊗N

p (3.15)

= Ĉint[A](|CSA〉L ⊗ |�A〉G), (3.16)

where the states in the second line are defined below. Impor-
tantly, the logical-only part of the decomposed controlled-Z
operator in Eq. (2.38) contains the binary adjacency matrix
A that describes the entanglement structure in the hidden
logical-qubit cluster state,

|CSA〉L := ĈZ
L [A]|+〉⊗N

L . (3.17)

Through the interaction operator Ĉint[A], this cluster state is
entangled to the uG components of the gauge-mode state

|�A〉G := ĈG[A]|0〉⊗N
p,G. (3.18)

For reference, the two-mode CV cluster state in Eq. (3.7) is
described by V = π

α2 A, with

A =
(

0 1
1 0

)
. (3.19)

Entanglement between the logical and gauge subsystems pre-
cludes the use of these qubit cluster states directly, so it is

necessary to devise a strategy to combat potential logical
decoherence caused by the interaction operator, hence freeing
up the logical-qubit CV cluster state. In Sec. IV, we present
a method to liberate the logical cluster state from the gauge
modes using supplemental GKP states.

A graphical depiction of a CV cluster state defined on six
modes is shown in Fig. 1(a). The connections between nodes
in graphical representations of CV cluster states, including the
two-mode state in Eq. (3.14), are those given by the matrix Vs

in Eq. (2.35).

B. Decomposing GKP cluster states

It is not strictly necessary that interactions between GKP-
encoded qubits are mediated by continuous-variable cluster
states, although designing schemes that use both can present a
number of advantages—see Refs. [23,44] for two examples
of the GKP-CVCS synergy in action. In fact, a number of
schemes have been proposed where multiple GKP codewords
interact either in a measurement-based fashion with no need
for CVCSs or with direct control over two-mode interactions
[29–31,48–52].

We focus here on GKP cluster states, where every node
in the cluster is prepared in a |+GKP〉 state (rather than a zero-
momentum state as for CVCSs). Over N modes, a GKP cluster
state is given by

|GKPCSV〉 := ĈZ [V]|+GKP〉⊗N , (3.20)

using the multimode controlled-Z operator in Eq. (2.25). GKP
cluster states are directly compatible with measurement-based
quantum computing protocols originally designed for CV
cluster states [7], with the added advantage that they have
baked-in potential for error correction [26]. The foundation
for the utility of GKP cluster states is that they contain a
logical-qubit cluster state, but unlike the case of CV cluster
states, Eq. (3.17), this qubit cluster is not entangled with the
gauge modes and is thus ready to use.

Using the SSD of |+GKP〉, Eq. (2.17), and an appro-
priately tuned multimode controlled-Z operator (V = π

α2 A),
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Eq. (2.38), we find the SSD for a GKP cluster state,∣∣GKPCS π
α2 A

〉 = |CSA〉L ⊗ |+GKP〉⊗N
G . (3.21)

No gauge-mode or interaction operators, such as the ones
defined in Eq. (2.39), appear in the subsystem-decomposed
form—more precisely, these operators act trivially as the iden-
tity operator due to the fact that uG = 0 for GKP states. This
decouples the logical-qubit cluster state |CSA〉L, Eq. (3.17),
from the gauge modes, which are themselves in a tensor-
product state.

GKP cluster states have simple graphical representations.
We begin with the graphical depiction of an ideal GKP state
|+GKP〉 on a single CV mode,

|+GKP 〉 = + . (3.22)

In the subsystem decomposition, the difference between a
zero-momentum state and an ideal |+GKP〉 state lies only in
the gauge mode. Namely, for zero-momentum states, it is an
unbiased superposition of uG eigenstates

∫ +α/2
−α/2 du|u〉G, while

for |+GKP〉 states, the gauge mode is in an eigenstate of ûG

with eigenvalue zero, |u = 0〉G. The former is represented
graphically as a filled red circle, and we represent the latter
as an empty circle,

|u = 0〉G = , (3.23)

so that the SSD of a GKP |+〉 state is represented graphically
as

+ = . (3.24)

Compared to the graphical decomposition of the zero-
momentum state, Eq. (3.5), the only difference is in the
modular position subsystem—the color of the circle.

A two-mode GKP cluster state, Eq. (3.21), with binary
adjacency matrix A in Eq. (3.19) is

|GKPCS〉 = |CS〉L|+GKP〉G,1|+GKP〉G,2, (3.25)

with graphical depiction

+ + = . (3.26)

From this description, it is clear that only the logical-qubit
subsystems are entangled by the controlled-Z gate, which puts
them in a two-qubit cluster state, Eq. (3.8), unentangled with
the gauge modes. A six-mode example is shown in Fig. 1(b).

At this stage, the reader may have noticed that none of
the decompositions we presented require explicit use of the
conjugate quadrature operator p̂. This is, in fact, a feature
of ideal cluster states that considerably simplifies the present
analysis. The subsystem decomposition of position shifts (that

is, the exponentiated version of p̂) can be found in Ref. [34].
Formulas for expressing the momentum quadrature in terms of
modular and integer operators, along with their commutation
relations with modular and integer position, can be found else-
where [39,53]. Note that the definition of a set of conjugate
logical and gauge operators analogous to �̂, m̂G, and ûG is a
more delicate problem which we leave to future work.

C. Supplementing CV cluster states with GKP states: Hybrid
cluster states

Several proposals for fault-tolerant quantum computing
use Gaussian squeezed states and GKP states together [21,35].
In these references, the squeezed states are used to gener-
ate a CVCS—the resource that enables computation—while
the GKP states are used (1) as carriers of logical informa-
tion and (2) for error correction to help undo noise that
accumulates during computation. In these studies, the GKP
states are sparsely distributed, and we refer to such entan-
gled resource states as GKP-doped cluster states. These are
a subset of more general hybrid cluster states, for which
some fraction of the total nodes are |+GKP〉 states, and the re-
mainder are zero-momentum states. Proposals for all-optical
GKP sources are not deterministic, so hybrid cluster states are
likely to be prepared using some combination of deterministic
squeezed states and probabilistic GKP states. The proposal
from Bourassa et al. [23] shows that hybrid cluster states ar-
ranged in a three-dimensional Raussendorf-Harrington-Goyal
lattice [54] can be fault tolerant if the fraction of randomly dis-
tributed GKP states is high enough (at least 76.4%), although
smaller fractions may be possible with better decoders.

Here, we introduce and provide the subsystem decomposi-
tion for ideal hybrid cluster states produced when multimode
controlled-Z gates are used to couple zero-momentum states
and ideal |+GKP〉 states. An N-mode hybrid cluster state takes
the general form

|hybridCSV〉 := ĈZ [V]
N⊗

i=1

|ψi〉, (3.27)

where |ψi〉 ∈ {|0〉p,i, |+GKP〉i} is the CV state in mode i. This
form allows for mixing and matching of |0〉p and |+GKP〉 at
various places in the cluster state.

To illustrate hybrid cluster states, we start with the simplest
two-mode situation, where one mode is prepared in a zero-
momentum eigenstate and the other in the ideal GKP state
|+GKP〉. Applying the properly tuned multimode controlled-Z
operator (V = π

α2 A), Eq. (2.38), gives

ĈZ

[
π

α2
A

]
|0〉p,1|+GKP〉2 = ei π

α
ûG,1⊗�̂2 |CS〉L|�〉G, (3.28)

where |CS〉L is the two-qubit logical cluster state in Eq. (3.8),
and the gauge mode state is

|�〉G = ei π
α

ûG,1m̂G,2 |0〉p,G,1|+GKP〉G,2. (3.29)
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Since ideal GKP states have uG = 0, the coupling is asymmet-
ric across the modes’ subsystems. Recall the operator

R̂z
L(θ ) = exp(−iθ ẐL/2), (3.30)

which rotates the Bloch vector of the state by an angle θ

around the computational-basis (Z) axis. Formally replacing
the angle θ with π

α
ûG,1 in this operator, we can write the

interaction operator in Eq. (3.28) as

exp

(
i
π

α
ûG,1 ⊗ �̂2

)
= exp

(
i
π

2α
ûG,1

)
R̂z

L,2

(π

α
ûG,1

)
, (3.31)

describing a simultaneous phasing of the modular-position
subsystem of the first mode and a rotation of the logical qubit
of the second mode controlled on ûG of the first mode [34].

Hybrid cluster states over more modes are constructed
straightforwardly using properly tuned interactions, (V =
π
α2 A) in Eq. (3.28), along with the two-mode decompo-
sitions for the three possible combinations of CV state
at each node: momentum eigenstate-momentum eigenstate
[Eq. (3.7)], momentum eigenstate-GKP [Eq. (3.28)], and
GKP-GKP [Eq. (3.25)].

A graphical depiction of the two-mode hybrid cluster state
in Eq. (3.28) is given by

(3.32)

where the asymmetric interaction gives rise to the line be-
tween the logical qubit of mode 2 and the gauge modular
position of mode 1. The graphical depiction of a six-mode
example is given in Fig. 1(c).

In fact, the entanglement structure of a hybrid cluster state
simplifies for any GKP-encoded logical state where |ψGKP〉 =
|ψ〉L ⊗ ∑

m |m〉G ⊗ |u = 0〉G [eq. (2.16)]. In terms of subsys-
tem diagrams, we have

(3.33)

where the ψ diamond represents the logical qubit in state
|ψ〉L.

IV. UNZIPPING A CVCS BY TELEPORTING GKP STATES

While a continuous-variable cluster state (CVCS) is not
explicitly encoded (in the sense that it is not defined as a
codeword for any bosonic code), we have shown that, by
decomposing the CV Hilbert space, we can endow these CV
states with a logical-subsystem qubit. This is accomplished
by simply decomposing the state and using the information
within the logical subsystem.

When we use this idea on CVCSs, we run into the problem
that, even though we are able to recognize a useful feature

hidden within the CV cluster state—a logical-qubit cluster
state, as illustrated in Eq. (3.7) and shown in Fig. 1(a)—it is
unclear how to gain direct access to it due to entanglement
with the gauge modes. Furthermore, we know that the GKP
encoding dovetails particularly well with CVCSs [21] since
homodyne detection enables all Gaussian unitaries, and this
includes all GKP Cliffords. This suggests there should be
some connection between the GKP encoding and CVCSs, and
the SSD—through Fig. 1—provides some clues for what this
connection is.

From Fig. 1(b), we know that a GKP cluster state is just
a logical-qubit cluster state that is fully disconnected from
its gauge subsystems. So it is no surprise that the measure-
ment sequences required to implement gates on this cluster
state work as they should since we are directly implement-
ing qubit-level measurement-based quantum computing on a
qubit cluster state using GKP as the dictionary to implement
it bosonically. What is surprising is that modes that are used
merely to implement gates—not to carry quantum information
or correct errors—need not be GKP states. In fact, in the
ideal case, the hybrid cluster state in Fig. 1(c) works just as
well for processing GKP quantum information as the state in
Fig. 1(b). And if we take it to the extreme, the fully CV cluster
state in Fig. 1(a) also serves perfectly well as a resource for
GKP measurement-based quantum computation as long as we
can teleport in the initial GKP-encoded quantum information.
While the behavior with respect to errors will be different
between Figs. 1(a), 1(b), and 1(c), in the limit of high-quality
states, these are all just as good. This is true despite the fact
that Fig. 1(a) has lots of gauge-mode entanglement, while
Fig. 1(b) has none.

This curious fact leads to an important question that the
SSD can help us to answer: Why do CVCSs serve so well
as logical-qubit cluster states when they have so much en-
tanglement with the gauge modes? One would expect this
gauge-logical entanglement to spoil the simplicity of using
these states to process GKP quantum information, but for
some reason it does not. The answer to this question lies in the
subtle way that the subsystem-decomposed structure of GKP-
encoded qubits “unzips” the cluster state—disconnecting the
logical information from the adjacent gauge modes—with
every teleportation step. Let us examine this further with a
simple example.

We will analyze a one-dimensional CVCS, also known as
a CV quantum wire [55], with a single logical GKP state
attached via CV controlled-Z (with an appropriate weight g).
This hybrid cluster state, with logical input |ψ〉L, looks like
this:

ψGKP =

ψ

.

(4.1)

Measuring the full input mode (the rightmost one) in the
momentum basis involves projecting onto |s〉p p〈s|, with out-
come s. For illustrative simplicity, we restrict to the outcome
s = 0, but any outcome will have the same effect after
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correcting for the measurement-induced displacement [7].
This measurement teleports the input state by one “hop” along
the CV quantum wire and applies a Fourier transform, giving
the following result:

ψ̃GKP =

ψ̃

.

(4.2)

The physical state at the rightmost mode is |ψ̃〉GKP =
F̂ |ψ〉GKP, and the logical state is now |ψ̃〉L = ĤL|ψ〉L. This
single step implements a Fourier transform F̂ at the physical
level and a Hadamard gate ĤL at the logical level, which is
exactly what would have happened if the original state were a
completely GKP cluster state. Why did the initial gauge-mode
entanglement [seen in Eq. (4.1)] not spoil this connection?

To interpret how this has happened, we note that
|0〉p p〈0| = |+〉L L〈+| ⊗ |0〉p,G p,G〈0|. This means that we can
interpret the physical p measurement as two separable mea-
surements, one on each subsystem. The logical measurement
is exactly what we would expect for this case: a measurement
in the X̂L direction of the logical Bloch sphere with outcome
+1, and the gauge mode is measured in pG. Since these act on
different subsystems, we can pretend that they had been done
sequentially even though they were actually simultaneous.
(The value of this will become clear in a moment.)

We consider the gauge-mode measurement as happening
first, followed by the logical one. In order to figure out what
the intermediate graph (“between” the two parts of the full
measurement) would look like, we start with what we know.
First, we know that the measured gauge mode must have
disappeared, along with any of its adjacent edges. Second, we
can work backwards: We know that whatever graph we draw
here has to be the precursor to the graph in Eq. (4.2)—it must
produce that graph after a measurement of X̂L with outcome
+1. Furthermore, this has to be the case regardless of the input
|ψ〉L. That constrains the result to be the following:

ψGKP =

ψ

,

(4.3)

where the dotted-outlined node on the left represents that the
node has had its gauge mode measured destructively (tech-
nically, an unphysical operation), with analogous notation on
the right. From this intermediate step, we finally have some
intuition.

Notice that there is an open circle, representing |uG = 0〉G,
where there used to be a filled one [in Eq. (4.1)]. Also recall
that that open circle will show up regardless of what |ψ〉L

is. Thus, it will also be there even when |ψ〉L = |0〉L, which
disconnects the logical input from the rest of the initial state
in Eq. (4.1). This means that the changing of the closed circle
to an open one cannot be a result of entanglement with the

logical input state since it must happen even if there is no such
entanglement (|ψ〉L = |0〉L). Thus, the only place it could
have come from is the original (measured) gauge mode. We
can narrow down its origin even further by noticing that the
uG piece of the gauge mode was originally an open circle in
Eq. (4.1), which means it was disconnected from everything
else and thus could not have had any effect on the output state
through being measured.

So now we finally have the resolution to the original
puzzle: Upon measurement of p̂ of the physical mode, the
filled square in the measured gauge mode gets teleported into
the open circle of the next gauge mode. The map between
these two nodes is a type of generalized Fourier transform,
examples of which are ubiquitous in cluster-state quantum
computation [2,7,56]. In this case, it is specifically a Fourier
series that relates the two since a δ function in a compact
interval (open circle) has a uniform Fourier series over all
integers (filled square). Interpreting these subsystems as two
rotors (see Sec. II) makes this clear, since a straightforward
unitary Fourier relation exists between the angular momentum
basis and the angular position basis [36].

This replacement of the closed circle by an open one
eliminates all of the edges emanating from that node, thereby
disconnecting (and disentangling) it entirely from the rest of
the graph. Due to its visual similarity to a zipper separating
the upper and lower layers of connecting teeth, we refer to
this process informally as “unzipping” the cluster state. It is
the specific form of the GKP state’s gauge mode that makes
this unzipping possible.

At the full-mode level, all that is happening is that a GKP
state gets teleported to the next mode and undergoes an F̂
gate. But at the subsystem level, the behavior is much richer
and more intricate. From this perspective, the filled square—
which represents the repetitive nature of the GKP state in
position space—“unzips” the cluster state by disconnecting
the measured logical qubit from all gauge modes so that the
logical information can teleport one step as if there were no
connections to any gauge modes from the beginning. This
unzipping lets the information processing of GKP states in a
CV or hybrid cluster state [Figs. 1(a) and 1(c)] mimic that
happening in a GKP one [Fig. 1(b)] since at each step the
gauge modes are disconnected before the logical information
moves forward. The process of repeated measurement of the
full modes can thus be pictured as repeatedly unzipping by
one step, then doing ordinary logical-qubit teleportation, then
repeating this pattern all the way down the CV quantum
wire.

Of course, there is another way of changing a filled circle
into an open one, and that is to do GKP error correction on the
q quadrature. In a way, this shows that the unzipping process
involves using the gauge mode of the input to GKP error cor-
rect that of the next mode in one quadrature, thereby allowing
the input logical information to teleport onward, untarnished
by entanglement with its neighbors.

The purpose of going through this exercise is to illustrate
the conceptual insights that the SSD can bring to questions
that would otherwise appear mysterious. In this example, the
question we answered is why CVCSs play so nicely with GKP
qubits, a fact first discovered in Ref. [21]. Such intuition has
recently informed further proposals for other hybrid cluster
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states, such as Ref. [23], which shares two authors with the
present work.

V. FINITE SQUEEZING

In the above analyses, we have focused on cluster states
built from ideal zero-momentum states and ideal GKP states.
Each of these is the asymptotic limit of a physically realizable
state that contains some inherent imperfections in the form of
finite squeezing. Nevertheless, the ideal, infinitely squeezed
states have allowed us to discuss the entanglement structure
and the fundamentals of quantum information propagation for
several types of cluster state. From this perspective, it has been
fruitful to analyze these idealized states, as they embody the
essential features that make cluster states useful for quantum
computation [46,57].

The physical counterparts to the ideal cluster states we have
considered throughout this work are obtained by coupling
modes with the same CV controlled-Z entangling operator,
Eq. (2.21), but with the modes prepared in finitely squeezed
approximations to a zero-momentum eigenstate [7] or to an
ideal GKP state [24,58]. This finite squeezing makes the clus-
ter states inherently noisy, and this noise compounds during
quantum computation, necessitating error correction in order
to achieve fault tolerance [21]. The reader interested in the
general implications of finite squeezing for CVCSs and GKP
states can find an extensive investigation in Ref. [34]. In this
section, we discuss the finite-squeezing generalization of our
results from a graph-rule perspective.

The first generalization would be to include momentum-
squeezed vacuum states, which approximate zero-momentum
eigenstates to a degree determined by the level of squeezing.
In previous work [34], we performed the modular-position
SSD of a squeezed vacuum state by first writing it as
zero-momentum states distorted by a squeezing-dependent
envelope operator; |0, ζ 〉p ∝ exp(−ζ 2q̂2/2)|0〉p for some real
ζ describing the amount of squeezing [26]. In the SSD, the
envelope operator contains interaction terms that entangle
the gauge and logical subsystems of the zero-momentum
state. These interactions arise from the exponentiation of
q̂2 = (α�̂ + 2αm̂G + ûG)2, which contains cross terms be-
tween the logical and gauge subsystems of the same physical
mode—for example, terms proportional to �̂ ⊗ ûG, as well as
self-interaction terms like û2

G.
While the graphical rules we introduce in Sec. III are not

general enough to describe either of these types of interaction,
we can take inspiration from the graphical calculus for Gaus-
sian pure states [42], which makes use of arbitrary-weight,
complex-valued graphs and self-loops to describe pure Gaus-
sian states such as finitely squeezed CVCSs. We may be able
to import these innovations to describe the envelope operator
in the SSD by (a) generalizing edges connecting two modes
to arbitrary-weight, complex-valued interactions and (b) al-
lowing for complex-valued self-loops.

We have shown above that the SSD provides a sur-
prisingly simple graphical description of several extremely
non-Gaussian states: ideal GKP states and cluster states built
from them. However, just as for zero-momentum states, phys-
ical realizations of GKP states contain inherent imperfections
(in the form of finite squeezing of the spikes) that are not

present in their idealizations.3 Thus, a second important gen-
eralization to our graphical SSD description would be to
include finitely squeezed GKP states, also commonly referred
to as approximate GKP states. However, unlike squeezed vac-
uum states discussed above, approximate GKP states cannot
be written simply as a position-space envelope operator acting
on an ideal GKP state. In fact, there are a number of different
ways to approximate GKP states [58], none of which admits
an obvious graphical representation, even at the CV-mode
level (before the SSD is performed). An SSD-based analysis
of one common parametrization of approximate GKP states
can be found in Ref. [34].

A common approach to approximate high-quality (i.e.,
high-squeezing) GKP states replaces each periodically placed
δ function in an ideal GKP wave function (both position and
momentum) with a Gaussian spike whose width is determined
by the level of squeezing. Additionally, a broad Gaussian
envelope with variance proportional to the inverse of the
squeezed variance damps out Gaussian spikes far from the
origin. One possible way forward towards a graphical rep-
resentation of these states at the CV-mode level could be to
leverage the fact that the wave functions are characterized by
a single covariance matrix [40,58]. This could potentially be
combined with another feature of the graphical calculus for
Gaussian states: the explicit connection between a covariance
matrix and graphical representation of the state. Going beyond
a CV-mode to an SSD description, both the spike width and
the broad envelope produce nontrivial entangling effects be-
tween the virtual subsystems, again creating challenges to a
simple graphical description. We expect that additional graph-
ical innovations will be required in order to account for the
inherent noise in approximate GKP states.

When applying the new graphical formalism to practical
problems, even more innovation will be required. As an exam-
ple, consider the evolution of GKP-encoded information as it
teleports along a CV quantum wire. This process would also
need to be modified to include more general graph transfor-
mation rules, analogous to the generalization of Zhang’s rules
for transforming CVCS graphs among themselves [45,46] to
those for transforming any Gaussian pure state under Gaus-
sian unitaries [42]. The tools developed along the way will
likely be of use for quantitative analysis and comparison of
performance of the different types of cluster state (Fig. 1).
Since it represents a significant extension beyond the present
paper, however, we leave this generalization to future work.

VI. CONCLUSION

Expanding on the graphical formalism already introduced
in Ref. [27], we have shown that a hybrid cluster state, such
as the ones considered in the recent proposal for continuous-
variable quantum computing [23], presents an entanglement
structure that mimics the behavior of a discrete-variable clus-
ter state (upon measurements). The subsystem decomposition
is the mathematical formalism that has allowed us to draw this

3One may argue that ideal GKP states are more unphysical than
zero-momentum states, as they are defined as an infinite sum of
unphysical wave functions.
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connection in an explicit way. Here we summarize the main
points of the investigation.

As a starting point, we have decomposed the fundamental
entangling gate, a two-mode CV controlled-Z operator. We
found that it contains a qubit controlled-Z operation on the
logical subsystems of the two modes as well as additional
pieces that entangle the qubit subsystems to the gauge modes.
When properly tuned, some of these unwanted interactions
vanish.

From the subsystem perspective, the logical state of an
ideal CVCS is exactly a discrete-variable cluster state that
is entangled with the gauge subsystems of the rest of the
modes. The interaction term in the decomposed controlled-Z
suggests that further steps need to be taken if we want the
cluster state to implement exactly a logical-qubit cluster state
that is separable from the gauge modes. GKP states turn out
to be the additional ingredient that disentangles the logical
cluster state from the gauge mode. This allows the resource
state to behave effectively as a qubit cluster state, free from
entanglement with the gauge mode, as discussed in Sec. IV.

An ideal GKP state, when coupled to a CVCS, will “unzip”
the hidden qubit cluster state from the gauge modes before
allowing the logical information to teleport to the next node,
thereby avoiding logical decoherence that would otherwise
arise due to the initial entanglement.

The graphical SSD representation of ideal hybrid clus-
ter states may eventually be rigorously extended to finitely
squeezed versions of these states. Such a development would
mirror that of the graphical calculus for Gaussian pure states
[42] that extended previously known graphical representa-
tions, which were limited to ideal CVCSs [28,46], and it
would allow for quantitative modeling of the evolution of such
states and of their use in processing CV quantum information.
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