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Continuous-variable (CV) cluster states are a universal resource for fault-tolerant quantum computation when
supplemented with the Gottesman-Kitaev-Preskill (GKP) bosonic code. We generalize the recently introduced
subsystem decomposition of a bosonic mode [G. Pantaleoni et al., Phys. Rev. Lett. 125, 040501 (2020)], and we
use it to analyze CV cluster-state quantum computing with GKP states. Specifically, we decompose squeezed-
vacuum states and approximate GKP states to reveal their encoded logical information, and we decompose
several gates crucial to CV cluster-state quantum computing. Then, we use the subsystem decomposition to
quantify damage to the logical information in approximate GKP states teleported through noisy CV cluster
states. Each of these studies uses the subsystem decomposition to circumvent complications arising from the full
CV nature of the mode in order to focus on the encoded qubit information.
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I. INTRODUCTION

In the original formulation of measurement-based quantum
computing [1], one first prepares a highly entangled state,
the cluster state, and then performs quantum computations by
measuring the nodes of the cluster [2–4]. This paradigm may
have advantages over implementations of quantum computa-
tions that rely on direct control of the gates [3].

Continuous-variable (CV) cluster-state quantum comput-
ing [5,6] is based on the degrees of freedom of a number of
bosonic modes rather than on discrete degrees of freedom in
standard qubit cluster states. CV cluster-state quantum com-
puting is particularly suited to optics (arguably its most natural
implementation) due the experimental straightforwardness of
Gaussian operations and quadrature measurements (both sta-
ples of CV quantum computing) as well as room-temperature
operation, long decoherence times, and scalability [7]. Indeed,
large optical cluster states have been realized in the labora-
tory [8–14] as have measurement-based Gaussian operations
[13,14].

The ability of CV cluster states to perform universal,
measurement-based operations is limited by the fact that noise
originating in the CV cluster state itself accumulates dur-
ing computation. A path forward is to combine CV cluster
states with bosonic codes [15], which encode discrete quan-
tum information into bosonic modes [16–22]. The bosonic
code known to provide both universality and fault tolerance
in CV cluster-state quantum computing is the Gottesman-
Kitaev-Preskill (GKP) encoding [17]. Together, the GKP code
and CV cluster states allow CV architectures to execute
qubit-based quantum algorithms and, for resource states of
sufficiently high quality, they also allow for error correction,
which underpins fault tolerance [15,23–25].
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Such hybrid approaches combine two types of CV state:
GKP states that encode qubit information and “unencoded”
momentum-squeezed states that comprise the CV cluster
state. Here, we use the framework of bosonic subsystem codes
and the underlying subsystem decomposition (SSD), intro-
duced in Ref. [26], to show that both types of state encode
compatible logical qubits. We further employ the SSD to
assess damage to these encoded qubits when the CV states
are only approximations of their ideal counterparts.

The subsystem decomposition is a method for partitioning
a CV mode into two virtual subsystems: a discrete quantum
system (the logical subsystem) and a remainder (the gauge
mode), which is itself another CV mode. This provides a
method to identify a logical component for any object defined
on the CV mode, most notably states and operators. Tracing
over the gauge-mode component of a CV state yields a dis-
crete, logical reduced state, which itself can be analyzed using
any of the standard tools of quantum information without
having to worry about its CV origin.

In this work, we first generalize the modular subsystem
decomposition in Ref. [26] to qudit logical subsystems. Then,
returning to qubits, we employ the SSD to analyze necessary
elements of CV cluster-state quantum computation. We use
the SSD to reveal the logical information in single-mode
momentum-squeezed and approximate GKP states (discussed
above) and also to identify the logical, gauge, and entangled
components of several operators useful for CV cluster-state
quantum computing: unitary position and momentum shifts
as well as the regularizing noise operator that generates ap-
proximate GKP states from ideal ones.

The foundation for CV measurement-based quantum com-
puting is the teleportation protocol, which transfers an input
state along a one-dimensional CV cluster state by measuring
the nodes sequentially. Ideally, the input state is preserved;
however, physical implementations of teleportation cause
damage because the nodes of the cluster are not infinitely
squeezed. In Sec. IV, we use the SSD to extract the logical
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information from teleported ideal and approximate GKP
states in order to quantify damage to it and to find the logical
effects arising from the measurement outcomes.

While a number of the results that we show along the
way hold true regardless of the SSD, this work heavily relies
on the idea of organizing the presentation of calculations at
the logical subsystem level. As such, it is natural to start by
discussing the details of the subsystem decomposition, both
conceptually and as a procedure that one can simply apply to
any CV state in order to get a (useful) qubit density matrix.
And that is where we begin the next section.

This article is organized as follows. In Sec. II, we introduce
the subsystem decomposition, discuss its use, and apply it
to position and momentum translation operators. In Sec. III,
we use the SSD to study the logical information of finitely
momentum-squeezed vacuum and approximate GKP states.
In Sec. IV, we analyze the logical effects when approximate
GKP states undergo noisy teleportation.

II. SUBSYSTEM DECOMPOSITION

We first review and extend the modular subsystem de-
composition introduced in Ref. [26]. The main idea is to
decompose the CV Hilbert space as a tensor product HCV �
Cd ⊗ H′

CV, where Cd is the Hilbert space of a qudit, and H′
CV

the Hilbert space of a virtual mode (referred to as the gauge
mode) that is isomorphic to, but distinct from, the original
mode. When decomposed with respect to the subsystem basis
associated with this tensor-product decomposition, any CV
state of the mode is revealed to have an encoded logical qudit,
although this subsystem qudit is in general entangled with
the gauge mode. There are many ways to perform subsystem
decompositions of a mode, each having its own subsystem
basis that describes a different tensor-product partitioning of
HCV. Because of this, different subsystem decompositions can
identify different logical information within a fixed CV state.

In this work, we focus on a specific subsystem decomposi-
tion based on modular variables [27] due to its compatibility
with the GKP code. More specifically, our starting point is the
modular-variable decomposition of the position quadrature
operator, just as was done in Ref. [26].

We first set our notation and conventions. In terms of the
creation and annihilation operators for the mode, â and â†, the
position and momentum quadrature operators are

q̂ := 1√
2

(â + â†), (2.1a)

p̂ := −i√
2

(â − â†). (2.1b)

They satisfy the canonical commutation relation [q̂, p̂] = i,
and the measured variance of the vacuum state is 1

2 in every
quadrature (h̄ = 1). The position operator is diagonalized by
position eigenstates |x〉q with spectrum x ∈ R. Similarly, p̂ has
eigenstates |x〉p for x ∈ R. These satisfy the scalar product

q〈x|y〉p = eixy

√
2π

(2.2)

for all x, y ∈ R. Henceforth, we emphasize the position basis
since it is the basis we will use for the subsystem decomposi-
tion.

Position eigenstates are orthonormal q〈x|y〉q = δ(x − y),
and form a basis for HCV,

Î =
∫

dx |x〉q q〈x|. (2.3)

A pure, CV state vector |ψ〉 can then be expanded as

|ψ〉 =
∫

dx ψ (x) |x〉q , (2.4)

where the position wave function evaluated at x is

ψ (x) := q〈x|ψ〉. (2.5)

Our strategy to introduce the modular-position subsystem
decomposition is to decompose a position eigenstate |x〉q. Its
associated eigenvalue x is a real number that can be written as
a set of three separate numbers: a decimal part, an integer part
modulo another integer d , and a quotient modulo d . These
three numbers will then label position eigenstates and, ulti-
mately, define three separate virtual subsystems of different
nature.

We illustrate this decomposition of a real number by ex-
ample, without worrying about which ideas will carry over to
the quantum case (where a real number is interpreted as an
eigenvalue for a specific state). A real number represented in
base 10, such as

177.245 385 1 . . . , (2.6)

can be specified by a pair of numbers: an integer (177) and
fractional part (0.245 385 1. . .). This means that, effectively,
we can slice up the number across the decimal point and think
of it as two separate constituents. While this “decomposition”
is self-evident, note that there is no particular reason (other
than convenience) to stop the slicing at the decimal point. Let
us further separate the real number by simply electing that the
very last digit of the integer is going to be one of the three
constituents that specify the number. We may, for example,
write

177.245 385 1 . . . (2.7)

and talk about our number as a triplet: an integer (17),
a “digit” (7, bold underlined above), and a fractional part
(0.245 385 1. . .). As there is no reason to prefer base 10, we
consider the binary representation of the same number, which
is

10 110 001.001 111 1 . . . . (2.8)

In this case, the triplet consists of an integer (1 011 000),
a single bit (1, bold underlined), and the remainder
(0.001 111 1. . .). Note that the elements of the binary triplet
are different from those for the base-10 triplet.

Consider a situation where an engineer needs to design
a computer, but their architecture at the physical level is
“constrained” to use real numbers. One solution they could
employ to recover a binary digit-based design is to use the
base-2 decomposition of a real number into triplets described
above. Specifically, given any real number, they may just use
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the underlined, bold digit, and throw away the “leftover infor-
mation,” interpreted as useless numbers padding the bit from
left and right. Whether the discarded information is actually
useless depends on further assumptions on the error model of
their all-real-number architecture.

We adopt a different approach: rather than discard the
leftover integer and real-number remainder, we stitch them
together into a new real number. Using this idea, we represent
the original number as

10 110 001.001 111 1... =
{

1
1 011 000.001 111 1 . . . ,

(2.9)

where the top row gives the useful binary information, and
the bottom row gives the new real number representing the
leftover information. It can be useful to keep this leftover in-
formation rather than discarding it. Suppose the same engineer
is told that the real numbers from their computer are occa-
sionally shifted by a small amount. This results in a mismatch
between data types: the errors are real numbers, yet the useful
information is binary (i.e., bits). As long as the discussion
is limited to classical bits, this problem is simple enough to
treat: large, real shifts can flip the useful digit while small
shifts leave it alone. Importantly, whether a shift is “large”
and “small” is determined by the leftover information.

The modular-position subsystem decomposition follows in
the same spirit, with the logical subsystem and the gauge
mode being analogs of the useful and the leftover information,
respectively. Although error correction is not a focus in this
work, we note that the state of the gauge mode keeps track
of the leftover information in a modular bosonic subsystem
code. Error correction resets the gauge-mode state so that the
logical information is most resilient to future shifts.

A. Partitioned-position basis

As the first step towards the modular-position subsystem
decomposition, we construct an intermediate basis based on
modular position. This basis is founded on the fact that a real
number x ∈ R can be written as the sum of its quotient and its
remainder with respect to some divisor α ∈ R,

x = 	x
α + {x}α = αIα (x) + {x}α, (2.10)

where the integer multiple and fractional parts of x,

	x
α := α
⌊ x

α
+ 1

2

⌋
, (2.11a)

{x}α := x − 	x
α, (2.11b)

indicate the closest (centered) integer multiple of α and the
(centered) remainder, respectively [26]. If α carries units, the
fractional part and the closest integer multiple of α are given in
the same units of α. We have also defined the related, unitless
function

Iα (x) := 	x
α

α
=
⌊ x

α

⌉
, (2.12)

that gives the closest (centered) integer, as opposed to closest
integer multiple of α in Eq. (2.11a). In the rightmost expres-
sion, 	·
 is shorthand for 	·
1. The spectrum of a quadrature
operator (any linear combination of q̂ and p̂) is the set of

(a)

(b)

m = 0m = -1m = -2m = -3 m = 1 m = 2 m = 3

m = -1m = -3 m = 1 m = 3

m = 4

m = 0m = -2 m = 2 m = 4

FIG. 1. Illustration of the modular-position subsystem decompo-
sition of a wave function. (a) Wave function ψ (x) partitioned with
respect to bins of size α labeled by bin number m. Within each
bin is the partitioned position wave function ψ (m, u). (b) Subsys-
tem decomposition for a logical qubit (d = 2). The unnormalized
wave functions for the gauge states |ψ̄0〉 and |ψ̄1〉 are obtained by
“stitching” together ψ (x) from the even- and odd-m bins in (a). Note
that here we use the CV-mode bin numbers m and not the gauge
bin-number labels mG.

real numbers, so we can use Eq. (2.10) to decompose its
eigenbasis. We focus here to the position operator q̂, for which

q̂ = 	q̂
α + {q̂}α = αm̂ + û, (2.13)

where αm̂ := 	q̂
α and û := {q̂}α are the integer and modular
operator first studied by Aharonov [27]. The bin-number oper-
ator m̂ and modular-position operator û commute, [m̂, û] = 0,
and define a basis of common eigenstates [27–30]

|x〉q = |αm + u〉q =: |m, u〉 , (2.14)

with m ∈ Z and u ∈ [−α/2, α/2). These states are orthonor-
mal, 〈m, u| m′, u′〉 = δm,m′δ(u′ − u), and form a basis giving a
resolution of the identity

Î =
∑
m∈Z

∫ +α/2

−α/2
du |m, u〉〈m, u|. (2.15)

Expanding a CV state |ψ〉 in this basis gives

|ψ〉 =
∑
m∈Z

∫ +α/2

−α/2
du ψ (m, u) |m, u〉 , (2.16)

where the partitioned-position wave function ψ (m, u) is de-
fined as

ψ (m, u) := 〈m, u|ψ〉, (2.17)

which can also be thought of as a pointwise mapping
ψ (m, u) = ψ (αm + u), where the right-hand side is the
position wave function ψ (·) [Eq. (2.5)] evaluated at the
partitioned-position decomposition of its argument. The
partitioned-position wave function ψ (m, u) can then be inter-
preted as a piecewise wave function, parametrized by integer
bin numbers m ∈ Z and modular position variables defined in
the interval [−α

2 , α
2 ). This is akin to the fact that a function of a

real variable is defined over a set of intervals [(m − 1
2 )α, (m +

1
2 )α] parametrized by m. This idea is shown in Fig. 1(a).

The partitioned-position basis can be interpreted in terms
of two separate subsystems, one identified with the bin num-
ber m and the other with the fractional position u. From this

012430-3



PANTALEONI, BARAGIOLA, AND MENICUCCI PHYSICAL REVIEW A 104, 012430 (2021)

perspective, the basis states above are shorthand for

|m, u〉 = |m〉 ⊗ |u〉 . (2.18)

The u subsystem is a virtual planar rotor [31,32] whose states
can be described by continuous wave functions over basis
states |u〉 in the compact interval [−α/2, α/2) or by their
Fourier coefficients, which are indexed by unbounded inte-
gers. It follows from this latter fact that the m subsystem is
also a planar rotor, with |m〉 describing the rotor basis in the
Fourier domain. The continuous degree of freedom of this
second planar rotor, modular momentum, lies in the interval
[−π/α, π/α).1 We do not often need to interpret m and u as
labeling separate subsystems, although doing so can be useful
in some circumstances [34].

B. Modular-position subsystem decomposition

We now isolate a qudit subsystem from the CV mode.
This qudit constitutes a logical subsystem, i.e., where discrete-
variable information can be stored within the continuous
Hilbert space of the mode. Above, we decomposed the po-
sition operator q̂ into integer-valued bin-number operator m̂
and modular-position operator û [Eq. (2.13)], which allowed
us to define the partitioned-position basis [Eq. (2.14)]. By
performing a modulo operation on m̂, we further decompose
the partitioned-position basis and introduce the d-dimensional
qudit subsystem.2

An integer m ∈ Z can be decomposed with respect to some
other positive integer d into a quotient part and a remainder
m = dmG + �, where

mG = Id (m), (2.19a)

� = {m}d , (2.19b)

with mG ∈ Z and � ∈ {0, 1, . . . , d − 1}. With slight abuse of
notation, it is understood that whenever d is an integer, Id is
the standard quotient function (i.e., division without remain-
der), namely Id (m) = 	m/d�. Applying this decomposition to
the integer operator m̂ itself gives

m̂ = 	m̂
d + {m̂}d = dm̂G + �̂, (2.20)

where m̂G := Id (m̂) is an operator whose spectrum is Z and
�̂ := {m̂}d . This decomposition procedure is largely analogous
to the previous section [compare Eq. (2.21) to Eq. (2.14)]
with the difference being the spectrum of the operators being
decomposed. Indeed, the operators �̂ and m̂G commute, hence,
their simultaneous eigenstates define a new tensor-product
basis

|m〉 = |dmG + �〉 =: |�〉L ⊗ |mG〉G . (2.21)

We refer to �̂ as a logical operator and to m̂G as a gauge
operator since they act on two different subsystems (labeled L

1A basis for a CV mode is given by the eigenstates of these
two commuting “modular variables”: modular position and modular
momentum [27]. These basis states can be found by taking the Zak
transform of the position eigenstates [29,33].

2This type of subsystem encoding was first performed in the context
of a quantum rotor [35].

and G). Their eigenvalue relations are

m̂G |�〉L ⊗ |mG〉G = mG |�〉L ⊗ |mG〉G , (2.22a)

�̂ |�〉L ⊗ |mG〉G = � |�〉L ⊗ |mG〉G . (2.22b)

The logical operator �̂ generates logical-Z rotations via expo-
nentiation,

ẐL := exp

(
2π i

d
�̂

)
, (2.23)

as one can easily verify by acting on the basis for the logical
subsystem |�〉L. The qudit X̂L operator is defined through its
action on the logical subsystem as

X̂L |�〉L := |{� + 1}d〉L . (2.24)

We now use the decomposition of m̂ given above to con-
struct the change of basis between the position eigenstates of
a CV mode and the subsystem-decomposed eigenstates. The
position operator in the subsystem basis decomposes as

q̂ = αm̂ + û = α�̂ + dαm̂G + û (2.25)

and is diagonalized by the simultaneous eigenvalues of �̂, m̂G,
and û. Thus, a position eigenstate |x〉q can be decomposed as

|x〉q = |m, u〉 = |�〉L ⊗ |mG, uG〉G, (2.26)

and the subsystem basis states inherit orthonormality:

(L〈�| ⊗ G〈mG, uG|)(|�′〉L ⊗ |m′
G, u′

G〉G)

= δ�,�′δmG,m′
G
δ(uG − u′

G). (2.27)

The maps between the subsystem and the partitioned-position
eigenvalues are given in Eqs. (2.19a) and (2.19b) along with

uG = u ; (2.28)

that is, the gauge modular position is equal to the modular po-
sition from the partitioned-position decomposition. The three
quantum numbers in the subsystem decomposition, �, mG, and
uG, are functions solely of the position eigenvalue x through

� = {Iα (x)}d , (2.29a)

mG = Id (Iα (x)), (2.29b)

uG = {x}α, (2.29c)

with the closest integer function given in Eq. (2.12). In simpler
terms, with respect to expressions like Eqs. (2.6) and (2.8), �

is a base-d digit, whereas mG and uG are the leftover integer
and fractional part, respectively. Since changing between the
position basis and the subsystem basis is notationally com-
plex, we often discuss the connection to the subsystem basis
in terms of the intermediate partitioned-position basis.

The completeness of the subsystem basis follows from
Eq. (2.26) and is given by

Î =
d−1∑
�=0

|�〉L L〈�| ⊗
∑

mG∈Z

∫ +α/2

−α/2
duG |mG, uG〉G G〈mG, uG|

(2.30)

= ÎL ⊗ ÎG. (2.31)
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From the partitioned-position decomposition, Eq. (2.15), we
have shown that the states |mG, uG〉G comprise a basis for
HCV. Since the gauge subsystem is formally the same as HCV

(their Hilbert spaces are isomorphic), the modular subsystem
decomposition then splits a full oscillator into a tensor product
of a qudit and a new virtual oscillator, HCV = Cd ⊗ H′

CV.

1. Decomposing states in the subsystem basis

Having the resolution of the identity in the subsystem
basis, Eq. (2.31), it is possible to write any state of the CV
mode in the subsystem basis to identify the logical and gauge
components. Here we describe this procedure, which can be
performed in various ways that will be used throughout the
rest of this work.

Applying the logical-subsystem identity to an arbitrary,
pure CV state |ψ〉 gives

|ψ〉 =
d−1∑
�=0

|�〉L ⊗ |ψ̄�〉G , (2.32)

where the gauge-mode state associated with each logical state
|ψ̄�〉G := L〈�|ψ〉 arises from a partial projection and as such
is not normalized (indicated by the overbar). Also, the gauge-
mode states associated with different values of � are typically
not orthogonal. Expanding |ψ̄�〉G in the gauge-mode position
basis gives the subsystem decomposition

|ψ〉 =
d−1∑
�=0

∫ +∞

−∞
dxG ψ (�, xG) |�〉L ⊗ |xG〉q,G , (2.33)

where ψ (�, xG) := (L〈�| ⊗ q,G〈xG|) |ψ〉. The gauge mode can
also be expanded in a partitioned-position basis, which will be
useful for calculations throughout this work. Doing this yields

|ψ〉 =
d−1∑
�=0

∑
mG∈Z

∫ +α/2

−α/2
duG ψ (�, mG, uG) |�〉L ⊗ |mG, uG〉G ,

(2.34)

with subsystem-basis wave function

ψ (�, mG, uG) := (L〈�| ⊗ G〈mG, uG|) |ψ〉 . (2.35)

Note that the subsystem wave functions for fixed � are indeed
the gauge-mode wave functions for each |ψ̄�〉 in Eq. (2.32).
If a position wave function is ψ (x), x ∈ R, the correspond-
ing subsystem-basis wave function is obtained by setting
ψ (�, mG, uG) = ψ (α� + dαmG + uG) with � ∈ {0, . . . , d −
1}, mG ∈ Z, and uG ∈ [−α

2 , α
2 ).

For mixed CV states, the procedure is analogous, with the
subsystem decomposition applied to the density matrix. A
state ρ̂ is expressed in the position basis as

ρ̂ =
∫∫

dx dx′ρ(x, x′) |x〉q q〈x′|, (2.36)

with matrix elements ρ(x, x′) := q〈x|ρ̂ |x′〉q. Using Eq. (2.26),
the state can be expressed in the subsystem basis

ρ̂ =
∫∫ +α/2

−α/2
du du′ ∑

m,m′∈Z

d−1∑
�,�′=0

× ρ(�, �′, m, m′, u, u′) |�〉L L〈�′| ⊗ |m, u〉G G〈m′, u′|
(2.37)

with the matrix elements

ρ(�, �′,m, m′, u, u′) := (L〈�| ⊗ G〈m, u|)ρ̂(|�′〉L ⊗ |m′, u′〉G),
(2.38)

where we have used the gauge-mode partitioned-position
basis, just as in Eq. (2.34) (because that is what we use
throughout this work). One could also use the gauge-mode
position basis as in Eq. (2.33). Note that for notational con-
venience, we have dropped the gauge subscript G everywhere
except to label the states. Henceforth, we continue with this
convention unless it could cause confusion. As a helpful
reminder, whenever an object (such as the matrix element
above) is labeled by a logical index �, m and u within that
same expression refer to the gauge mode.

2. Reduced subsystem states: Logical and gauge mode

Performing a partial trace of the CV state ρ̂ over one
subsystem, either the logical qudit or the gauge mode, gives
the reduced state of the other subsystem. This is useful when
the CV state is intended to encode discrete quantum informa-
tion. In this case, the partial trace over the gauge mode, the
gauge trace, gives a map from the full CV space to a discrete
Hilbert space, after which the tools of standard qubit and qudit
quantum information can be applied [26,36–38].

The reduced logical state, a d × d density matrix ρ̂L, is
found by taking the gauge trace (performed here in the gauge-
mode partitioned-position basis)

ρ̂L := TrG[ρ̂] =
∑
m∈Z

∫ +α/2

−α/2
du G〈m, u|ρ̂|m, u〉G. (2.39)

From the standpoint of the reduced logical state, the gauge-
mode subsystem acts as an environment, such that any
entanglement between the subsystems decoheres ρ̂L. Simi-
larly, the reduced gauge-mode state ρ̂G is obtained by a partial
trace over the logical qudit subsystem

ρ̂G := TrL[ρ̂] =
d−1∑
�=0

L〈�|ρ̂|�〉L. (2.40)

The reduced gauge state is the state of the virtual mode whose
environment is the discrete logical subsystem.

In the following sections, we are interested in encoding
discrete quantum information into CV states. For a CV state
ρ̂ to faithfully encode a given qudit state σ̂ , its reduced
logical state ρ̂L must be near σ̂ (according to some metric).
Ideally, the CV state is a product state over the subsystems
ρ̂ = σ̂ ⊗ ρ̂G, such that the gauge trace yields σ̂ . Note that
any transformations on the gauge-mode part of the state ρ̂G

leave the reduced logical state untouched. More generally, the
logical and gauge subsystems are entangled, and as a result the
reduced logical state is mixed (as is the reduced gauge state).
How well discrete quantum information is encoded into a CV
state can be quantified using tools from standard qubit (or
qudit) quantum information. We focus on the logical fidelity
[26]

FL(ρ̂, σ̂ ) :=
(

Tr

[√√
σ̂TrG[ρ̂]

√
σ̂

])2

, (2.41)
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where TrG[ρ̂] = ρ̂L from Eq. (2.39). One can define other
logical-subsystem metrics as needed.

C. Decomposing single-mode CV operators

Operators on a single CV mode, decomposed in accor-
dance with HCV � Cd ⊗ H′

CV, can be classified into three
types. Borrowing terminology from the subsystem-code lit-
erature [39], we categorize them as logical, gauge, and
interaction operators.

Logical operators of the form ÂL ⊗ ÎG (or simply ÂL) act
nontrivially only on the logical subsystem in Cd , whereas
gauge operators ÎL ⊗ ÂG (or simply ÂG) act only on the gauge
mode in H′

CV. Note that any purely gauge operations that
a CV state undergoes have identical effects under a gauge
trace. That is, a tensor-product operation ÂL ⊗ ÂG is logically
equivalent to ÂL, i.e., they act as the same operation on the
logical subsystem.

When a subsystem-decomposed CV operator cannot be
written as a tensor product between a logical and a gauge
operation, it is an interaction operator. The effect of an in-
teraction operator can be described by considering its action
on tensor-product states. A tensor-product state |ψ〉L ⊗ |φ〉G
can be interpreted as a fully faithful representation of the pure
qubit state |ψ〉L since the states coincide upon gauge tracing.
Furthermore, the same faithfully encoded state after an unitary
operation ÂL ⊗ ÂG coincides with ÂL |ψ〉L after gauge tracing.

Consider, on the other hand, the action on |ψ〉L ⊗ |φ〉G of
an entangling operation between the logical and gauge subsys-
tems. In this case, gauge tracing generally results in a mixed
logical state due to residual entanglement between the sub-
systems. This degradation of purity is likely to be unwanted
since it cannot be mitigated using unitary operations on the
logical subsystem alone. In other words, we can describe the
gauge mode as a (virtual) environment subsystem, and we
can identify coupling with the environment via interaction
operations as a source of decoherence of the logical states.

In this work, we decompose several operators useful for
CV cluster state quantum computing: unitary momentum- and
position-shift operators, and a nonunitary “envelope” operator
defined in Sec. III A.

D. Decomposing arbitrary single-mode shifts

The decomposition of a single-mode CV operator, de-
scribed above, can be performed using the resolution of the
identity in the subsystem basis, Eq. (2.31). We apply the
subsystem decomposition to shift operators, which are suf-
ficient to reconstruct CV error operations (see Ref. [19] for
the procedure.) More to the point, shifts are useful in two
contexts that we are specifically interested in here. First, in
CV cluster-state teleportation, active shifts follow each step
in the teleportation to correct for random homodyne measure-
ment outcomes [6] and, second, for quantum computing with
GKP codes (introduced below), specific shifts implement the
logical Pauli gates.

General translations in phase space are generated by the
displacement operator D̂(α) := eαâ†−α∗â, where α = αR + iαI ,
with αR and αI being the real and imaginary parts of the
complex number α, respectively. A displacement operator can

be separated as

D̂(α) = eiαRαI X̂ (
√

2αR)Ẑ (
√

2αI ), (2.42)

where shifts in position by s and in momentum by t are,
respectively, generated by

X̂ (s) := e−isp̂, (2.43a)

Ẑ (t ) := eit q̂. (2.43b)

We perform a SSD of each of these shift operators below.
The momentum-shift operator decomposes simply because it
is diagonal in q̂, while the position-shift operator is not and
will be decomposed by inspecting its action on a subsystem
basis state.

1. Momentum shifts

The momentum-shift operator Ẑ (t ) [Eq. (2.43b)] can be de-
composed straightforwardly due to the fact that it is generated
by q̂, which decomposes according to Eq. (2.25). Substituting
the subsystem decomposition of the q̂ operator gives

Ẑ (t ) = eit q̂ = eit(α�̂+αdm̂G+ûG) = eiαt �̂eiαdtm̂G eit ûG , (2.44)

which is a tensor product between logical and gauge opera-
tors; no logical-gauge entangling terms are present.

To understand the purely logical piece, we gain some intu-
ition by considering the case d = 2. In this case, we get the
following representation of the logical part of the operator:

eiθ�̂ = ei θ
2 R̂z

L(θ ), (2.45)

where R̂z
L(θ ) := exp(−i θ

2 ẐL ) is the usual operator that rotates
the logical qubit in the Bloch sphere by +θ about the Z axis.
This relation follows from �̂ = 1

2 (ÎL − ẐL ). Thus, exp(iθ�̂) is
equivalent to a simple rotation of the logical qubit up to a θ -
dependent phase. In Eq. (2.44), then, θ = αt .

2. Position shifts

The position-shift operator X̂ (t ) [Eq. (2.43a)] is not di-
agonal in q̂ and thus takes a more complicated form in the
subsystem decomposition. Again note that we drop the labels
on gauge eigenvalues (unless necessary to avoid confusion).
We separate a position shift by t ∈ R into its integer and
fractional parts with respect to bin size α and then further
decompose the integer part using a modulo operation with
respect to d to get

t = α(dn + k) + v, (2.46)

where

k := {Iα (t )}d , (2.47a)

n := Id (Iα (t )), (2.47b)

v := {t}α. (2.47c)

This decomposition is the same as was done in Eq. (2.29).
Then, the position-shift operator separates into two parts,

X̂ (t ) = X̂ (v)X̂ [α(dn + k)], (2.48)

a shift by an integer multiple of α and a shift by a value
v ∈ [−α

2 , α
2 ). The integer-shift portion of Eq. (2.48) acts on
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a subsystem-basis eigenstate, Eq. (2.26), as

X̂ [α(dn + k)] |�〉L ⊗ |m, u〉G

= (X̂L )kX̂G[αn + αId (� + k)] |�〉L ⊗ |m, u〉G , (2.49)

where X̂L is the logical-qudit operator in Eq. (2.24). Since
the values of � and k are restricted to the set {0, . . . , d −
1}, Id (� + k) can only assume the values 0 or 1 (since it
uses ordinary mod-d arithmetic). The gauge-mode displace-
ment operator X̂G(t ) is defined by its action on gauge-mode,
partitioned-position basis states:

X̂G(t ) |m, u〉G := |m + Iα (u + t ), {u + t}α〉G . (2.50)

The fractional shift portion of Eq. (2.48) acts on subsystem-
basis eigenstates states as

X̂ (v) |�〉L ⊗ |m, u〉G

= X̂ Iα (u+v)
L X̂G[αId [� + Iα (u + v)] − αIα (u + v)]

× X̂G(v) |�〉L ⊗ |m, u〉G . (2.51)

Since v is small, Iα (u + v) can only take on values {0,±1}.
Combining Eqs. (2.50) and (2.51), we find the SSD of the
position shift operator on a subsystem-basis eigenstate,

X̂ (t ) |�〉L ⊗ |m, u〉G

= (X̂L )k+Iα (u+v)X̂G[αId (� + k)]X̂G(αn + v)

× X̂G[αId [� + Iα (u + v)] − αIα (u + v)] |�〉L ⊗ |m, u〉G .

(2.52)

Applying the shift operator on the right-hand side, we can see
the action on the subsystem basis state:

X̂ (t ) |�〉L ⊗ |m, u〉G

= |{� + k + Iα (u + v)}d〉L

⊗ |n + m + Id [� + k + Iα (u + v)], {u + v}α〉G .

(2.53)

A more detailed derivation can be found in Appendix A.
The fact that the SSD is based on a modular decomposition

of a real number, Eqs. (2.29), is useful for interpreting these
equations. A shift by t on a position eigenstate is effectively
the addition of two real numbers, i.e., X̂ (t ) |x〉q = |t + x〉q.
Since we are representing those real numbers in terms of
their logical, gauge-integer (m) and and gauge-modular (u)
registers, the decomposed-X̂ (t ) describes addition between
these registers with carrying. A difficulty lies in the fact that
the registers themselves are not of the same size, in con-
trast to binary digit representations, for example. In this way,
a subsystem-basis position shift is analogous to a quantum
adder [40], which is a complicated circuit that entangles the
registers. Our version is further complicated by the fact that
the three subsystems are of different Hilbert-space dimension.

III. DECOMPOSING SQUEEZED-VACUUM AND
GOTTESMAN-KITAEV-PRESKILL STATES

When d = 2 (i.e., we are interested in qubits), every pure
CV state for a mode has an SSD [using the form in Eq. (2.32)],

|ψ〉 = |0〉L ⊗ |ψ̄0〉G + |1〉L ⊗ |ψ̄1〉G , (3.1)

where |ψ̄0〉 and |ψ̄1〉 are states of the gauge mode associated
with the logical |0〉L and |1〉L states. Note that |ψ̄0〉 and |ψ̄1〉
are generally unnormalized and not orthogonal. When |ψ̄0〉 ∝
|ψ̄1〉, |ψ〉 is a tensor-product state across the subsystems. Such
states have no logical-gauge entanglement and pure reduced
states in both subsystems.

An important example is the zero-momentum eigenstate,
which decomposes simply in the three bases we have consid-
ered:

|0〉p = 1√
2π

∫
dx |x〉q (3.2a)

= 1√
2π

∑
m∈Z

∫ +α/2

−α/2
du |m, u〉 (3.2b)

= |+〉L ⊗ |0〉p,G . (3.2c)

The first line gives the position representation and the second
the partitioned-position decomposition. The third line gives
the SSD, revealing that a zero-momentum eigenstate encodes
a logical |+〉L state and another zero-momentum state in the
gauge mode. Zero-momentum eigenstates are the building
blocks for ideal continuous-variable cluster states and the
essential ancillae for ideal CV teleportation.

Another important class of states with tensor-product SSDs
are GKP states, introduced to encode a qubit into a harmonic
oscillator [17]. GKP encodings have a number of features
that make them appealing for quantum computation including
Gaussian Clifford operations, Gaussian magic-state prepara-
tion [41,42], resistance to loss [20], and fault tolerance when
used in tandem with canonical CV cluster states [15]. Here,
we focus on the structure of GKP states; more detail about
GKP codes and their use for quantum computing can be
found, e.g., in Refs. [17,20,43].

GKP codes use periodic wave functions to define a two-
dimensional subspace into which a qubit is encoded. For a
GKP code with position-wave-function periodicity 2α, the
orthogonal computational-basis codewords are

| jGKP〉 =
∑
m∈Z

|α(2m + j)〉q , (3.3)

which are used in superposition for an arbitrary GKP state

|ψGKP〉 = c0 |0GKP〉 + c1 |1GKP〉 , (3.4)

with complex amplitudes c0 and c1 that specify a qubit state
and satisfy |c0|2 + |c1|2 = 1. The position wave functions for
the computational basis states are

ψGKP, j (x) =
∑
m∈Z

δ[x − α(2m + j)] (3.5)

= X2α (x − α j), (3.6)

where the XT function (pronounced “sha”) is a sum of δ

functions with period T ,

XT (x) :=
∑
n∈Z

δ(x − nT ), (3.7)
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also known as a Dirac comb.3

It is the periodicity of GKP states that makes their SSD
simple. This is no coincidence, as modular bosonic subsystem
codes [26] were designed as a generalization of GKP codes.4

The subsystem decomposition proceeds as follows. Each term
in the sum in Eq. (3.3) arises from a periodically placed
position eigenstate, which is decomposed using Eqs. (2.26)–
(2.29), into |2m + �, 0〉 = |�〉L ⊗ |m, 0〉G. This gives

| jGKP〉 =
∑
m∈Z

|2m + j, 0〉 (3.8)

= | j〉L ⊗ |+GKP〉G . (3.9)

From the partitioned-position decomposition in the first line to
the SSD in the second, we performed the sum over m to find
a |+GKP〉 in the gauge mode (whose position wave function is
a Dirac comb spaced by α). Using the SSD of | jGKP〉, we find
that arbitrary GKP states (3.4) decompose as

|ψGKP〉 = |ψ〉L ⊗ |+GKP〉G , (3.10)

where the encoded logical state |ψ〉L = c0 |0〉L + c1 |1〉L is the
same as the intended qubit state specified at the CV level
(given by c0 and c1).

Interestingly, a zero-momentum state and a |+GKP〉 state
contain the same logical-subsystem state |+〉L, and differ only
in their gauge-mode state. However, neither zero-momentum
states nor ideal GKP states are physical: they both have
infinite energy and cannot be normalized. Physical approx-
imations to these states contain some amount of embedded
error [17], also called finite-squeezing noise [15], that limits
their energy. A consequence is that approximate states are no
longer product states in the SSD: their position wave functions
are not entirely localized to within the m-parity-labeled bins
that define the logical subsystem. Below, we consider the SSD
and reduced logical state for momentum-squeezed vacuum,
which approximate zero-momentum eigenstates, and for one
particular approximation to GKP states.

A. Squeezed-vacuum states

A normalized squeezed-vacuum state

|0, ζ 〉p :=
(

ζ 2

π

)1/4 ∫
dx e− ζ2

2 x2 |x〉q (3.11a)

=
√

2π

(
ζ 2

π

)1/4

e− ζ2

2 q̂2 |0〉p (3.11b)

has measured variance 〈q̂2〉 = 1
2ζ 2 in the position quadrature

and 〈p̂2〉 = ζ 2

2 in the momentum quadrature. For values of
ζ < 1, the state is squeezed in momentum, which is the pa-

3Note that in other sources, X functions are defined with scaling
factors. For example, Ref. [43], which includes two of the current
paper’s authors, scales by the period

√
T .

4A related decomposition based on a continuous set of GKP sub-
spaces was given by Ketterer et al. [44]. See also Ref. [45] for a
phase-space extension.

rameter regime we are interested in.5 Occasionally (especially
in figures), we will express ζ in decibels:

ζ (dB) = −10 log10 ζ 2. (3.12)

The reported value is known as the squeezing (reported in
decibels), while ζ itself is called a squeezing factor [47]. This
expression reports the measured quantum noise (variance) of
a quadrature in decibels, with the reference value being the
vacuum-noise variance of 1

2 . Equation (3.12) holds for any
quantity playing the role of a squeezing factor, including, e.g.,
� or κ from the original definition of an approximate GKP
state [17].

In Eq. (3.11b), we use Eq. (3.2a) to represent the state as an
envelope operator exp(− 1

2ζ 2q̂2) acting on a zero-momentum
eigenstate. Since the envelope operator is diagonal in q̂, it
decomposes straightforwardly in the SSD:

exp
(− 1

2ζ 2q̂2
) = ε̂L ε̂Gε̂int, (3.13)

where we define mutually commuting logical, gauge, and
interaction envelope operators:

ε̂L := exp

(
−1

2
ζ 2α2�̂2

)
, (3.14a)

ε̂G := exp

[
−1

2
ζ 2(2αm̂G + ûG)2

]
, (3.14b)

ε̂int := exp[−ζ 2α�̂ ⊗ (2αm̂G + ûG)]. (3.14c)

The logical envelope operator ε̂L, written alternatively as

ε̂L = |0L〉〈0L| + η|1L〉〈1L| (3.15a)

= 1

2
(1 + η)ÎL + 1

2
(1 − η)ẐL, (3.15b)

serves to decrease the relative amplitude of |1L〉 of a logical-
subsystem state with weight

η := exp
(− 1

2ζ 2α2
)

(3.16)

that depends on the squeezing factor ζ . The interaction
envelope operator ε̂int generates entanglement between the
subsystems and can be written similarly to Eq. (3.15b),

ε̂int = 1
2 ÎL ⊗ (ÎG + η̂G) + 1

2 ẐL ⊗ (ÎG − η̂G), (3.17)

with the η factor replaced by a gauge-mode operator

η̂G := exp[−ζ 2α(2αm̂G + ûG)]. (3.18)

Thus, the interaction envelope operator acts similarly to ε̂L,
except that the applied logical envelope is conditional on the
state of the gauge mode. Finally, the gauge-mode envelope
operator ε̂G acts only on the gauge-mode subsystem.

In order to find the subsystem decomposition of a
squeezed-vacuum state, we use the decomposed envelope
operator [Eq. (3.13)] in Eq. (3.11b). With the SSD of a zero-
momentum eigenstate |0〉p = |+〉L ⊗ |0〉p,G [Eq. (3.13)], we
can then apply each piece of the envelope operator to the
appropriate subsystem(s). Using Eq. (3.2b), we recognize that

5Connections between various representations of squeezed-vacuum
states and their parametrizations can be found in Ref. [46].
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the zero-momentum eigenstate in the gauge mode satisfies an
important relation:

|0〉p,G = 1√
2π

∑
m∈Z

∫ +α/2

−α/2
du |m, u〉G , (3.19)

which allows us to directly apply any operators that act only
on the gauge mode, namely, ε̂G |m, u〉G = εG(m, u) |m, u〉G
and η̂G |m, u〉G = ηG(m, u) |m, u〉G, where

εG(m, u) := exp

[
−1

2
ζ 2(2αm + u)2

]
, (3.20a)

ηG(m, u) := exp[−ζ 2α(2αm + u)]. (3.20b)

With these tools, we obtain the decomposition of a
squeezed state from Eq. (3.13):

|0, ζ 〉p =
(
ζ 2

π

)1/4

ε̂L ε̂Gε̂int |+〉L

∑
m

∫ +α/2

−α/2
du |m, u〉G (3.21a)

=|0〉L ⊗ | ψ̄0〉G + |1〉L ⊗ | ψ̄1〉G, (3.21b)

where |ψ̄0〉G and |ψ̄1〉G are states of the gauge mode [see
Eq. (3.1)]. The subsystem wave functions for squeezed vac-
uum, Eq. (2.35),

ψζ (�, m, u) := (L〈�| ⊗ G〈m, u|)|0, ζ 〉p (3.22)

= (ζ 2π−1)1/4[η ηG(m, u)]�εG(m, u), (3.23)

describe the two pieces of the state above according to the
logical label �. Notice that these subsystem wave functions

are not proportional,

ψζ (1, m, u) = η ηG(m, u)ψζ (0, m, u), (3.24)

since ηG is not a constant function. This is equivalent to the
relation |ψ̄0〉G �∝ |ψ̄1〉G, meaning that Eq. (3.21b) is not a
tensor-product state between logical and gauge subsystems
and therefore does not faithfully encode |+〉. However, this
faithful encoding is achieved in the limit of high squeezing
ζ → 0, where η, ηG → 1 giving |ψ̄0〉G = |ψ̄1〉G.

The reduced logical state is found by tracing over the gauge
mode [Eq. (2.39)]

ρ̂L = TrG[|0, ζ 〉p p〈0, ζ |] (3.25)

=
∑

m

∫ +α/2

−α/2
du
∑
�,�′

ψζ (�, m, u)ψ∗
ζ (�′, m, u)|�〉L L〈�′|.

(3.26)

The sum over m in the subsystem wave functions, Eq. (3.22),
can be rewritten in terms of Jacobi theta functions of the third
kind [48]

ϑ (z, τ ) :=
∑
m∈Z

exp(π im2τ + 2π imz), (3.27)

where z is a complex variable, and τ is a complex number with
positive imaginary part. After performing the sum over m in
Eq. (3.26), we obtain the reduced logical density matrix in the
computational basis,

ρ̂L = 1

2α

∫ +α/2

−α/2
du

(
ϑ
(

u
2α

,
τ
ζ−1

2

)
e

−α2ζ2

4 ϑ
(

u
2α

+ 1
4 ,

τ
ζ−1

2

)
e

−α2ζ2

4 ϑ
(

u
2α

+ 1
4 ,

τ
ζ−1

2

)
ϑ
(

u
2α

+ 1
2 ,

τ
ζ−1

2

)
)

, (3.28)

with τζ−1 = 2π i/(2αζ )2, using the general definition for τσ

given below in Eq. (3.32).
In Fig. 2(a), we show the logical Bloch vectors correspond-

ing to ρ̂L for squeezed-vacuum states over a large range of
squeezing in both position and momentum. In Fig. 2(b), we
plot the logical fidelity of these states with qubit states |+〉
and |0〉. A momentum-squeezed state approximately encodes
a |+〉, while a position-squeezed states approximately encodes
a |0〉: the figure quantifies the degree of faithfulness to the
logical states with respect to squeezing. The vacuum state
(zero squeezing) encodes a mixed logical state in the xz plane,
whose Bloch vector depends on the bin size α. For large
enough α, the vacuum position wave function fits almost
entirely into the partitioned-position m = 0 bin, thus encoding
a high quality |0〉. For α = √

π , shown in Fig. 2, the vacuum
wave function has significant overlap in the neighboring bins
(m = ±1), and Fig. 2(b) reveals that the mixed logical state in
this case has slightly higher fidelity with |0〉 than with |+〉. In
summary, the CV states we have seen that encode pure logical
qubits are those whose position wave functions are periodic
with respect to 2α or only have support in a single partitioned-
position bin. For α = √

π , the variance of the vacuum wave
function is too large for it to be (even approximately) either
one of these.

B. Approximate GKP states

There are a number of ways to approximate GKP states;
important examples and their relations are analyzed in
Matsuura et al. [49]. We construct approximate GKP code-
words by first convolving the position wave function of ideal
codewords [Eq. (3.3)], with a normalized Gaussian of stan-
dard deviation �,

G�(x) := 1√
2π�2

e− x2

2�2 , (3.29)

which turns each δ function into a Gaussian, giving each spike
a measured position variance of �2

2 . Then, applying an overall
Gaussian envelope with variance 1

κ2 damps the spikes far from
the origin in the position basis. With this parametrization,
each Gaussian spike has a measured momentum variance of
κ2

2 , which scales with κ in the same way that momentum
variance for squeezed vacuum in Eq. (3.11) scales with ζ . We
can write these approximate codewords in a compact way in
terms of Jacobi theta functions of the third kind ϑ (x, τ ) from
Eq. (3.27), using the fact that a pulse train of Gaussians with
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FIG. 2. Reduced logical state associated with squeezed-vacuum
states [Eq. (3.11)] and approximate GKP states [Eq. (3.33)] for
α = √

π . (a) Logical Bloch vectors in the xz plane for squeezed
states [Eq. (3.25)], with squeezing ζ (dB) [Eq. (3.12)] between
−18 dB (highly squeezed in position) and 18 dB (respectively, in
momentum). Circles are shown at increments of 2 dB, and 0 dB is the
vacuum state. Near the end points, some circles are hidden beneath
others. (b) Logical fidelity FL [Eq. (2.41)] with the qubit states |+〉
(solid) and |0〉 (dashed). The logical state approaches |+〉 for high
momentum squeezing (ζ → 0) and |0〉 for high position squeezing
(ζ → ∞), which is equivalent to high momentum antisqueezing.
(c) Logical Bloch vectors [Eq. (3.38)] for approximate GKP states
with symmetric embedded error in position and momentum (κ = �).
Shown are |+GKP〉 (c0 = c1 = 1√

2
) and |0GKP〉 (c0 = 1, c1 = 0) states

for κ in the range 2–18 dB, with circles shown at increments of 2 dB.
(d) Logical fidelity with intended qubit states |+〉 (solid) and |0〉
(dashed). Each logical state approaches its intended qubit state |+〉
for large κ .

period T is [26]

∑
n∈Z

Gσ (x − nT ) = 1

T
ϑ

(
x

T
,

2π iσ 2

T 2

)
. (3.30)

The (unnormalized) position wave functions for approximate
computational-basis codewords, including the broad Gaussian

envelope, are [49]

ψ̄GKP, j (x) = Gκ−1 (x)ϑ
( x

2α
− j

2
, τ�

)
, (3.31)

where we used the GKP periodicity T = 2α, j ∈ {0, 1} labels
the state just as in the ideal case [Eq. (3.3)], and

τσ := 2π i
( σ

2α

)2
= iπσ 2

2α2
(3.32)

for a given standard deviation σ in the Gaussian pulse train
[Eq. (3.30)]. The bar over the wave function in Eq. (3.31)
indicates that it is not normalized. Since approximate GKP
wave functions are not orthogonal, superpositions need to be
normalized case by case; see below. This behavior is also
present in even and odd coherent-state superpositions, which
are the foundation for bosonic cat codes [50,51]. It is indeed
this nonorthogonality that can cause the encoded logical-qubit
state to differ from the intended qubit state [26,37].

An arbitrary GKP state |ψGKP〉 is encoded with coefficients
c0 and c1 weighting the approximate codewords, just as in the
ideal case in Eq. (3.4), which gives the position wave function
[17,49]

ψGKP(x) = 1√
N
∑

j

c jψ̄GKP, j (x), (3.33)

with normalization

N =
∫

dx |ψ̄GKP(x)|2 (3.34)

=
∑
j, j′

c∗
j c j′

∫
dx [ψ̄GKP, j (x)]∗ψ̄GKP, j′ (x). (3.35)

The SSD of approximate GKP states is found by evaluating
the wave function at x = u + 2αm + α�:

ψGKP(�, m, u)

= 1√
N

Gκ−1 (u + 2αm + α�)
∑

j

c jϑ

(
u

2α
− � + j

2
, τ�

)
,

(3.36)

where we used the periodicity of the ϑ function,
ϑ (z + 1, τ ) = ϑ (z, τ ), to simplify the expression.

We extract the reduced logical state

ρ̂L =
∑
�,�′

ρ��′
L |�〉L L〈�′| (3.37)

using the gauge trace (2.39) to find the logical-subsystem
matrix element

ρ��′
L = 1

N e− κ2α2

4 (�−�′ )2
∑
j, j′

c∗
j c j′

∫ +α/2

−α/2
du ϑ

(
u

2α
+ � + �′

4
,
τκ−1

2

)
ϑ

(
u

2α
+ � − j

2
, τ�

)
ϑ

(
u

2α
+ �′ − j′

2
, τ�

)
. (3.38)

The matrix elements are a sum of four integrals, each of which
quantifies the overlap between three Jacobi theta functions,
evaluated at different points. These points are determined by
the summation indices j, j′ and the logical indices �, �′. When

the approximate GKP states are high quality, �, κ � 1, one
can verify that, in the integration domain, the three Jacobi
theta functions only result in a large overlap when evaluated
at the same point. In all other cases, the contribution to the
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FIG. 3. Logical fidelity between approximate GKP states [Eq. (3.33)] and their intended logical qubit state, with symmetric embedded
error in position and momentum (κ = �). The approximate GKP states and the intended qubit states are specified by polar and azimuthal
angles (θ, φ) on the Bloch sphere: c0 = cos(θ/2) and c1 = sin(θ/2)eiφ . Each contour plot shows the full set of logical fidelities for a given κ

(in dB) that sets the quality of the GKP state; see Eq. (3.31). For high-quality GKP states (8–12 dB), the logical fidelities are approximately
independent of the azimuthal Bloch-sphere angle φ.

sum is small and can be neglected. Finally, note that when the
GKP states are ideal (κ = � = 0), the exponential damping
term simplifies to 1, and each integral (after normalization)
in the sum gives δ j,�δ j′,�′ . In this case, ρ��′

L = c∗
�c�′ , indicating

that the logical state |ψ〉L = c0 |0〉L + c1 |1〉L is pure and is
identical to the intended qubit state. Note that, contrary to
Ref. [26], no approximations were made here in the derivation
of the logical state, Eq. (3.38).

We analyze the qubit quality for approximate GKP states
[Eq. (3.31)] with parameters κ = � by comparing the logical
qubit state to the intended qubit state, itself specified by the
coefficients in the superposition {c0, c1}. In Figs. 2(c) and
2(d), we show logical Bloch vectors and logical fidelities for
approximate GKP states of quality κ intended to encode either
a |+〉 or a |0〉.

More generally, we would like to know to what degree
an approximate GKP state faithfully encodes an arbitrary
intended qubit state. In Fig. 3, we show the logical fidelity
between approximate GKP states [Eq. (3.33)] with c0 and c1

given in polar form and their intended qubit state specified
by the same coefficients. For low-quality GKP states (large
κ), the logical fidelities vary significantly depending on the
intended qubit state, whereas for high-quality GKP states
(small κ) the fidelity is nearly independent of azimuthal angle
φ. In the high-quality regime, the lower bound on the logical
fidelity occurs at or near states on the equator of the Bloch
sphere (θ ≈ π

2 ), i.e., states of the form 1√
2
(|0〉 + eiφ |1〉). On

the other hand, the highest logical fidelities occur near the
poles, which correspond to computational-basis codewords.

The asymmetry in the fidelities of different codewords (most
apparent for lower-quality GKP states) is due to the fact that
the SSD here is based on the modular decomposition of the
position operator. Performing this decomposition on the mo-
mentum operator instead reverses the roles of these low- and
high-fidelity states.

IV. TELEPORTATION OF GKP-ENCODED
QUANTUM INFORMATION

CV cluster states are resources for universal, measurement-
based quantum computing [6]. In cluster-state protocols,
desired unitary gates are applied to an input state by sequen-
tially measuring nodes and performing necessary corrections
depending on the measurement outcomes. Each measured
node teleports the state at that node to the adjacent one
with a gate applied that depends on the measurement
type. A common and important type of measurement per-
formed for CVCS quantum computing is homodyne detection,
an easy-to-perform Gaussian measurement, which imple-
ments arbitrary multimode Gaussian unitaries on the input
state [6].

When the input state is a GKP-encoded state, Gaussian
operations suffice for fault-tolerant universal quantum compu-
tation [15]. Furthermore, when parts or all of the cluster state
are composed of |+GKP〉 states— i.e., hybrid or GKP cluster
states—logical GKP Clifford unitaries are still implemented
via homodyne detection. In addition, the GKP nodes perform
automatic syndrome extraction for GKP error correction [46].

012430-11



PANTALEONI, BARAGIOLA, AND MENICUCCI PHYSICAL REVIEW A 104, 012430 (2021)

Error correction is critical for fault tolerance because the phys-
ical states that comprise a cluster state, momentum-squeezed
states [Eq. (3.11b)] and approximate GKP states [Eq. (3.31)],
contain embedded noise depending on their quality. Even in
the absence of external noise processes, this embedded noise
is transferred to the input state during computation and will
accumulate to catastrophic levels if not mitigated.

We focus here on the teleportation gadget [6,52] that forms
the foundation of CV cluster-state quantum computing. This
is the measurement-based computation that implements the
identity gate (modulo a double Fourier transform) on an arbi-
trary input state |ψ〉 after teleporting it through two nodes of
a CV cluster state.

Canonical CV cluster states are built from zero-momentum
eigenstates coupled together by two-mode controlled-Z gates
[6,53]

ĈZ [g] := eigq̂1⊗q̂2 , (4.1)

for weight g = 1. The ideal teleportation gadget is prepared
by attaching an arbitrary input state |ψ〉 to one mode of a two-
mode CV cluster state. The circuit for this teleportation gadget
(which proceeds right to left) is

• p〈s| • |ψ 〉

• p〈t| • X(–s) • |0〉p

(out) X(–t) • |0〉p ,

(4.2)

where the entangling gates are CV controlled-Z gates
[Eq. (4.1)] with weight g = 1, and the input mode and the first
ancilla mode are measured via homodyne detection of the p
quadrature with respective outcomes s and t . Measurements
are represented in the circuit by bras p〈·|, and each outcome is
used to perform a position-shift correction X̂ (·) [Eq. (2.43a)].
This feed-forward procedure is indicated by the double lines
(classical lines) connecting measurements and gates. The ul-
timate action of the the circuit is to perfectly teleport the
input state to the final (unmeasured) mode with two Fourier
transforms, one arising from each wire:

|ψ tel〉 = T̂ideal(s, t ) |ψ〉 = F̂ 2 |ψ〉 . (4.3)

One way to understand the origin of the Fourier transforms is
to recognize that a canonical CV cluster state is the Choi state
for F̂ [46], so ordinary one-mode teleportation using this state
[6,53] applies the corresponding gate. Doing so twice (with
corrections), as in Eq. (4.2), applies F̂ 2.

Note that the action of the ideal teleportation circuit is
independent of the measurement outcomes because the active
position-shift corrections fully undo any conditional effects.
This is a feature of teleportation using ideal zero-momentum
states as ancillae; it does not hold true in the following
section, wherein squeezed-momentum states replace the zero-
momentum eigenstates.

A. Noisy CV cluster-state teleportation

In physical settings, the cluster state is produced from
finite-energy momentum-squeezed states [Eq. (3.11)] with
ζ < 1 rather than ideal zero-momentum eigenstates. In this

case, the teleportation is no longer perfect [6], with the input
state acquiring noise that originates in the finite squeezing.
The teleportation circuit for this setting (which proceeds right
to left) is

• p〈s| • |ψ 〉

• p〈t| • X(–s) • |0, ζ 〉p

(out) X(–t) • |0, ζ 〉p ,

(4.4)

whose ultimate action is to teleport the input state |ψ〉 to the
final mode with an additional operation T̂ζ (s, t ),

|ψ̄ tel(s, t )〉 := T̂ζ (s, t ) |ψ〉 (4.5)

= Gζ−1 (q̂ + t )Gζ−1 ( p̂ + s)F̂ 2 |ψ〉 , (4.6)

with a normalized Gaussian function given in Eq. (3.29). The
noisy teleportation operator T̂ζ (s, t ) is a nonunitary Kraus
operator that produces output states conditional on the out-
comes s, t . This is because, in contrast to ideal teleportation
in Eq. (4.3), the corrective shifts here do not fully restore
the state after teleportation; instead, noisy teleportation gives
Gaussian envelopes, in different quadratures, whose centers
depend on the measurement outcomes. Finally, since the en-
velope operators are not unitary, the output state in Eq. (4.5) is
not normalized. This is indicated by the overbar ψ̄ . The joint
probability of obtaining the outcomes s and t

Pr(s, t ) = 〈ψ̄ tel(s, t )|ψ̄ tel(s, t )〉 (4.7)

can be used to renormalize the state |ψ tel(s, t )〉 =
1√

Pr(s,t )
|ψ̄ tel(s, t )〉.

We examine the effects of the finite-squeezing envelope
operators in Eq. (4.5) using the position representation of the
teleported state

ψ̄ tel(x; s, t ) = q〈x|ψ̄ tel(s, t )〉 = q〈x| T̂ζ (s, t ) |ψ〉 . (4.8)

To evaluate this expression, we use the fact that the Fourier
operator F̂ acts on basis states as F̂ |x〉q = |x〉p and F̂ † |x〉q =
|−x〉p, which transforms between position and momentum
wave functions. For a state |ψ〉 with position wave function
ψ (x) [Eq. (2.5)], the momentum wave function is

ψ̃ (x) := p〈x|ψ〉 = q〈x|F̂ † |ψ〉 = F[ψ](x), (4.9)

where the Fourier transform of a function f is

F[ f ](x) := 1√
2π

∫
dy e−ixy f (y). (4.10)

Inserting a complete set of momentum eigenstates between
the Gaussian envelope operators, we find the position wave
function of the teleported state (4.8),

ψ̄ tel(x; s, t ) = Gζ−1 (x + t )√
2π

∫
dy e−ixyGζ−1 (s − y)ψ̃ (y)

(4.11)

= Gζ−1 (x + t )F[h · ψ̃](x), (4.12)

where h(y) := Gζ−1 (s − y), we used p〈y|F̂ 2 |ψ〉 = ψ̃ (−y),
and we made the change of variables y → −y going from
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the first line to the second. We rewrite Eq. (4.11) in a more
convenient form using the convolution theorem F[ f · g] =
F[ f ] ∗ F[g], where the convolution of two functions f and
g is [ f ∗ g](x) := ∫ dy f (y)g(x − y). The Fourier transforms
we need are F[h](x) = e−isxGζ (x) and F[ψ̃](x) = ψ (−x), so
that the position wave function of the teleported state is

ψ̄ tel(x; s, t ) = Gζ−1 (x + t )
∫

dy e−isyGζ (y)ψ (y − x). (4.13)

This expression is useful in the next section, where we obtain
the SSD of the teleported state for different input states.

B. Noisy teleportation of ideal GKP states

Intuitively, it is clear from the noisy teleportation map in
Eq. (4.5) that some information in the input state is lost due
to the envelope operators. We quantify this statement for qubit
information encoded using the GKP encoding. The subsystem
decomposition is a useful tool for this analysis since with it a
logical-subsystem qubit can be associated with any CV state.
This logical qubit can then be compared to the intended qubit
state using the logical fidelity in Eq. (2.41).

We consider an ideal GKP state |ψGKP〉 [Eq. (3.33)] sent
through the noisy teleportation circuit in Eq. (4.4). Because
ideal GKP states are not normalizable, we ignore normaliza-
tion in the following derivation.6 First, note that the double
Fourier transform present in both ideal and noisy teleportation
leaves the state invariant, F̂ 2 |ψGKP〉 = |ψGKP〉, due to the
parity symmetry of all GKP codes [54].7 For each compu-
tational basis state | jGKP〉 with wave function X2α (x − α j)
[Eq. (3.6)], we obtain the teleported position wave function
from Eq. (4.13):

ψ̄ tel
GKP, j (x; s, t )

= Gζ−1 (x + t )
∑
m∈Z

e−is(x−2αm−α j )Gζ (x − 2αm − α j)

(4.14)

= e− s2ζ2

2 Gζ−1 (x + t )ϑ

(
x + isζ 2

2α
− j

2
, τζ

)
, (4.15)

where τσ is defined in Eq. (3.32).
The noisy teleported wave function resembles that for an

approximate GKP state with � = κ [Eq. (3.31)], with two
notable differences that depend on the measurement outcomes
s and t . First, the Gaussian envelope in Eq. (4.15) is centered
at t . Second, the position of the peaks of the theta function is
disturbed by isζ 2 in a nontrivial way: imaginary shifts affect
the periodicity of theta functions by introducing a secondary
period that depends on the imaginary part of the translation
(see Ref. [48] for an in-depth analysis of theta functions).
Note that when using the momentum wave function of the
state instead, the outcome-dependent distortion effects swap
their roles. Namely, s is associated with a translated Gaussian

6Alternatively, one can consider ideal GKP states as the limit of
finite-energy states [43].

7Square-lattice GKP codes (α = √
π) have the additional property

that F̂ acts as a logical Hadamard gate.

envelope and t with an imaginary translation of the theta
function.

Interestingly, for the outcomes s = t = 0, these teleported
states are identical to the approximate GKP codewords
defined in Eq. (3.31) (with symmetric noise � = κ = ζ in-
herited from the ancillae). Other outcomes shift the envelopes
and change the logical state, which we investigate below.

For an arbitrary, ideal GKP state |ψGKP〉, the position wave
function for the (unnormalized) teleported state is given by
superpositions of Eq. (4.15):

ψ̄ tel
GKP(x; s, t )

= Gζ−1 (x + t )
∑

j∈{0,1}
c jϑ

(
x + isζ 2

2α
− j

2
, τζ−1

)
. (4.16)

The amplitudes c0 and c1 parametrize the intended qubit state
encoded into the ideal GKP code. The teleported state

ˆ̄ρ tel
GKP(s, t ) := ∣∣ ψ̄ tel

GKP(s, t )
〉 〈

ψ̄ tel
GKP(s, t )

∣∣ (4.17)

can be written in the position basis, Eq. (2.36), with matrix
elements

ρ̄ tel
GKP(x, x′; s, t ) = ψ̄ tel

GKP(x; s, t )
[
ψ̄ tel

GKP(x′; s, t )
]∗

. (4.18)

Teleportation introduces noise that corrupts the encoded qubit
information, which we quantify below.

1. Subsystem decomposition and logical state

Performing an SSD of the teleported GKP wave function
[Eq. (4.16)] gives

ψ̄ tel
GKP(�, m, u; s, t ) = Gζ−1 (2αm + u + α� + t )

×
∑

j∈{0,1}
c jϑ

(
u + isζ 2

2α
+ � − j

2
, τζ

)
,

(4.19)

where the periodicity ϑ (z + m, τ ) = ϑ (z, τ ) was used to re-
move the gauge bin number m inside the theta function. The
density matrix associated with this state, Eq. (4.17), can be
represented in the subsystem basis, Eq. (2.37), with matrix
elements

ρ̄ tel
GKP(�, �′, m, m′, u, u′; s, t )

= ψ̄ tel
GKP(�, m, u; s, t )

[
ψ̄ tel

GKP(�′, m′, u′; s, t )
]∗

. (4.20)

Performing a gauge trace extracts the logical qubit asso-
ciated with a noisy-teleported GKP state. The gauge trace is
executed by setting m = m′ and u = u′ in the subsystem-basis
matrix elements, Eq. (4.20), and then summing or integrating
over these variables, as appropriate. This procedure gives the
unnormalized matrix elements for the reduced logical state
[see Eq. (3.37)]:

ρ̄��′
L =

∑
m∈Z

∫ +α/2

−α/2
du ρ̄ tel

GKP(�, �′, m, m, u, u; s, t ). (4.21)

Also, note that we do not include teleportation-outcome la-
bels (s, t ) on reduced logical states. We now insert the wave
function for the teleported GKP state, Eq. (4.19), into the ex-
pression. Only the Gaussian factor of ψ̄ tel

GKP(�, m, u) depends
on gauge bin number m, so we perform the sum over m in the
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gauge-trace expression, giving the factor∑
m∈Z

Gζ−1 (2αm + u + α� + t )Gζ−1 (2αm + u + α�′ + t )

=
√

π

4α2ζ 2
e− α2ζ2

4 (�−�′ )2
ϑ

(
u + t

2α
− � + �′

4
,
τζ−1

2

)
.

(4.22)

The exponential term degrades logical states by damping non-
diagonal terms (� �= �′) of the reduced logical matrix. The
strength of the damping depends on the amount of squeezing
in the cluster state ζ . Inserting this factor into the gauge-
trace expression, Eq. (4.21), we find the reduced logical state
representing the logical information carried by an ideal GKP
codeword damaged by noisy teleportation:

ρ��′
L = 1

N e− α2ζ2

4 (�−�′ )2
∑
j, j′

c∗
j c j′

∫ +α/2

−α/2
du ϑ

(
u + t

2α
− � + �′

4
,
τζ−1

2

)
ϑ

(
u + isζ 2

2α
+ � − j

2
, τζ

)
ϑ

(
u + isζ 2

2α
+ �′ − j′

2
, τζ

)
,

(4.23)

where τσ is defined in Eq. (3.32), and we include the normalization N . For outcomes s = t = 0, this formula is identical to that
for an approximate GKP state with � = κ = ζ , Eq. (3.38). For all other outcomes, the logical state is distorted by the fact that
the envelope operators in Eq. (4.5) have shifted centers.

2. General form for GKP reduced logical states

We now introduce a compact form for a qubit density matrix that is useful for representing the reduced logical states for ideal
GKP, approximate GKP, and teleported GKP states.

First, a multivariate Siegel (or Riemann) theta function defined for z ∈ CN is

�(z, τ) :=
∑

m∈ZN

exp

[
2π i

(
1

2
mTτm + mTz

)]
, (4.24)

where m ∈ ZN and τ is a complex, symmetric matrix in the Siegel upper half-space [48]: τ ∈ CN×N with Im[τ] > 0, i.e., Im[τ]
is positive definite as a matrix. When τ is diagonal with diagonal elements τii, this expression is equivalent to a product of Jacobi
theta functions of the third kind, �(z, τ) =∏N

i=1 ϑ (zi, τii ), a form that we recognize in Eq. (4.23).
The reduced logical states considered in the present work can be described (up to normalization) by a 2 × 2 matrix

ρ̂K,τ (w) :=
∑
�,�′

ρ��′
K,τ (w) |�〉L L〈�′| (4.25)

with ��′th matrix elements

ρ��′
K,τ (w) := e− 1

4 K2α2(�−�′ )2
∫ +α/2

−α/2
du
∑
j, j′

c∗
j c j′�

⎡
⎣
⎛
⎝ u/(2α) + (� + �′)/4

u/(2α) + �/2 − j/2
u/(2α) + �′/2 − j′/2

⎞
⎠+ w

2α
, τ

⎤
⎦. (4.26)

This is a general form, with the parameters K , τ, and w
determined case by case. K � 0 is a positive real parameter,
and the matrix τ lies in the Siegel upper half-space (a fact
that is required for the theta sum to converge). Both K and
τ will reflect the width of the spikes in GKP states, while w
is a three-dimensional complex vector that will capture the
effects of the measurement outcomes from teleportation. The
physical meaning of complex displacements in arguments to
theta functions is discussed after Eq. (4.15).

First, we can write the reduced logical state for an approx-
imate GKP state with amplitudes c0 and c1 using Eqs. (4.25)
and (4.26). For |ψGKP〉 = c0 |0GKP〉 + c1 |1GKP〉, we have the
gauge trace of an approximate GKP state with position-spike
width � and position-envelope width κ−1 (see Sec. III B):

ρ̂L = 1

N TrG
[ ∣∣ψκ,�

GKP

〉 〈
ψκ,�

GKP

∣∣ ] = 1

N ρ̂κ,τ (0) (4.27)

with normalization N required to satisfy Tr[ρ̂L] = 1, and the
3 × 3 matrix

τ = diag
(

1
2τκ−1 , τ�, τ�

)
. (4.28)

To get the expression for ideal GKP states, it is
sufficient to take the limits of the above for zero-
width position spikes � → 0 and flat envelope κ →
0, so that TrG[|ψGKP〉 〈ψGKP|] = ρ̂0,τ0 (0), where τ0 =
diag(+i∞, i0+, i0+): the limits are taken so that the τ matrix
stays in the Siegel upper half-space. Regularizing the resulting
matrix yields a normalized logical state [43,49].

For noisy teleportation of ideal GKP codewords through
a cluster state composed of squeezed-momentum states
parametrized by ζ , the reduced logical state, whose matrix
elements are given in Eq. (4.23), can be written compactly
using Eq. (4.25) as

ρ̂L = 1

N TrG
[ ∣∣ψ tel

GKP

〉 〈
ψ tel

GKP

∣∣ ] = 1

N ρ̂κ,τ (w), (4.29)

where N is the normalization,

τ = diag
(

1
2τζ−1 , τζ , τζ

)
, (4.30)
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and the teleportation measurement outcomes s and t appear in
the vector

w = (t, isζ 2, isζ 2)T. (4.31)

Outcome-dependent translations, including complex ones, are
discussed above in the paragraph after Eq. (4.15).

In addition to the cases considered above, noisy telepor-
tation of approximate GKP states can also be described by
Eq. (4.25), as can the situation where the teleportation mea-
surement outcomes are averaged over. We consider these
cases in the following subsection.

C. Noisy teleportation of approximate GKP states

In a physical setting, the input GKP states to the teleporta-
tion circuit, Eq. (4.4), will themselves contain finite-squeezing
noise. We consider here approximate GKP states [Eq. (3.31)]
parametrized by small position-spike width � and broad
position-envelope width κ−1 teleported through a cluster
state comprised of momentum-squeezed vacuum with nar-
row momentum wave-function variance ζ 2 [Eq. (3.11a)]. The
derivation to obtain the logical density matrix proceeds, just as
for ideal GKP states, by applying the noisy teleportation oper-
ator [Eq. (4.5)] to an approximate GKP state as in Eq. (3.38)
and subsequently tracing over the gauge mode. A detailed
derivation can be found in Appendix B. The exact form of the
logical state is cumbersome, but it can be greatly simplified in
the limit of high-quality GKP and squeezed states. Ignoring
parameter dependence that is higher order than �2, κ2, and
ζ 2, which corresponds roughly to a squeezing of at least 8 dB,
the logical reduced state is approximately

ρ̂L = 1

N TrG
[
T̂ζ (s, t )

∣∣ψκ,�
GKP

〉 〈
ψκ,�

GKP

∣∣ T̂ †
ζ (s, t )

]
(4.32)

≈ 1

N ρ̂√
κ2+ζ 2,τ

(w), (4.33)

where N is the normalization,

τ = diag
(

1
2τ(κ2+ζ 2 )−1/2 , τ� + τζ , τ� + τζ

)
, (4.34)

and the teleportation measurement outcomes s and t appear in
the vector

w = [ζ 2(κ2 + ζ 2)−1t, isζ 2, isζ 2]T. (4.35)

Note that the logical state in Eq. (4.33) can also describe two
situations considered previously. First, it describes a perfectly
teleported approximate GKP state with ζ → 0 while keeping
� and κ finite. Second, it describes noisy teleportation of an
ideal GKP state (setting � = κ = 0 and keeping ζ finite).

The logical state above contains the information about
how an intended qubit state, parametrized by the probability
amplitudes c0 and c1, is damaged both by an encoding into
approximate GKP states (see Sec. III B) and further by noisy
teleportation over a finitely squeezed cluster state. (Recall that
for a faithful encoding, the normalized matrix elements satisfy
ρ��′

L = c∗
�c�′ , indicating that the logical state ρ̂L is identical to

the intended qubit state.) One can quantify the quality of the
encoding using the logical fidelity FL(ρ̂ tel

GKP, σ̂ ) [Eq. (2.41)],
where σ̂ is the intended qubit state, and ρ̂ tel

GKP has logical state
ρ̂L given by Eq. (4.33).

1. Averaging over teleportation outcomes

We conclude with the case where the teleported GKP state
is averaged over measurement outcomes. This models the sit-
uation where the measurement outcomes s and t are forgotten
after the teleportation protocol [53] and represents a type of
worst-case-scenario estimate: one in which we cannot use
the outcome dependence to our advantage. This situation is
described, mathematically, as follows.

A generic pure state |ψ〉 after noisy teleportation is
T̂ζ (s, t ) |ψ〉, where T̂ζ is the noisy teleportation operator in
Eq. (4.5). The density operator corresponding to this state is
then

ˆ̄ρ tel(s, t ) = T̂ζ (s, t )|ψ〉〈ψ |[T̂ζ (s, t )]†. (4.36)

Averaging this conditional state over all outcomes s and t
gives the average (unconditional) state

ρ̂ tel
avg :=

∫ ∫
ds dt ˆ̄ρ tel(s, t ) (4.37)

=
∫ ∫

dx dx′ ρ tel
avg(x, x′)|x〉q q〈x′|. (4.38)

There is no need to include the probability distribution for the
outcomes in Eq. (4.37) since each conditional state ˆ̄ρ tel(s, t ) is
the product of the probability distribution of the outcomes s, t
and the normalized state [55]. The average-state matrix ele-
ments ρ tel

avg(x, x′) are found by integrating the matrix elements
ρ̄ tel(x, x′; s, t ) = ψ̄ tel(x; s, t )[ψ̄ tel(x′; s, t )]∗, with ψ̄ tel(x; s, t )
being the position wave function after noisy teleportation
[Eq. (4.13)]. This gives

ρ tel
avg(x, x′) =

∫ ∫
ds dt ρ̄ tel(x, x′; s, t ) (4.39)

= G√
2ζ−1 (x′ − x)

∫
dy G ζ√

2
(y)

×ψ∗(y − x)ψ (y − x′), (4.40)

where ψ (x) is the position wave function of the input state.
We plug the wave function for an input approximate GKP

state (setting κ = � for simplicity) into Eq. (4.39) to find the
matrix elements for an averaged-over-outcomes, teleported,
approximate GKP state encoding an intended qubit given by
the amplitudes c0 and c1:

ρ tel
GKP,avg(x, x′) = G√

2ζ−1 (x − x′)G�−1 (x)G�−1 (x′)

×
∑
j, j′

c∗
j c j′�

([ x
2α

− j
2

x′
2α

− j′
2

]
, τ

)
. (4.41)

The two-dimensional Siegel theta function, Eq. (4.24), in-
volves the 2 × 2 matrix

τ =
(

τ� + 1
2τζ

1
2τζ

1
2τζ τ� + 1

2τζ

)
(4.42a)

= τ�

(
1 0
0 1

)
+ 1

2
τζ

(
1 1
1 1

)
. (4.42b)

In the sum form Eq. (4.42b), we recognize a contribution from
the input GKP state (that depends on �) and from the cluster
state (that depends on ζ ).
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FIG. 4. Average-state logical infidelity 1 − FL between the in-
tended qubit state and an approximate GKP state (with symmetric
noise κ = �) after noisy teleportation, averaged over outcomes.
Each curve describes the infidelity for an approximate GKP state
of quality � given momentum-squeezed vacuum of quality ζ in the
teleportation circuit. The blue lines (|+〉) represent the upper bound
to the infidelity one can achieve after teleportation, whereas the red
lines (|0〉) represent the lower bound (cf. Fig 3).

We now extract the logical state by performing a gauge
trace on ρ̂ tel

GKP,avg, whose matrix elements are given by
Eq. (4.41). Assuming high-quality input GKP state and
momentum-squeezed states, we keep terms up to ζ 2 and
�2. Then, the reduced logical state for an averaged-over-
outcomes, teleported, approximate GKP state is

ρ̂L = TrG
[
ρ̂ tel

GKP,avg

] = ρ̂√
ζ 2+�2,τ

(0), (4.43)

where the three-dimensional Siegel theta function has matrix

τ =

⎛
⎜⎝

1
2τ�−1 0 0

0 τ� + 1
2τζ

1
2τζ

0 1
2τζ τ� + 1

2τζ

⎞
⎟⎠. (4.44)

Note that, unlike for pure teleported GKP states previously
considered, τ is not diagonal.

Using this logical state, we find the average-state logi-
cal infidelity with various intended qubit states in Fig. 4.
Approximate |+GKP〉 states perform considerably worse than
approximate |0GKP〉 states, even at higher single-spike and
envelope quality. This is an artifact of having performed the
decomposition in q; see the end of Sec. III B.

V. CONCLUSION

In this work, we have presented a partitioning of the Hilbert
space of a bosonic mode into that of a discrete logical sub-
system and a gauge-mode subsystem. Such a decomposition
endows any state of the mode with logical information. Since
this subsystem decomposition (SSD) is based on a modular
decomposition of the position operator, Gottesman-Kitaev-
Preskill (GKP) codewords (themselves periodic in position)
are natural carriers of logical information.

The formalism is sufficiently flexible, however, that we
may also ask the following: What is the logical information
carried by states other than GKP states, regardless of whether
they were designed for use as a bosonic code state? An
interesting example of such a state is the zero-momentum
eigenstate |0〉p, encoding the very same logical information as
|+GKP〉 (i.e., a logical |+〉 state). Moreover, we use the SSD to

find the logical information in finite-energy approximations
to these states: approximate GKP states and momentum-
squeezed states. We find that these CV states do not perfectly
encode the intended qubit state due to logical-gauge entangle-
ment, although the faithfulness of the encoding (quantified by
the logical fidelity) increases with the quality of the CV state.

Our decomposition is, at heart, just a different basis for
the Hilbert space of a single mode, albeit one that changes its
tensor-product decomposition: HCV � Cd ⊗ H′

CV. As such,
operators can also be inspected in a decomposed fashion. This
work features several examples of operators in the subsystem
decomposition. We mention in passing that the Hilbert-space
relation can go in the other direction: two physical subsystems
can be compiled into a larger, virtual “supersystem.” Joint
properties of the subsystems can then be analyzed at the level
of the supersystem, which may be useful in future work.

In Sec. III A, we decompose the nonunitary “envelope
operator” used to generate momentum-squeezed states from
zero-momentum states and approximate GKP states from
ideal ones. The decomposition reveals a purely logical oper-
ation that damps towards a logical |0〉 and a more complex,
logical-gauge entangling operator that causes further decoher-
ence. Such decompositions show us how CV noise operators
affect encoded information.

As a second example, in Sec. II D, we decompose unitary
momentum- and position-shift operators, which have entirely
different behavior since the starting point of our SSD is the
position basis. We showed that momentum shifts do not en-
tangle the subsystems, acting instead as a local qubit rotation
and separate (but related) gauge-mode action. On the other
hand, position shifts typically do entangle them. An important
exception to this is a small position shift acting on a high-
quality GKP state, which acts trivially on the logical qubit. In
this case, the shift acts exclusively on the gauge mode. From
this perspective, it becomes clear why GKP error correction
for small position shifts can be recovered: They simply leave
the logical part of a well-encoded GKP state invariant. The
only point of doing the recovery, then, is to return the gauge
mode to the middle of its position bin so that it remains robust
against further shifts. For small momentum shifts, the story is
different since such shifts affect the gauge mode and rotate
the qubit by a related amount. In this case, the correction
(displacing the mode back) both restores the gauge mode to
where it should be and also rotates the qubit back to where it
belongs. This asymmetry in q and p explains the dominance
of ZL-axis dephasing noise in the SSD picture of high-quality
encoded states, a fact that shows up throughout the figures in
this work.

As a practical application, in Sec. IV B, we employ the
SSD to study the effects of teleportation through a finitely
squeezed CV cluster state on qubits encoded into approximate
GKP states. The reduced logical state and the logical fidelity
were found to be powerful tools for characterizing the degree
of success of noisy teleportation, as they allow us to track and
assess the teleported logical quantum information directly.
This study provides a framework for the analysis of CV noise
as logical channels on qubits encoded into modes.

In fact, numerous problems are ripe for analysis with
the SSD. For instance, it is straightforward to use what
we have learned here to study the logical properties of
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CV measurement-based quantum computing (beyond just
teleportation) [6], in particular, its fault-tolerant realization
using a GKP-doped CV cluster state [15,34]. Additional po-
tential applications include analyzing the logical properties
of other CV quantum computing schemes involving GKP
qubits [24,56,57], as well as concatenation of GKP code
with qubit codes [58–61] and the use of GKP states for
quantum communication [62,63]. We leave these to future
work.
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APPENDIX A: DECOMPOSITION OF POSITION SHIFTS

We decompose the position-shift operator X̂ (t ) in the subsystem basis, first reiterating the definitions from the main text for
convenience. A real parameter t is decomposed in terms of two integers and one real number, i.e.,

t = α(dn + k) + v, (A1a)

v = {t}α, (A1b)

n = Id (Iα (t )), (A1c)

k = {Iα (t )}d , (A1d)

using the notation and conventions of Sec. II B 2. The gauge displacement operator X̂G(t ) is defined through its action on the
gauge basis as

X̂G(t ) |m, u〉G :=
∣∣∣m +

⌊u + t

α

⌉
, {u + t}α

〉
G

(A2)

= |m + Iα (u + t ), {u + t}α〉G . (A3)

We first write the action of the translation with on a position eigenstate |x〉q = |α� + dαm + u〉q:

X̂ (t ) |x〉q = X̂ [α(dn + k) + v] |α� + dαm + u〉q (A4)

= |αd (n + m) + α(� + k) + u + v〉q (A5)

= |αd (n + m) + α(� + k) + αIα (u + v) + {u + v}α〉q . (A6)

Then, we write the state in the partitioned position basis |m, u〉:
X̂ (t ) |�〉L ⊗ |m, u〉G = |Iα[αd (n + m) + α(� + k) + αIα (u + v)], {u + v}α〉 (A7)

= |d (n + m) + � + k + Iα (u + v), {u + v}α〉 . (A8)

We can simplify the integer in the first entry of the state by writing it as the sum of its fractional part and closest integer with
respect to the spacing d ,

d (n + m) + � + k + Iα (u + v) = 	d (n + m) + � + k + Iα (u + v)
d + {d (n + m) + � + k + Iα (u + v)}d (A9)

= d (n + m) + 	� + k + Iα (u + v)
d + {� + k + Iα (u + v)}d (A10)

= d (n + m) + dId [� + k + Iα (u + v)] + {� + k + Iα (u + v)}d , (A11)

which makes the SSD simpler to perform. Namely, the state in Eq. (A8) becomes

|d (n + m) + � + k + Iα (u + v), {u + v}α〉 = |d (n + m) + dId [� + k + Iα (u + v)] + {� + k + Iα (u + v)}d , {u + v}α〉 (A12)

= |{� + k + Iα (u + v)}d〉L ⊗ |n + m + Id [� + k + Iα (u + v)], {u + v}α〉G . (A13)

The final line is the expression of the shifted state in the subsystem basis. Note that the expression Id [� + k + Iα (u + v)] is a
simple boundary-check function that takes values {0,±1}, depending on the magnitude of the shifts and the initial state.

While Eq. (A13) is enough to specify the SSD of the position-shift operator, one may wish to represent the action of this
operator as the product of a number of logical, gauge, and interaction terms acting on the basis state |�〉L ⊗ |m, u〉G. We report
the product form in the main text in Eq. (2.52).

APPENDIX B: NOISY TELEPORTATION OF APPROXIMATE GKP STATES

We present the derivation for an approximate GKP state undergoing noisy teleportation. We consider the general situation
with no approximations on the GKP and squeezed-state parameters �, κ , ζ . This is more general than the situation considered in
Sec. IV C since we cannot use simple integrals of Dirac combs, and we can no longer use the periodicity of the theta function to
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simplify the derivation (it will become clear why in a moment). Nevertheless, we will see that these complications are accounted
for by multivariate Siegel theta functions [48]. The derivation is conceptually identical to that for an ideal GKP state, where the
starting point is again the Kraus operator for noisy teleportation in Eq. (4.5). An approximate GKP state, parametrized by � and
κ in Eq. (3.31), is sent through noisy teleportation using squeezed states parametrized by ζ . Its output position wave function
ψ̄ tel

GKP(x) = q〈x|T̂ζ (s, t ) |ψGKP〉, obtained by integrating Eq. (4.13), is

ψ̄ tel
GKP(x) = Gζ−1 (x − t )GK2κ−1 (x − isζ 2)

∑
j

c jϑ

[
x − isζ 2

2αK2
2

− j

2
,

iπ

2α2K2
2

(
ζ 2 + �2K2

2

)]
, (B1)

where we defined the auxiliary parameter K2
2 := 1 + ζ 2κ2. The integral is obtained by writing the Jacobi theta functions in

their infinite-sum form, Eq. (3.30), performing the resulting Gaussian integrals, and resumming the result to obtain another
theta function. After teleportation, the periodicity of the wave function is no longer 2α, as one can verify by inspecting the first
argument of the theta function and eliminating integer numbers. Modified periodicity was studied in the context of approximate
GKP states in Ref. [49].

We now compute the gauge trace of the state in with the wave function in Eq. (B1). In doing so, we realize that the sum over the
gauge variable m can be written in terms of Siegel theta function [Eq. (4.24)]. For a GKP state |ψGKP〉 = c0 |0GKP〉 + c1 |1GKP〉,
after noisy teleportation, the ��′th element of the reduced density matrix is

ρ��′
L = 1

N e
−α2 κ2+ζ2K2

2
4K2

2
(�′−�)2+is ακ2ζ2

K2
2

(�′−�)∑
j, j′

c∗
j c j′

∫ +α/2

−α/2
du �

⎡
⎢⎢⎣
⎛
⎜⎜⎝

u
2α

+ (�′+�)
4 − t K2

2 ζ 2

2αK2
1

t ζ 2

2αK2
1

− is ζ 2

2αK2
2

+ �′−�

4K2
2

− j′
2

t ζ 2

2αK2
1

+ is ζ 2

2αK2
2

− �′−�

4K2
2

− j
2

⎞
⎟⎟⎠, τ

⎤
⎥⎥⎦, (B2)

where N is the normalization, we have defined K2
1 := ζ 2 + κ2 + ζ 4κ2, and the 3 × 3 matrix τ parametrizing the Siegel theta

function is

τ = iπ

4α2K2
1 K2

2

⎛
⎝ K4

2 −K2
2 −K2

2

−K2
2 1 + 2K2

1 (K2
2 �2 + ζ 2) 1

−K2
2 1 1 + 2K2

1 (K2
2 �2 + ζ 2)

⎞
⎠. (B3)

The matrix τ is complicated because it features terms that are high order in the quality parameters �, κ , and ζ (as opposed to
the high-squeezing limit below).

High-quality, high-squeezing limit

In the limit where the input approximate GKP state is high quality and the momentum-squeezed states are highly squeezed,
we ignore factors of order larger than ζ 2, �2, and κ2. In this limit, the auxiliary parameters simplify to K2

1 → ζ 2 + κ2, K2
2 → 1,

thus the teleported wave function in Eq. (B1) is

ψ̄ tel
GKP(x) ≈ Gζ−1 (x − t )Gκ−1 (x − isζ 2)

∑
j

c jϑ

[
x − isζ 2

2α
− j

2
, τζ + τ�

]
, (B4)

where we used the definition of τσ in Eq. (3.32). Note that the periodicity of the wave function is restored to 2α. The expression
for the logical matrix elements, Eq. (B2), simplifies considerably:

ρ��′
L ≈ 1

N e− α2 (κ2+ζ2 )
4 (�′−�)2

∑
j, j′

c∗
j c j′

∫ +α/2

−α/2
du �

⎡
⎢⎢⎣
⎛
⎜⎜⎝

u−t ζ2

ζ2+κ2

2α
+ �′+�

4
u−isζ 2

2α
+ �′− j′

2
u−isζ 2

2α
+ �− j

2

⎞
⎟⎟⎠,

⎛
⎝ 1

2τ(κ2+ζ 2 )−1/2 0 0
0 τ� + τζ 0
0 0 τ� + τζ

⎞
⎠
⎤
⎥⎥⎦. (B5)

Note that τ becomes diagonal in this limit, making it a product of three Jacobi theta functions. (We maintain the Siegel-theta form
for compactness.) In the limit of infinite squeezing in the CV cluster state (i.e., ζ → 0+), this expression reduces to Eq. (3.38).
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