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Quantum discord for multiqubit systems
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We evaluate analytically the quantum discord for a large family of multiqubit states. It is interesting to note
that the quantum discord of three qubits and five qubits is the same, as is the quantum discord of two qubits and
six qubits. We discover that the quantum discord of this family of states can be classified into three categories.
The level surfaces of the quantum discord in the three categories are shown through images. Furthermore, we
investigated the dynamic behavior of quantum discord under decoherence. For the odd partite systems, we prove
the frozen phenomenon of quantum discord does not exist under the phase flip channel, while it can be found in
the even partite systems.
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I. INTRODUCTION

Quantum correlations are essential features of quantum
mechanics which distinguish the quantum from the classical
world and play very important roles in quantum informa-
tion processing. The quantum correlated states are shown
to be more useful than the classically correlated ones in
performing communication and computation tasks. Under-
standing and quantifying various quantum correlations are the
primary goals in quantum information theory. The quantum
entanglement and nonlocal correlations can be considered the
most fundamental resources in quantum information process-
ing [1–11], which are tightly related to quantum coherence
[12–17].

Quantum discord is one of the most famous quantum cor-
relations proposed by Ollivier and Zurek [18] and Henderson
and Vedral [19], which quantifies the quantum correlations in
bipartite systems without quantum entanglement. It is defined
as the minimum difference between the quantum versions of
two classically equivalent expressions of mutual information
under projective measurements [20,21]. Due to the complex-
ity of the minimization process, the computation of quantum
discord is a hard task and analytic results are known only for
some restricted families of states [22–27]. For a bipartite state
ρ in systems A and B [18,19], the quantum discord DA;B(ρ)
is defined by DA;B(ρ) = min�A [SB|�A (ρ) − SB|A(ρ)], where
the conditional entropy SB|A(ρ) = S(ρ) − S(ρA) with S(X ) =
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−Tr X log2 X is the von Neumann entropy of a state X , and
ρA is the reduced state associated to the system A. SB|�A (ρ) =∑

j pA
j S(�A

j ρ�A
j /pA

j ), where �A
j is the von Neumann projec-

tion operator on subsystem A, and pA
j = Tr(�A

j ρ�A
j ) is the

probability with respect to the measurement outcome j.
Very recently, Radhakrishnan et al. [28] introduced a gen-

eralization of discord for tripartite and multipartite states.
One of the main features of this approach is the use of con-
ditional measurements, where each successive measurement
is conditionally related to the previous measurements. The
(N − 1)-partite measurement is written as

�
A1···AN−1
j1··· jN−1

= �
A1
j1

⊗ �
A2
j2| j1

· · · ⊗ �
AN−1
jN−1| j1··· jN−2

,

where �
A2
j1| j2

is a projector on subsystem A2 conditioned on
the measurement outcome of A1. Here, the measurements
take place in the order A1 → A2 → · · · AN−1. Such condi-
tioned measurements are essential to take into account all the
classical correlations that may exist among the subsystems.
Viewing the measurements as operations to break the quan-
tum correlations, the optimization over all such measurements
allows one to recover the pure quantum contributions. More-
over, there is an obvious asymmetry due to the fixed ordering
of the measurements. This asymmetry has similarities with
the quantum steering where one also considers measurements
on a part of a system, while the aims are somewhat different
in that for discord, one minimizes the disturbance due to
measurements rather than comparing it to a local hidden state
theory. Indeed, in some quantum information processing such
as one-way quantum computing, there is a definite ordering of
measurements, incompatible with the multipartite discord.

The quantum discord of an N-partite state ρ is defined by

DA1;A2;...;AN (ρ) = min
�A1 ···AN−1

[−SA2···AN |A1 (ρ)

+ SA2|�A1 (ρ) · · · + SAN |�A1 ···AN−1 (ρ)
]
, (1)
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for the measurement ordering A1 → A2 →
· · · AN−1. Here, we have defined SAk |�A1 ···Ak−1 (ρ) =∑

j1··· jk−1
p(k−1)

j SA1···Ak (�(k−1)
j ρ�

(k−1)
j /p(k−1)

j ) with �
(k)
j ≡

�
A1···Ak
j1··· jk

, p(k)
j = Tr(�(k)

j ρ�
(k)
j ).

In general, it is difficult to evaluate the quantum discord
(1) due to the complexity of the optimization. We analyze
and evaluate this quantum discord for a family of multiqubit
states, and graphically show the level surfaces of the quantum
discord of this family. Moreover, due to the interaction with
the environments, bipartite quantum discord may decrease
asymptomatically with time [29], and may be also frozen
[30–33] and decoherence free for a certain time. We also
study the dynamic behavior of quantum discord for a family
of three-qubit and four-qubit states under decoherence. We
discover that the multiqubit quantum discord of some states
cannot be destroyed by decoherence in finite time.

The rest of this article is organized as follows. In Sec. II,
we calculate analytically the multiqubit discord for a family
of quantum states. We shown that the quantum discord can be
classified into three categories. In Sec. III, we investigated the
dynamical behavior of the discord for a family of three-qubit
and four-qubit states. We discuss and summarize the results in
Sec. IV.

II. QUANTUM DISCORD FOR MULTIQUBIT SYSTEMS

Consider the following family of N-qubit states,

ρ = 1

2N

(
I +

3∑
j=1

c jσ j ⊗ · · · ⊗ σ j

)
, (2)

where σ j , j = 1, 2, 3, are the standard Pauli matrices, and I
stands for the corresponding identity operator. The motivation
to consider the states (2) is that, for N = 2, Eq. (2) reduces to
the well-known Bell diagonal states whose famous analytical
formulas of quantum discord have been provided by Luo
[25], which attracted much attention and resulted in further
vital results. For general N , these states are highly symmetric
and include some generalized Greenberger-Horne-Zeilinger
(GHZ) or W states as special ones.

We consider the family of a three-qubit state, associated
with systems A, B, and C,

ρ = 1

8

(
I +

3∑
j=1

c jσ j ⊗ σ j ⊗ σ j

)
. (3)

From (1) the quantum discord is given by

DA;B;C (ρ) = min
�AB

[−SBC|A(ρ) + SB|�A (ρ) + SC|�AB (ρ)]. (4)

Since ρA = TrBC (ρ) = I
2 , we have the entropy S(ρA) = 1. Set

ξ =
√

c2
1 + c2

2 + c2
3. One can verify that

S(ρ) = −4 × 1 + ξ

8
log2

1 + ξ

8
− 4 × 1 − ξ

8
log2

1 − ξ

8
.

Hence,

−SBC|A(ρ) = −[S(ρ) − S(ρA)]

= 1 + ξ

2
log2(1 + ξ ) + 1 − ξ

2
log2(1 − ξ ) − 2.

(5)

Denote {�k = |k〉〈k| : k = 0, 1}. The von Neumann mea-
surement on subsystem A is given by {Ak = VA�kV

†
A :

k = 0, 1}, where VA = tAI + i−→yA · −→σ is the unitary operator
with tA ∈ R, −→yA = (yA1, yA2, yA3) ∈ R3, and t2

A + y2
A1 + y2

A2 +
y2

A3 = 1. After the measurement Ak , the state ρ is going to be-
come the ensemble {ρk, pk} with ρk := 1

pk
(Ak ⊗ I )ρ(Ak ⊗ I )

and pk = Tr(Ak ⊗ I )ρ(Ak ⊗ I ). Then we obtain p0 = p1 = 1
2 ,

ρ0 = 1
4VA�0V

†
A ⊗ (I ⊗ I + c1z1σ1 ⊗ σ1 + c2z2σ2 ⊗ σ2

+ c3z3σ3 ⊗ σ3) (6)

and

ρ1 = 1
4VA�1V

†
A ⊗ (I ⊗ I − c1z1σ1 ⊗ σ1 − c2z2σ2 ⊗ σ2

− c3z3σ3 ⊗ σ3), (7)

with

z1 = 2(−tAyA2 + yA1yA3),

z2 = 2(tAyA1 + yA2yA3),

z3 = t2
A − y2

A1 − y2
A2 + y2

A3.

Thus, we have TrC (ρ0) = 1
2VA�0V

†
A ⊗ I and TrC (ρ1) =

1
2VA�1V

†
A ⊗ I . The average entropy of subsystem B after mea-

suring �A is given by

SB|�A (ρ) = 1
2 × 1 + 1

2 × 1 = 1. (8)

To evaluate SC|�AB (ρ), one needs to measure subsystem B
under the conditions of the outcomes on measuring A. Let{

B j
k = VB j �kV

†
B j : k = 0, 1

}
, j = 0, 1,

be the von Neumann measurement on subsystem B when the
outcome of the measurement on A is j ( j = 0, 1), where VB j =
tB j I + i−→yB j · −→σ is the unitary operator with tB j ∈ R, −→yB j =
(yB j 1, yB j 2, yB j 3) ∈ R3, and t2

B j + y2
B j 1 + y2

B j 2 + y2
B j 3 = 1.

If the measurement outcome on system A is 0, the state
after the measurement will be reduced to ρ0 given in Eq. (6).
Notice that subsystems B and C in Eq. (6) are still in
a Bell-diagonal state. After performing the measurement
{B0

k : k = 0, 1}, the state reduces to

ρ00 = 1
2VA�0V

†
A ⊗ VB0�0V

†
B0 ⊗ (I + c1z1l1σ1

+ c2z2l2σ2 + c3z3l3σ3),

ρ01 = 1
2VA�0V

†
A ⊗ VB0�1V

†
B0 ⊗ (I − c1z1l1σ1

− c2z2l2σ2 − c3z3l3σ3),

with the probability p00 = p01 = 1
4 , where

l1 = 2(−tB0 yB02 + yB01yB03),

l2 = 2(tB0 yB01 + yB02yB03),

l3 = t2
B0 − y2

B01 − y2
B02 + y2

B03.
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If the measurement outcome on system A is 1, performing
the measurement {B1

k : k = 0, 1} on subsystem B of the state
ρ1, we obtain

ρ10 = 1
2VA�1V

†
A ⊗ VB1�0V

†
B1 ⊗ (I − c1z1m1σ1

− c2z2m2σ2 − c3z3m3σ3),

ρ11 = 1
2VA�1V

†
A ⊗ VB1�1V

†
B1 ⊗ (I + c1z1m1σ1

+ c2z2m2σ2 + c3z3m3σ3),

with the probability p10 = p11 = 1
4 , where

m1 = 2(−tB1 yB12 + yB11yB13),

m2 = 2(tB1 yB11 + yB12yB13),

m3 = t2
B1 − y2

B11 − y2
B12 + y2

B13.

The state ρ�AB is given by ρ�AB = p00ρ00 + p01ρ01 +
p10ρ10 + p11ρ11. Set α =

√
c2

1z2
1l2

1 + c2
2z2

2l2
2 + c2

3z2
3l2

3 and β =√
c2

1z2
1m2

1 + c2
2z2

2m2
2 + c2

3z2
3m2

3. Then

SC|�AB (ρ) = −1 + α

4
log2(1 + α) − 1 − α

4
log2(1 − α)

−1 + β

4
log2(1 + β ) − 1 − β

4
log2(1 − β ) + 1.

It can be directly verified that z2
1 + z2

2 + z2
3 = 1, l2

1 + l2
2 +

l2
3 = 1, m2

1 + m2
2 + m2

3 = 1. Denote

c := max{|c1|, |c2|, |c3|}. (9)

Then

α �
√

|c2|(|z1|2|l1|2 + |z2|2|l2|2 + |z3|2|l3|2) = c, (10)

and

β �
√

|c2|(|z1|2|m1|2 + |z2|2|m2|2 + |z3|2|m3|2) = c. (11)

The equality holds in Eq. (10) for the following cases:
(1) If c = |c1|, then |z1| = |l1| = 1, z2 = z3 = l2 = l3 = 0.
For instance, |tA| = |yA2| = |tB0 | = |yB02| = 1√

2 and yA1 =
yA3 = yB01 = yB03 = 0. (2) If c = |c2|, then |z2| = |l2| =
1, z1 = z3 = l1 = l3 = 0. For example, |tA| = |yA1| = |tB0 | =
|yB01| = 1√

2 and yA2 = yA3 = yB02 = yB03 = 0. (3) If c = |c3|,
then |z3| = |l3| = 1, z1 = z2 = l1 = l2 = 0, e.g., yA1 = yA2 =
yB01 = yB02 = 0. Similarly, one can prove that the equality
holds in Eq. (11) too for the above cases. Therefore, we obtain

min[SC|�AB (ρ)] = −1 + c

2
log2(1 + c)

− 1 − c

2
log2(1 − c) + 1. (12)

From (5), (8), and (12), we get the quantum discord

DA;B;C (ρ) = min
�AB

[−SBC|A(ρ) + SB|�A (ρ) + SC|�AB (ρ)]

= 1 + ξ

2
log2(1 + ξ ) + 1 − ξ

2
log2(1 − ξ )

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c). (13)

We now consider the family of the four-qubit case,

ρ = 1

16

(
I +

3∑
j=1

c jσ j ⊗ σ j ⊗ σ j ⊗ σ j

)
, (14)

in systems A1, A2, A3, and A4. The four-qubit quantum discord
is given by

DA1;A2;A3;A4 (ρ)

= min
�A1A2A3

[−SA2A3A4|A1 (ρ) + SA2|�A1 (ρ) + SA3|�A1A2 (ρ)

+ SA4|�A1A2A3 (ρ)
]
. (15)

For (14) we have ρA1 = TrA2A3A4 (ρ) = I
2 and the entropy of

subsystem A1 is S(ρA1 ) = 1. It can be directly verified that

S(ρ) = − 1
4 [(1 + c1 − c2 − c3) log2(1 + c1 − c2 − c3)

+ (1 − c1 + c2 − c3) log2(1 − c1 + c2 − c3)

+ (1 − c1 − c2 + c3) log2(1 − c1 − c2 + c3)

+ (1 + c1 + c2 + c3) log2(1 + c1 + c2 + c3)] + 4.

Therefore,

−SA2A3A4|A1 (ρ)

= 1
4 [(1 + c1 − c2 − c3) log2(1 + c1 − c2 − c3)

+ (1 − c1 + c2 − c3) log2(1 − c1 + c2 − c3)

+ (1 − c1 − c2 + c3) log2(1 − c1 − c2 + c3)

+ (1 + c1 + c2 + c3) log2(1 + c1 + c2 + c3)] − 3.

(16)

The von Neumann measurement on subsystem A1 is given
by {A1k = VA1�kV

†
A1

: k = 0, 1}, where VA1 = tA1 I + i−→yA1 · −→σ ,
with tA1 ∈ R, −→yA1 = (yA11, yA12, yA13) ∈ R3, and t2

A1
+ y2

A11 +
y2

A12 + y2
A13 = 1.

The state ρ�A1 is given by ρ�A1 = p0ρ0 + p1ρ1, where
p0 = p1 = 1

2 , and

ρ0 = 1
8VA1�0V

†
A1

⊗ (I ⊗ I ⊗ I + c1d1σ1 ⊗ σ1 ⊗ σ1

+ c2d2σ2 ⊗ σ2 ⊗ σ2 + c3d3σ3 ⊗ σ3 ⊗ σ3),

ρ1 = 1
8VA1�1V

†
A1

⊗ (I ⊗ I ⊗ I − c1d1σ1 ⊗ σ1 ⊗ σ1

− c2d2σ2 ⊗ σ2 ⊗ σ2 − c3d3σ3 ⊗ σ3 ⊗ σ3),

where

d1 = 2(−tA1 yA12 + yA11yA13),

d2 = 2(tA1 yA11 + yA12yA13),

d3 = t2
A1

− y2
A11 − y2

A12 + y2
A13.

Thus, we have TrA3A4 (ρ0) = 1
2VA1�0V

†
A1

⊗ I and TrA3A4 (ρ1) =
1
2VA1�1V

†
A1

⊗ I . The average entropy of subsystem A2 after the
measurement �A1 is given by SA2|�A1 (ρ) = 1.

To evaluate SA3|�A1A2 (ρ) and SA4|�A1A2A3 (ρ), we need to mea-
sure subsystem A2 based on the measurement outcomes on A1.
We obtain

ρ00 = 1
4VA1�0V

†
A1

⊗ VA0
2
�0V

†
A0

2
⊗ (I ⊗ I + c1d1e1σ1 ⊗ σ1

+ c2d2e2σ2 ⊗ σ2 + c3d3e3σ3 ⊗ σ3),
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ρ01 = 1
4VA1�0V

†
A1

⊗ VA0
2
�1V

†
A0

2
⊗ (I ⊗ I − c1d1e1σ1 ⊗ σ1

− c2d2e2σ2 ⊗ σ2 − c3d3e3σ3 ⊗ σ3),

ρ10 = 1
4VA1�1V

†
A1

⊗ VA1
2
�0V

†
A1

2
⊗ (I ⊗ I − c1d1 f1σ1 ⊗ σ1

− c2d2 f2σ2 ⊗ σ2 − c3d3 f3σ3 ⊗ σ3),

ρ11 = 1
4VA1�1V

†
A1

⊗ VA1
2
�1V

†
A1

2
⊗ (I ⊗ I + c1d1 f1σ1 ⊗ σ1

+ c2d2 f2σ2 ⊗ σ2 + c3d3 f3σ3 ⊗ σ3),
where the k in the unitary {VAk

2
: k = 0, 1} is the outcome

of the measurement of A1, and VAk
2

can be written as VAk
2
=

tAk
2
I + i−→yAk

2
· −→σ , with tAk

2
∈ R, −→yAk

2
= (yAk

21, yAk
22, yAk

23) ∈ R3,
and t2

Ak
2
+ y2

Ak
21

+ y2
Ak

22
+ y2

Ak
23

= 1,

e1 = 2
( − tA0

2
yA0

22 + yA0
21yA0

23

)
,

e2 = 2
(
tA0

2
yA0

21 + yA0
22yA0

23

)
,

e3 = t2
A0

2
− y2

A0
21 − y2

A0
22 + y2

A0
23,

f1 : = 2
( − tA1

2
yA1

22 + yA1
21yA1

23

)
,

f2 : = 2
(
tA1

2
yA1

21 + yA1
22yA1

23

)
,

f3 : = t2
A1

2
− y2

A1
21 − y2

A1
22 + y2

A1
23.

The state ρ�A1A2 is given by ρ�A1A2 = p00ρ00 + p01ρ01 +
p10ρ10 + p11ρ11. Thus, we have TrA4 (ρ00) = 1

2VA1�0V
†

A1
⊗

VA0
2
�0V

†
A0

2
⊗ I , TrA4 (ρ01) = 1

2VA1�0V
†

A1
⊗ VA0

2
�1V

†
A0

2
⊗ I ,

TrA4 (ρ10) = 1
2VA1�1V

†
A1

⊗ VA1
2
�0V

†
A1

2
⊗ I , TrA4 (ρ11) =

1
2VA1�1V

†
A1

⊗ VA1
2
�1V

†
A1

2
⊗ I . The average entropy of

subsystem A3 after the measurement �A1A2 is given by
SA3|�A1A2 (ρ) = 4 × ( 1

4 × 1) = 1.
To evaluate SA4|�A1A2A3 (ρ), one needs to continue to mea-

sure subsystem A3 based on the measurement outcomes on A1

and A2. We obtain
ρ000 = 1

2VA1�0V
†

A1
⊗ VA0

2
�0V

†
A0

2
⊗ VA00

3
�0V

†
A00

3
⊗ (I

+ c1d1e1g1σ1 + c2d2e2g2σ2 + c3d3e3g3σ3),

ρ001 = 1
2VA1�0V

†
A1

⊗ VA0
2
�0V

†
A0

2
⊗ VA00

3
�1V

†
A00

3
⊗ (I

− c1d1e1g1σ1 − c2d2e2g2σ2 − c3d3e3g3σ3),

ρ010 = 1
2VA1�0V

†
A1

⊗ VA0
2
�1V

†
A0

2
⊗ VA01

3
�0V

†
A01

3
⊗ (I

− c1d1e1h1σ1 − c2d2e2h2σ2 − c3d3e3h3σ3),

ρ011 = 1
2VA1�0V

†
A1

⊗ VA0
2
�1V

†
A0

2
⊗ VA01

3
�1V

†
A01

3
⊗ (I

+ c1d1e1h1σ1 + c2d2e2h2σ2 + c3d3e3h3σ3),

ρ100 = 1
2VA1�1V

†
A1

⊗ VA1
2
�0V

†
A1

2
⊗ VA10

3
�0V

†
A10

3
⊗ (I

− c1d1 f1n1σ1 − c2d2 f2n2σ2 − c3d3 f3n3σ3),

ρ101 = 1
2VA1�1V

†
A1

⊗ VA1
2
�0V

†
A1

2
⊗ VA10

3
�1V

†
A10

3
⊗ (I

+ c1d1 f1n1σ1 + c2d2 f2n2σ2 + c3d3 f3n3σ3),

ρ110 = 1
2VA1�1V

†
A1

⊗ VA1
2
�1V

†
A1

2
⊗ VA11

3
�0V

†
A11

3
⊗ (I

+ c1d1 f1r1σ1 + c2d2 f2r2σ2 + c3d3 f3r3σ3),

ρ111 = 1
2VA1�1V

†
A1

⊗ VA1
2
�1V

†
A1

2
⊗ VA11

3
�1V

†
A11

3
⊗ (I

− c1d1 f1r1σ1 − c2d2 f2r2σ2 − c3d3 f3r3σ3),

where the k in the unitary {VAku
3

: k = 0, 1; u = 0, 1} is the
outcome of the measurement of A1, and u is the outcome of
the measurement of A2. Denote

μ1 =
√

c2
1d2

1 e2
1g2

1 + c2
2d2

2 e2
2g2

2 + c2
3d2

3 e2
3g2

3,

μ2 =
√

c2
1d2

1 e2
1h2

1 + c2
2d2

2 e2
2h2

2 + c2
3d2

3 e2
3h2

3,

μ3 =
√

c2
1d2

1 f 2
1 n2

1 + c2
2d2

2 f 2
2 n2

2 + c2
3d2

3 f 2
3 n2

3,

μ4 =
√

c2
1d2

1 f 2
1 r2

1 + c2
2d2

2 f 2
2 r2

2 + c2
3d2

3 f 2
3 r2

3 .

We have

SA4|�A1A2A3 (ρ)

= −1 + μ1

8
log2(1 + μ1) − 1 − μ1

8
log2(1 − μ1)

− 1 + μ2

8
log2(1 + μ2) − 1 − μ2

8
log2(1 − μ2)

− 1 + μ3

8
log2(1 + μ3) − 1 − μ3

8
log2(1 − μ3)

− 1 + μ4

8
log2(1 + μ4) − 1 − μ4

8
log2(1 − μ4) + 1.

It can be directly verified that d2
1 + d2

2 + d2
3 = 1, e2

1 + e2
2 +

e2
3 = 1, f 2

1 + f 2
2 + f 2

3 = 1, g2
1 + g2

2 + g2
3 = 1, h2

1 + h2
2 + h2

3 =
1, n2

1 + n2
2 + n2

3 = 1, and r2
1 + r2

2 + r2
3 = 1. Since μ1 � c,

μ2 � c, μ3 � c, and μ4 � c, we obtain

min[SA4|�A1A2A3 (ρ)]

= −1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c) + 1. (17)

By the definition of the four-qubit quantum discord (15), we
get

DA1;A2;A3;A4 (ρ)

= 1

4
[(1 + c1 − c2 − c3) log2(1 + c1 − c2 − c3)

+ (1 − c1 + c2 − c3) log2(1 − c1 + c2 − c3)

+ (1 − c1 − c2 + c3) log2(1 − c1 − c2 + c3)

+ (1 + c1 + c2 + c3) log2(1 + c1 + c2 + c3)]

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c). (18)

From the results of three-qubit and four-qubit states, we
can prove the following conclusion for a general N-qubit case.

Theorem 1. For the family of N-qubit states (2), we have
the quantum discord:

(1) If N = 2v + 1, v ∈ N+,

DA1;A2;...;A2v+1 (ρ)

= 1 + ξ

2
log2(1 + ξ ) + 1 − ξ

2
log2(1 − ξ )

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c), (19)

where ξ =
√

c2
1 + c2

2 + c2
3, c = max{|c1|, |c2|, |c3|}.
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(2) If N = 4v − 2, v ∈ N+,

DA1;A2;...;A4v−2 (ρ)

= 1

4
[(1 − c1 − c2 − c3) log2(1 − c1 − c2 − c3)

+ (1 − c1 + c2 + c3) log2(1 − c1 + c2 + c3)

+ (1 + c1 − c2 + c3) log2(1 + c1 − c2 + c3)

+ (1 + c1 + c2 − c3) log2(1 + c1 + c2 − c3)]

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c). (20)

(3) If N = 4v, v ∈ N+,

DA1;A2;...;A4v
(ρ)

= 1

4
[(1 + c1 − c2 − c3) log2(1 + c1 − c2 − c3)

+ (1 − c1 + c2 − c3) log2(1 − c1 + c2 − c3)

+ (1 − c1 − c2 + c3) log2(1 − c1 − c2 + c3)

+ (1 + c1 + c2 + c3) log2(1 + c1 + c2 + c3)]

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c). (21)

Proof. If N = 2v + 1, we have TrA2A3···A2v+1 (ρ) = I
2 , and

SA1 (ρ) = 1. Let λ be the eigenvalues of ρ. From the charac-
teristic equation det|ρ2v+1 − λI| = 0, we get[

(1 − 22v+1λ)2 − c2
1 − c2

2 − c2
3

2(4v+2)

]22v

= 0.

The 22v eigenvalues are given by 1
22v+1 (1 −

√
c2

1 + c2
2 + c2

3 )

and 1
22v+1 (1 +

√
c2

1 + c2
2 + c2

3 ), respectively. One can verify
that

−SA2;A3;...;A2v+1|A1 (ρ)

= 1 + ξ

2
log2(1 + ξ ) + 1 − ξ

2
log2(1 − ξ ) − 2v. (22)

We obtain SAk |�A1A2 ···Ak−1 (ρ) = 1, where k = 2, . . . , 2v,
namely,

SA2|�A1 (ρ) = SA3|�A1A2 (ρ) = · · ·
= SA2v |�A1A2 ···A2v−1 (ρ) = 1. (23)

Hence,

min[SA2v+1|�A1A2 ···A2v (ρ)]

= −1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c) + 1. (24)

By the definition (1), we obtain Eq. (19).
If N = 4v − 2, we have TrA2A3···A4v−2 (ρ) = I

2 and SA1 (ρ) =
1. ρ has 24v−4 eigenvalues given by 1

24v−2 (1 − c1 − c2 − c3),
1

24v−2 (1 − c1 + c2 + c3), 1
24v−2 (1 + c1 − c2 + c3), and

1
24v−2 (1 + c1 + c2 − c3), respectively. Then we obtain
−SA2;A3;...;A4v−2(ρ) = 1

4 [(1 − c1 − c2 − c3) log2(1 − c1 −
c2 − c3) + (1 − c1 + c2 + c3) log2(1 − c1 + c2 + c3) +
(1 + c1 − c2 + c3) log2(1 + c1 − c2 + c3) + (1 + c1 +
c2 − c3) log2(1 + c1 + c2 − c3)] − 4v + 3. The entropy after

the measurement is the same as (23) and (24). Therefore, we
obtain Eq. (20). Equation (21) is similarly proved. �

From Theorem 1, one has that for five-qubit states,

DA1;A2;A3;A4;A5 (ρ)

= 1 + ξ

2
log2(1 + ξ ) + 1 − ξ

2
log2(1 − ξ )

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c), (25)

and for six-qubit states,

DA1;A2;A3;A4;A5;A6 (ρ)

= 1

4
[(1 − c1 − c2 − c3) log2(1 − c1 − c2 − c3)

+ (1 − c1 + c2 + c3) log2(1 − c1 + c2 + c3)

+ (1 + c1 − c2 + c3) log2(1 + c1 − c2 + c3)

+ (1 + c1 + c2 − c3) log2(1 + c1 + c2 − c3)]

− 1 + c

2
log2(1 + c) − 1 − c

2
log2(1 − c). (26)

Interestingly, the result (25) is equivalent to the three-qubit
quantum discord (13), while (26) is equivalent to the two-
qubit quantum discord given by Luo [25].

Figure 1 shows the level surfaces of discord for D(ρ) =
0.03, 0.15, and 0.55. The three figures (F21), (F22), and (F23)
in the second row of Fig. 1 are for (4v − 2)-qubit states,
which are consistent with the ones given in Ref. [26] for
two-qubit states. For small discord, D(ρ) = 0.03 and 0.15,
the level surfaces are centrally symmetric, consisting of three
intersecting “tubes” along the three coordinate axes. For a
larger discord value 0.55, these intersecting tubes expand until
only a few vertices remained, where (F13) has level surfaces
in eight corners, while (F23) and (F33) have only four corners
left.

III. DYNAMICS OF QUANTUM DISCORD UNDER LOCAL
NONDISSIPATIVE CHANNELS

It has been discovered that for two-qubit states, the quan-
tum discord is invariant under some decoherence channels
in a finite time interval [30,34]. To verify if such phenom-
ena still exist in multiqubit systems, we consider that the
states ρ (3) and (14) under the phase flip channel, with
the Kraus operators 	

(A1 )
0 = diag(

√
1 − p/2,

√
1 − p/2) ⊗

I ⊗ · · · ⊗ I , 	
(A1 )
1 = diag(

√
p/2,−√

p/2) ⊗ I ⊗ · · · ⊗ I , . . . ,
	

(AN )
0 = I ⊗ · · · ⊗ I ⊗ diag(

√
1 − p/2,

√
1 − p/2), 	

(AN )
1 =

I ⊗ · · · ⊗ I ⊗ diag(
√

p/2,−√
p/2), where N = 3, 4, p =

1 − exp(−γ t ), and γ is the phase damping rate.
Let ε(·) represent the operator of decoherence. For the

three-qubit state (3) under the phase flip channel, we have

ε(ρ) = 1
8 [I ⊗ I ⊗ I + (1 − p)3c1σ1 ⊗ σ1 ⊗ σ1

+ (1 − p)3c2σ2 ⊗ σ2 ⊗ σ2 + c3σ3 ⊗ σ3 ⊗ σ3]. (27)
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FIG. 1. Level surfaces of constant discord. N = 2v + 1 for figures (F11), (F12), and (F13) with D(ρ ) = 0.03, 0.15, and 0.55, respectively.
N = 4v − 2 for figures (F21), (F22), and (F23) with D(ρ ) = 0.03, 0.15, and 0.55, respectively. N = 4v for figures (F31), (F32), and (F33) with
D(ρ ) = 0.03, 0.15, and 0.55, respectively.

From (13), we obtain

DA1;A2;A3 [ε(ρ)] = 1 + δ

2
log2(1 + δ) + 1 − δ

2
log2(1 − δ) − 1 + θ

2
log2(1 + θ ) − 1 − θ

2
log2(1 − θ ), (28)

where δ=
√

(1 − p)6c2
1 + (1 − p)6c2

2 + c2
3, θ = max{|(1−p)3c1|, |(1−p)3c2|, |c3|}. Notice that the derivative of DA1;A2;A3 [ε(ρ)]

with respect to p is always less than 0.
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Proof. From (28), in general, the derivative of
DA1;A2;A3 [ε(ρ)] can be cast as

D′
A1;A2;A3

[ε(ρ)] = 1

2

[
θ ′ log2

(
1 − θ

1 + θ

)
− δ′ log2

(
1 − δ

1 + δ

)]
.

In particular, for

δ =
√

(1 − p)6c2
1 + (1 − p)6c2

2 + c2
3 > 0,

θ = max{|(1 − p)3c1|, |(1 − p)3c2|, |c3|} > 0.

This implies that

log2

(
1 − θ

1 + θ

)
< 0 and log2

(
1 − δ

1 + δ

)
< 0,

we have that

δ′ = −3
(
c2

1 + c2
2

)
δ

(1 − p)5,

given that 0 < (1 − p)5 < 1, then δ′ < 0.
If θ = |c3|, then

D′
A1;A2;A3

[ε(ρ)] = −δ′

2
log2

(
1 − δ

1 + δ

)
< 0.

And for θ = |(1 − p)3c1|, in this case θ = (1 − p)3|c1| be-
cause 0 < 1 − p < 1, then

θ ′ = −3(1 − p)2|c1| < 0.

Then

D′
A1;A2;A3

[ε(ρ)] = 3

2

[(
c2

1 + c2
2

)
δ

(1 − p)5 log2

(
1 − δ

1 + δ

)

− (1 − p)2|c1| log2

(
1 − θ

1 + θ

)]
.

Here, we assume that DA1;A2;A3 [ε(ρ)] is monotonically de-
creasing, i.e., D′

A1;A2;A3
[ε(ρ)] < 0. In order to show these, it

must satisfy that(
c2

1 + c2
2

)
δ

(1−p)5 log2

(
1 − δ

1 + δ

)
< (1−p)2|c1| log2

(
1 − θ

1 + θ

)
,

by multiplying by the positive numbers (1 − p) and δ,

(
c2

1 + c2
2

)
(1 − p)6 log2

(
1 − δ

1 + δ

)
< δθ log2

(
1 − θ

1 + θ

)
.

Therefore, D′
A1;A2;A3

[ε(ρ)] < 0, which means that
DA1;A2;A3 [ε(ρ)] is monotonically decreasing. �

Hence, the frozen phenomenon of quantum discord does
not exist for three-qubit states under the phase flip channel.
Since the quantum discord of three-qubit and (2v + 1)-qubit
states are the same, the odd-qubit systems do not exhibit
frozen phenomenon of quantum discord under the phase flip
channel. For instance, take c1 = 4

5 , c2 = c1
2 , and c3 = 1

2 in
the initial state; the dashed line in Fig. 2 shows the dynamic
behavior of the quantum discord under the phase flip channel.

For N = 4, the state ρ under the phase flip channel is give
by

ε(ρ) = 1
16 [I ⊗ I ⊗ I ⊗ I + (1 − p)4c1σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1

+ (1 − p)4c2σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2

+ c3σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3]. (29)

FIG. 2. Quantum discord of the three-qubit state (dashed line)
and quantum discord of the four-qubit state (solid line) under a phase
flip channel for c1 = 4

5 , c2 = c1
2 , c3 = 1

2 .

Noting that c3 is independent on time, we consider the case
that c2 = c1c3, −1 � c3 � 1. Then we have |c2| � |c1| for any
p. From (18) we obtain the quantum discord

DA1;A2;A3;A4 [ε(ρ)]

= 1 + c3

2
log2(1 + c3) + 1 − c3

2
log2(1 − c3)

+ 1 + (1 − p)4c1

2
log2[1 + (1 − p)4c1]

+ 1 − (1 − p)4c1

2
log2[1 − (1 − p)4c1]

− 1 + σ

2
log2(1 + σ ) − 1 − σ

2
log2(1 − σ ),

where σ = max{|(1 − p)4c1|, |c3|}.
When max{|(1 − p)4c1|, |c3|} = |(1 − p)4c1|, we have

DA1;A2;A3;A4 [ε(ρ)]

= 1 + c3

2
log2(1 + c3) + 1 − c3

2
log2(1 − c3),

and DA1;A2;A3;A4 [ε(ρ)] is constant under the decoherence chan-
nel during the time interval. Otherwise,

DA1;A2;A3;A4 [ε(ρ)]

= 1 + (1 − p)4c1

2
log2[1 + (1 − p)4c1]

+ 1 − (1 − p)4c1

2
log2[1 − (1 − p)4c1],

which monotonically decreases to zero.
Therefore, to calculate the quantum discord, we need

to determine the magnitude of |(1 − p)4c1| and |c3|. If
for |c1| > |c3| there exists 0 � p0 � 1 such that max{|(1 −
p)4c1|, |c3|} = |(1 − p)4c1| for 0 � p � p0, and max{|(1 −
p)4c1|, |c3|} = |c3| for p0 � p � 1, then DA1;A2;A3;A4 [ε(ρ)] re-
mains unchanged first, and then monotonicity goes down to
zero. As an example, set c1 = 4

5 , c2 = c1
2 , and c3 = 1

2 . The
solid line in Fig. 2 shows the dynamic behavior of quantum
discord under the phase flip channel. A sudden transition of
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quantum discord happens at p = 0.110 86. The frozen phe-
nomenon of quantum discord exists for the four-qubit states
under the phase flip channel, while for the case of three-qubit
states, such a phenomenon does not exist.

In Ref. [34], it has been shown that the frozen phenomenon
of quantum discord also exists when the phase noise acts on
two-qubit states. Since the quantum discord of two-qubit and
(4v − 2)-qubit states is the same, and the four-qubit quantum
discord is equal to that of (4v)-qubit states, the even-qubit
systems exhibit a frozen phenomenon of quantum discord
under the phase flip channel, while the odd-qubit systems do
not.

IV. SUMMARY

We have studied the quantum discord for a family of mul-
tiqubit states. Analytical formulas have been derived in detail
for (2v + 1)-, (4v − 2)-, and (4v)-qubit states. The level sur-
faces of quantum discord have been depicted. It has been

shown that under the phase flip channel the quantum discord
could still remain constant in a certain time interval for the
even-qubit systems, but not for odd-qubit systems. Our results
may highlight further investigations on multipartite quantum
discord and their applications in quantum information pro-
cessing.
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