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The monogamy of entanglement means that entanglement cannot be freely shared. In 2014, Oliveira et al.
[T. R. de Oliveira, M. F. Cornelio, and F. F. Fanchini, Phys. Rev. A 89, 034303 (2014)] proposed a monogamy
relation in the linear version and considered it in terms of entanglement of formation. Here we generalize the
above version and consider a multilinear monogamy relation for a multiqubit system in terms of entanglement
of formation and concurrence. Based on the above results, we present an entanglement criterion for genuine
entangled states; also we consider the absolutely maximally entangled states and present what an absolutely
maximally entangled state is for a three-qubit system. Last, we apply our results to a three-qubit pure state in
terms of quantum discord.
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I. INTRODUCTION

Quantum entanglement is an essential feature of quantum
mechanics. It plays an important role in quantum informa-
tion and quantum computation theory [1], such as superdense
coding [2], teleportation [3], and the speedup of quantum
algorithms [4].

As a property of multipartite entanglement, monogamy
of entanglement presents that entanglement cannot be shared
arbitrarily among many parties, which is different from clas-
sical correlations [5]. This property has been applied in many
areas in quantum information. It can be applied to prove the
security of quantum cryptography [6–8] and the bound of the
regularization of its Holevo information for arbitrary channels
[9]. It can also be applied to distinguish inequivalent classes
of pure states in a tripartite system [10,11]. Recently, the
authors showed there exist restrictions of indistinguishability
for entangled systems due to monogamy relations [12].

Mathematically, for a tripartite system with parties A, B,
and C, the general monogamy in terms of an entanglement
measure E implies that the entanglement between A and BC
satisfies

EA|BC � EAB + EAC . (1)

Here EAB and EAC means the entanglement between the parties
A, B and A,C. This relation was first proved for qubit systems
in terms of the 2-tangle [10,13]. Bai et al. showed that the
inequality Eq. (1) is valid in terms of the squared entangle-
ment of formation (EoF) for n-qubit systems [14]. Zhu and
Fei investigated the monogamy relations related to the con-
currence and the entanglement of formation [15]. Recently,
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the authors of Refs. [16,17] presented generalized monogamy
relations, and Jin et al. proposed tighter monogamy relations
for n-qubit systems [18]. Yu et al. utilized the conversion rela-
tion between the coherence and the entanglement to establish
the monogamy inequalities for high-dimensional coherence-
induced entanglement in terms of the relative entropy of
entanglement and the negativity [19]. Zhang et al. studied
the monogamy relations for multiqubit quantum systems in
product norm [20].

However, it is well known that the EoF (E ) does not satisfy
the inequality Eq. (1). In 2014, Oliveira et al. proposed a linear
monogamy relation in terms of EoF and numerically obtained
the bound for a three-qubit system. This result indicates that
entanglement cannot be freely shared in terms of EoF [21]. In
2015, Liu et al. proved this bound analytically [22]. There they
also computed the bound of the linear monogamy relation in
terms of concurrence for a three-qubit system [22]. Moreover,
Cornelio proposed another interesting monogamy relation in
terms of the squared concurrence for three-qubit systems [23].
They called the relations multipartite monogamy relations.

One of the motivations of this paper is to better understand
the monogamy relations within the theory of multipartite
entanglement [24–27]. Although in Ref. [28] the authors men-
tioned a similar function of a three-qubit pure state in terms of
some entanglement measure, there they aimed to investigate
the robustness of a three-qubit pure state against loss of a
qubit. Here we characterize the distribution of the entangle-
ment for an n-qubit system in terms of EoF and concurrence.
In Ref. [28], the authors only showed the function numerically
in terms of EoF and the bound of the function in terms of the
squared concurrence among three-qubit pure states. Crucially,
we present a multilinear monogamy relation in terms of entan-
glement of formation for a three-qubit pure state analytically.
We generalize this bound to a three-qubit mixed state in terms
of EoF and concurrence. Also, we present that only the local-
unitary-equivalent class of the W state can reach the upper
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bound among three-qubit mixed states. That is, this can be
seen to detect whether a three-qubit pure state is the W state.
Due to the importance of the W state in quantum computation
and communication [29–32], this result is meaningful.

In this work, we consider a multilinear monogamy relation
in terms of EoF and concurrence for a multiqubit system. We
present that the W state is the unique state that can reach the
upper bound of multilinear monogamy relations in terms of
concurrence and EoF up to the local unitary (LU) transforma-
tions. We also present the condition when the states reach the
minimum of the multilinear monogamy relation in terms of
concurrence. Last, we present some applications of our results
to build an entanglement criterion and consider the absolutely
maximally entangled states for a three-qubit system mainly.
We also get a similar bound for the discord of three-qubit pure
states.

This article is organized as follows. First we review the
preliminary knowledge needed. Then we prove our main re-
sults. We present multilinear monogamy relations in terms
of EoF and concurrence. We also present some applications
of our results on the entanglement witness. Last, based on
the relation between the EoF and the discord, we present a
similar result for the sum of all bipartite quantum discord for
a three-qubit pure state.

II. PRELIMINARIES

An n-partite pure state |ψ〉A1A2···An is full product if it can
be written as

|ψ〉A1A2···An = |φ1〉A1 |φ2〉A2 · · · |φn〉An ; (2)

otherwise, it is entangled. A multipartite pure state is called
genuinely entangled if

|ψ〉A1A2···An �= |φ〉S|ϕ〉S, (3)

for any bipartition S|S; here S is a subset of A =
{A1, A2, . . . , An}, and S = A − S.

Assume |ψ〉AB is a bipartite pure state. Due to the Schmidt
decomposition, |ψ〉AB can always be written as

|ψ〉AB =
∑

i

√
λi|i〉A|i〉B,

where λi � 0,
∑

i λi = 1, and {|i〉A(B)} is an orthonormal basis
of the Hilbert space A(B). First we recall the EoF. The EoF of
|ψ〉AB is given by

E (|ψ〉AB) = S(ρA) = −
∑

λi log2 λi, (4)

where λi are the eigenvalues of ρA = TrB |ψ〉AB〈ψ |. For a
mixed state ρAB, the EoF is defined by the convex roof ex-
tension method,

E (ρAB) = min
{pi,|φi〉AB}

∑
i

piE (|φi〉AB), (5)

where the minimum is taken over all the decompositions of
ρAB =∑i pi|φi〉AB〈φi|, with pi � 0 and

∑
pi = 1.

The other important entanglement measure is the concur-
rence (C). The concurrence of a pure state |ψ〉AB is defined
as

C(|ψ〉AB) =
√

2
(
1 − Tr ρ2

A

) =
√√√√2

(
1 −

∑
i

λ2
i

)
. (6)

For a mixed state ρAB, it is defined as

C(ρAB) = min
{pi,|φi〉AB}

∑
i

piC(|φi〉AB), (7)

where the minimum takes over all the decompositions of
ρAB =∑i pi|φi〉AB〈φi|, with pi � 0 and

∑
pi = 1.

For a two-qubit mixed state ρAB, Wootters derived an ana-
lytical formula [33]:

E (ρAB) = h

⎛⎝1 +
√

1 − C2
AB

2

⎞⎠, (8)

h(x) = −x log2 x − (1 − x) log2(1 − x), (9)

CAB = max{√μ1 − √
μ2 − √

μ3 − √
μ4, 0}, (10)

where μ1, μ2, μ3, and μ4, are the eigenvalues of the matrix
ρAB(σy ⊗ σy)ρ∗

AB(σy ⊗ σy) with nonincreasing order.

III. MAIN RESULTS

For a three-qubit pure state |ψ〉ABC , the pairwise correla-
tions are described by the reduced density operators ρAB, ρBC ,
and ρCA. In 2014, de Oliveira et al. [21] numerically presented
that the following inequality is valid for a three-qubit pure
state in terms of EoF and concurrence,

EA|B + EA|C � λ, (11)

where λ is a constant. When E is the EoF, they conjec-
tured λ = 1.2018. In 2015, Liu et al. [22] proved the above
inequality for a three-qubit pure state in terms of EoF analyt-
ically; there they denoted the above inequality as the linear
monogamy relation.

From Eq. (11), we find that although the EoF does not
satisfy Eq. (1) for three-qubit generic states, the entanglement
cannot be freely shared in terms of EoF. Here we mainly con-
sider a linear monogamy relation which we call the multilinear
monogamy relation. The main difference between ours and
the linear monogamy relations is that the left-hand side takes
over all bipartitions within the multipartite entanglement. For
the three-qubit states, this means in terms of some entangle-
ment measure E that the following inequality is valid:

ME = EA|B + EA|C + EB|C � ν. (12)

Here ν is a constant. We can also generalize the relations to
n-qubit states ρA1A2···An , we denote the following inequality
in terms of some entanglement measure E as the multilinear
monogamy relation: ∑

i< j

Ei| j � η. (13)

Here η is a constant.

A. Multipartite linear monogamy relations in terms of EoF

In this subsection, we first present a theorem on the mul-
tilinear monogamy relation in terms of EoF for a three-qubit
pure state.

Theorem 1. For a three-qubit pure state, the W state
reaches the upper bound cmax = 3h( 1

2 +
√

5
6 ) of multilinear

monogamy relation in terms of EoF.
The proof of Theorem 1 is given in Appendix A.
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We can extend this result to the mixed state ρABC . Assume
that {sh, |φh〉ABC} is a decomposition of ρABC , then we have.

E (ρAB) + E (ρAC ) + E (ρBC )

=
∑

i

piE (|φi〉AB) +
∑

j

q jE (|θ j〉AC ) +
∑

k

rkE (|ζk〉BC )

�
∑

h

sh
[
E
(
ρh

AB

)+ E
(
ρh

AC

)+ E
(
ρh

BC

)]
�
∑

h

sh × cmax = cmax. (14)

Here we assume that in the first equality, {pi, |φi〉}, {q j, |θ j〉},
and {rk, |ζk〉} are the optimal decompositions of ρAB, ρAC , and
ρBC in terms of the EoF correspondingly. The first equality is
due to the definition of the EoF for the mixed states, and the
second inequality is due to the equality (A15). In the first in-
equality, we denote TrC |φh〉〈φh| = ρh

AB, TrB |φh〉〈φh| = ρh
AC ,

and TrA |φh〉〈φh| = ρh
BC .

For a three-qubit pure state, Dür et al. [28] showed that
there are two inequivalent kinds of genuinely entangled states,
i.e., the W -class states and the Greenberger-Horne-Zeilinger
(GHZ)-class states. The W -class states |ψ〉 are all LU equiva-
lent to the following states:

|φ〉 = r0|000〉 + r1|001〉 + r2|010〉 + r3|100〉, (15)

where r1, r2, r3 > 0 and
∑3

i=0 |ri|2 = 1. From simple com-
putation, we have C2(ρAB) = 4|r2r3|2, C2(ρAC ) = 4|r1r3|2,
and C2(ρBC ) = 4|r1r2|2. We see that the function E (ρAB) +
E (ρAC ) + E (ρBC ) ranges over (0, cmax] for the W class states.
When |ψ〉 = |000〉+|111〉√

2
, E (ρAB) + E (ρAC ) + E (ρBC ) = 0, and

as the GHZ class states is dense [34], the function E (ρAB) +
E (ρAC ) + E (ρBC ) ranges over [0, cmax).

B. Multipartite linear monogamy relations
in terms of concurrence

In this subsection, we present a theorem on the multilinear
monogamy relation in terms of the concurrence for a three-
qubit pure state |ψ〉ABC .

Lemma 1. Up to the local unitary transformations, the W
state is the unique state that can reach the upper bound in
terms of the function. CM (ψ ) = CAB + CBC + CAC for a three-
qubit pure state.

We give the proof of Lemma 1 in Appendix B.
By a method similar to that we present under Theorem 1,

we can also extend the above results on the mixed states.
Next we present an example on the multilinear monogamy

relation in terms of concurrence for a three-qubit mixed
state.

Example 1. Example 1 is as follows:

ρ = p1|W 〉〈W | + p2|W 〉〈W |.
Here we denote that |W 〉 = 1

3 (|110〉 + |101〉 + |011〉).
Through simple computation,

ρAB = ρAC = ρBC,

ρAB = p1

3
|00〈00|〉 + 1

3
(|01〉 + |10〉)(〈10| + 〈01|)

+ p2

3
|11〉〈11|,

we have

C(ρAB) = C(ρAC ) = C(ρBC ) = 2 − 2
√

p1 p2

3
;

if pi > 0, i = 1 and 2, we have CM (ρABC ) < 2.

The Lemma 1 can be generalized to the three-qubit mixed
states.

Theorem 2. Up to the local unitary transformations, the W
state is the unique state that can reach the upper bound in
terms of the function CM (·) for a three-qubit mixed state.

The proof of Theorem 2 is given in Appendix C.
Next we present a necessary and sufficient condition when

the function CM (·) attains the minimum 0.
Theorem 3. Assume |ψ〉 is a three-qubit pure state, then

CM (|ψ〉) = 0 if and only if |ψ〉 can be represented as |ψ〉 =
r0|000〉 + r1|111〉 up to local unitary operations when 0 � r0

and r1 � 1.

The proof of Theorem 3 is given in Appendix D.
Theorem 4. Up to the local unitary transformations, the W

state is the unique state that can reach the upper bound in
terms of the function E (ρAB) + E (ρAC ) + E (ρBC ) for a three-
qubit mixed state.

Theorem 4 can be proved in a process similar to that used
in the proof of Theorem 2.

Next we consider the multilinear monogamy relations
for the n-qubit W -class states. These states were proposed
by San Kim et al. [35] in order to study the monogamy
relations in terms of convex roof extended negativity for
higher-dimensional systems.

Example 2. Example 2 is as follows:

|φ〉A1A2···An = √
p|GW 〉n +

√
1 − p|0〉n.

Here we assume |GW 〉 = a1|10 · · · 0〉 + a2|010 · · · 〉 + · · · +
an|00 · · · 1〉,∑i |ai|2 = 1.

Through simple computation, we have C(ρA1Ai ) =
2p|a1ai|, and

CM (|φ〉) = 2p
∑
i< j

|aia j |

= p

[(∑
i

|ai|
)2

−
∑

i

|ai|2
]

= p

[(∑
i

|ai|
)2

− 1

]
. (16)

By the method of the Lagrange multiplier, we see when ai =
1√
n

and p = 1, that is, when |φ〉 = |W 〉, the value in Eq. (16)
attains the maximum.

In Ref. [36], the authors presented that, for an n-qubit
symmetric pure state |φ〉, the maximal value between any pair
of qubits in terms of concurrence is 2

n , and when |φ〉 = |W 〉,
it attains the maximum. Then we may propose a conjecture.

Conjecture 1. For an n-qubit genuinely entangled pure
state |φ〉, the maximum CM (φ) is attained when |φ〉 = |W 〉.

Remark 1. Under Conjecture 1, we can generalize the
above results to n-qubit mixed states.

First, we prove that when |φ〉A1A2···An is an n-qubit pure
state, the maximum of CM (φ) is attained when |φ〉 = |W 〉,
that is, maxφ CM (|φ〉) = n − 1.
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FIG. 1. In this figure, we present the frequency of the function∑
i� j Ci j for random pure states of four-qubit states. The unit of the

Y axis is the number of times that the value of the function
∑

i� j Ci j

occurs.

If |φ〉 is not genuinely entangled, we can always
assume that |φ〉A1A2···An is biseparable, i.e., |φ〉A1A2···An =
|θ1〉A1A2···Am |θ2〉Am+1Am+2···An , here |θi〉, i = 1 and 2, are gen-
uinely entangled. As |φ〉 is biseparable,

CM (|φ〉) = CM (|θ1〉) + CM (|θ2〉)

� m − 1 + n − m − 1

= n − 2

< n − 1. (17)

Then by a proof similar to that of Theorem 2 and the
statement above, we can get the results on mixed states: when
ρA1A2···An is an n-qubit mixed state, up to the local unitary
transformations, the W state is the unique state that can reach
the upper bound in terms of the function

∑
i< j Ci j .

Then we pick 105 four- and five-qubit pure states randomly
and compute their CM (·); these results may verify Conjecture
1 numerically. In Fig. 1, we present a histogram of the value
of
∑

i� j Ci j for random pure states of four qubits sampled
uniformly. Here we find the function CM (·) mainly distributes
in the section [0,1.8], and in the section [1.8,2], there are few
states. Figure 1 supports Conjecture 1 for n = 4.

FIG. 2. In this figure, we present the frequency of the function∑
i� j Ci j for random pure states of five-qubit states. The unit of the

Y axis is the number of times that the value of the function
∑

i� j Ci j

occurs.

In Fig. 2 , we present a histogram of the value of
∑

i� j Ci j

for random pure states of five qubits sampled uniformly. From
the figure, we have that the sum of CM (·) mainly distributes
in the section [0,0.6]. In Ref. [37], the authors considered
the multipartite correlations in four-qubit pure states. Here,
through Fig. 2, we have that the quantity of the bipartite corre-
lations of most five-qubit pure states is few; then it seems that
comparing with the separable states, the set of the entangled
states for five-qubit pure states is bigger.

In the last part of this section, we consider the CM (·) for
a class of pure states in a system with more qubits studied
in Ref. [34]. They are useful kinds of entanglement states for
quantum teleportation and error correction:

|ψ〉 = a|GHZ〉m|W 〉n + b|W 〉m|GHZ〉n.

Here |a|2 + |b|2 = 1, and m, n � 2. Due to the shape of |ψ〉,
we have that the set of the bipartite reduced density matrices
for the pure state |ψ〉 consists of three kinds:

ρ1 = |a|2
2

(|00〉〈00| + |11〉〈11|) + |b|2
m

[(m − 2)|00〉〈00| + (|01〉 + |10〉)(〈01| + 〈10|)],

ρ2 = |b|2
2

(|00〉〈00| + |11〉〈11|) + |a|2
n

[(n − 2)|00〉〈00| + (|01〉 + |10〉)(〈01| + 〈10|)],

ρ3 =
(

a√
2n

|01〉 + b√
2m

|10〉
)(

a√
2n

〈01| + b√
2m

〈10|
)

+
[

(n − 1)|a|2
2n

+ (m − 1)|b|2
2m

]
|00〉〈00| + (n − 1)|a|2

2n
|10〉〈10|

+ |a|2
2n

|11〉〈11| + (m − 1)|b|2
2m

|01〉〈01| + |b|2
2m

|11〉〈11|, (18)

and then we have

C(ρ1) = max

{
0,

2|b|2
m

− 2

√
|a|2
2

( |a|2
2

+ m − 2

m
|b|2
)}

=
{

0, |a|2 ∈ (g(m), 1],

2|b|2
m − 2

√
|a|2

2

( |a|2
2 + m−2

m |b|2), |a|2 ∈ [0, g(m)],
(19)
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C(ρ2) = max

{
0,

2|a|2
n

− 2

√
|b|2
2

( |b|2
2

+ n − 2

n
|a|2
)}

=
{

0, |a|2 ∈ [0, h(n)],

2|a|2
n − 2

√
|b|2
2

( |b|2
2 + n−2

n |a|2), |a|2 ∈ [h(n), 1],
(20)

C(ρ3) = 0. (21)

Here g(m) = m2−2m+4−m
√

m2−4m+8
(m−2)2 , and h(n) = n

√
n2−4n+8−2n

(n−2)2 .

Let x = |a|2, and f (x) = CM (|ψ〉). First
we compute the maximum when (m, n) ∈
{(2, 2), (2, 3), (3, 2), (3, 3), (2, 4), (4, 2)}.

When m = n = 2, we have

f (x) =
{

1 − 2x, x ∈ [0, 1/2],
2x − 1, x ∈ [1/2, 1], (22)

and then the maximum is 1, when x = 0 or 1.
When m = 2 and n = 3, we have

f (x) =
⎧⎨⎩

1 − 2x, x ∈ (0, 1/2),
0, x ∈ [1/2, 3

√
5 − 6],

2x − √
3x2 − 12x + 9, x ∈ (3

√
5 − 6, 1],

(23)

and then when x = 1, we have f (x) gets the maximum 2.
When m = 3 and n = 2, we have

f (x) =

⎧⎪⎨⎪⎩
2(1 − x) − √

3x(x + 2), x ∈ [0, 7 − 3
√

5],
0, x ∈ [7 − 3

√
5, 1

2

]
,

2x − 1, x ∈ [1/2, 1],
(24)

and when x = 0, f (x) gets the maximum 2.
When m = n = 3, we have

f (x)=
⎧⎨⎩

3(1−x)−√
3x(x + 2), x ∈ [0, 7 − 3

√
5],

0, x ∈ (7 − 3
√

5, 3
√

5 − 6),
2x − √

3x2 − 12x + 9, x ∈ (3
√

5 − 6, 1],
(25)

and when x = 0 or x = 1, f (x) gets the maximum, 2.
When m = 4 and n = 2, we have

f (x) =
⎧⎨⎩3 − 3x − 6

√
x, x ∈ [0, 3 − 2

√
2],

0, x ∈ [3 − 2
√

2, 1/2],
2x − 1, x ∈ [1/2, 1],

(26)

and when x = 0, f (x) gets the maximum 3.
When m = 2 and n = 4, we have

f (x) =

⎧⎪⎨⎪⎩
1 − 2x, x ∈ [0, 1.2],
0, x ∈ (1/2, 2

√
2 − 2),

3x − 12
√

1
4 − x

4 , x ∈ [2
√

2 − 2, 1],
(27)

and then maxx∈[0,1] f (x) = 3.

Next from simple computation, we have ∀m, n � 3, h(n) �
g(m), then

f (x)

=

⎧⎪⎪⎨⎪⎪⎩
(m − 1)(1 − x) − 2

√
4−m
4m x2 + m−2

2m x, x ∈ [0, g(m)],

0, x ∈ [g(m), h(n)],

(n − 1)x − n(n − 1)
√

1
4 − x

n + 4−n
4n x2, x ∈ [g(n), 1],

(28)

when x ∈ [0, g(m)] and m � 4, f (x) is monotone decreasing;
then when x = 0, f (x) = m − 1; when x ∈ [g(n), 1], f (x) is
monotone increasing and then maxx∈[g(n,1)] f (x) = n − 1, that
is, when m � 4, f (x) = max(m − 1, n − 1).

In the next section, we present some applications of our
results.

IV. APPLICATION

The structure of a multipartite entanglement system is
complex. In this section, we apply our results above on the
genuine entanglement detection. We also make some com-
ments on the absolutely maximally entangled states (AMES),
and we apply Theorem 3 to present when a pure state is an
AMES in a three-qubit system.

A. An entanglement criterion for genuine entangled states

On the other hand, an important problem in entanglement
theory is to determine whether a multipartite state is genuinely
entangled, biseparable, or fully separable. A widely accepted
method for attacking the problem is to construct entanglement
witnesses (EWs) [1]. The EW W is a Hermitian operator when
Tr(W σ ) � 0 for every biseparable state σ and Tr(W ρ) < 0
for some entangled state ρ. The EW is a theoretical and
experimental method compared with mathematical criteria,
such as positive partial transpose [38] and computable cross
norm [39]. For a review we refer readers to Refs. [1,24]. EWs
have been constructed to detect the entanglement of many
physically realizable states, such as the GHZ diagonal states
[40,41], GHZ-like states [42], and noisy Dicke states [43]. In
the following we connect EWs to CM (φ).

In practice, we need to analyze the change of CM (φ) of n-
qubit pure states |ϕ〉 under white noise. Let ρ(p) = p|ϕ〉〈ϕ| +
(1 − p) 1

2n I2n , with p ∈ (0, 1). By definition and simple com-
putation, one can show that CM (ρ) monotonically increases
with p. As an example, we assume that |ϕ〉 is the n-qubit W
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state. Hence

ρ(p) = p|Wn〉〈Wn| + (1 − p)
I

2n
. (29)

Here we can find that the state (29) is symmetric. From com-
putation, we have

C(ρi �= j ) = max

(
0,

2p

n
− 2

√
(1 − p)(n + 3np − 8p)

16n

)
,

(30)

that is, when

16p2 − n2(1 − p)2 + 4np(n − 2)(p − 1) > 0, (31)

CM (ρ) = (n − 1)p − (n − 1)
√

n(1 − p)(n + 3np − 8p).

When n = 3, from the analysis above, we have that when
p �

√
155−5

8 the state ρ(p) is a genuinely entangled state. In

Ref. [43], the authors showed when p �
√

3
8+√

3
the state ρ(p)

is fully separable; there the authors presented an optimal en-
tanglement witness Ŵ for the state ρ(p) when n = 3, and the
witness Ŵ was written as

Ŵ = 1

d
|000〉〈000| − [|001〉(〈001|

+ 〈100|) + |010〉(〈001| + 〈100|)
+ |100〉(〈001| + 〈010|)]
+ d (|011〉 + |101〉 + |110〉)(〈011|
+ 〈101| + 〈110|).

Chen et al. [44] have shown that the state ρ(p) is fully
separable when p �

√
3

8+√
3
; they also showed when p ∈

(
√

3
8+√

3
, 0.2095] the state ρ(p) is biseparable but not fully

separable. Here, if Conjecture 1 is true, then CM (ρ) > n − 2
implies that ρ(p) is a genuinely entangled state. In particular,
this is true when n = 3 by Theorem 4. Thus proving Con-
jecture 1 is meaningful to the investigation of entanglement
detection.

B. Absolutely maximally entangled state

Next we investigate AMES in n-qubit systems. A pure mul-
tipartite entangled state is called AMES if all reduced density
operators obtained by tracing out at least half of the particles
are maximally mixed [45]. So the function CM (·) of every
AMES is zero, though the converse fails because the n-qubit
non-AMES may have separable reduced density operators.
An example is the GHZ state. Hence, we have constructed a
necessary condition by which a multipartite state is an AMES.
Next we consider the AMES in a three-qubit system.

Corollary 1. The sole class of AMES |ψ〉 in a three-qubit
system are the states that are LU equivalent to |GHZ〉 =

1√
2
(|000〉 + |111〉).
We give the proof of the corollary in Appendix E.

C. An upper bound of the sum of all bipartite quantum discord

Here we present an upper bound of the sum of all bipartite
quantum discord for a three-qubit pure state. The quantum
discord was presented by Henderson and Vedral [46] and
Ollivier and Zurek [47] independently. Quantum discord is a
measure of nonclassical correlation. It is defined as

δ←
AB = IAB − J←

AB = IAB − max
{
B

x }

(
S(ρA) −

∑
x

pxS
(
ρx

A

))
,

where the maximum takes over all the positive-operator-
valued measurements {
B

x } performed on the subsystem B,
px = Tr 
B

x ρAB
B
x , and ρx

A = TrB(
B
x ρAB
B

x )/px. From its
definition, it quantifies at least how much a bipartite state
of one system is changed on average by the measurement
of the other system. In the last decade, there are some re-
sults suggesting that quantum discord plays an important role
in quantum information and computation tasks [48–52]. Re-
cently, Guo et al. considered the complete monogamy relation
for multiparty quantum discord [53].

Next we recall a conservation law for distributed EoF and
quantum discord of a three-qubit pure state [54],

EAB + EAC = δ←
AB + δ←

AC . (32)

The law depends on the Koashi-Winter relation EAB + J←
AC =

SA [55].
Here we present an upper bound of the sum of all the

bipartite discord for a three-qubit pure state; from Eq. (32),
we have

δ←
AB + δ←

BC + δ←
CA + δ←

BA + δ←
AC + δ←

CB

= EAB + EAC + EBC + EBA + ECA + ECB

� 2 × cmax = 2cmax. (33)

Thus, we have that quantum discord owns a multilinear
monogamy relation for a three-qubit pure state.

V. CONCLUSIONS

Here we have mainly considered the shareablility of the
entanglement for a multiqubit state in terms of EoF. We have
presented that, up to the local unitary transformations, the
W state is the unique one that can reach the upper bound of
CM (·) for a three-qubit state; these results may tell us that the
entanglement cannot be shared freely for a three-qubit system.
We have also picked 105 four- and five-qubit pure states ran-
domly and computed their CM (·) values, which have verified
Conjecture 1 numerically. Finally, we also have presented
some applications of our results. We think the methods we
used here can be generalized to consider the upper bound of
the multilinear monogamy relation in terms of other bipartite
entanglement measures such as Rényi entanglement for an
n-qubit pure state. We believe that our results are helpful in the
study of monogamy relations for multipartite entanglement
systems.
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APPENDIX A: THE PROOF OF THEOREM 1

For a three-qubit pure state, the W state reaches the upper
bound of the multilinear monogamy relation in terms of EoF.

Proof. Here we denote that

f (x) = h

(
1 + √

1 − x

2

)
, x = C2

AB,

y = C2
AC + C2

AB, c = C2
AC + C2

AB + C2
BC,

g(x, y) = f (x) + f (y − x) + f (c − y), (A1)

∂g

∂x
= f ′(x) − f ′(y − x) = 0,

∂g

∂y
= f ′(y − x) − f ′(c − y) = 0. (A2)

As f ′′(x) < 0, f ′(x) is monotonously decreasing [56],
− f ′(y − x) is also monotonously decreasing in terms of x, and
by the equality (A2), we have that

C2
AB = C2

AC = C2
BC (A3)

is the only case when Eq. (A2) is valid. Furthermore, as f (x) is
a monotonic function [56], we have that, when (A3) is valid,
E (ρAB) + E (ρAC ) + E (ρBC ) achieves the upper bound for a
three-qubit pure state.

From Ref. [57], we have that a three-qubit pure state
|ψ〉ABC can be written in the generalized Schmidt decompo-
sition:

|ψ〉 = l0|000〉 + l1eiθ |100〉 + l2|101〉 + l3|110〉 + l4|111〉,
(A4)

where θ ∈ [0, π ), li � 0 (i = 0, 1, 2, 3, 4), and
∑4

i=0 l2
i = 1.

From simple computation, we have

C2
AB = 4l2

0 l2
2 , C2

AC = 4l2
0 l2

3 , (A5)

C2
BC = 4l2

2 l2
3 + 4l2

1 l2
4 − 8l1l2l3l4 cos θ. (A6)

As f (x) is monotone [56], then we only need to obtain the
maximum of 4l2

0 l2
2 by using the Lagrange multiplier:

m(l0, l1, l2, l4, λ, μ) = 4l2
0 l2

2 + λ
(
l2
0 + l2

1 + 2l2
2 + l2

4 − 1
)

+ μ
(
l2
0 l2

2 − l4
2 − l2

1 l2
4 + 2l1l2

2 l4 cos θ
)
,

(A7)

∂m

∂l0
= 8l0l2

2 + 2λl0 + 2μl0l2
2 , (A8)

∂m

∂l1
= 2λl1 + 2μl2

2 l4 cos θ − 2μl1l2
4 , (A9)

∂m

∂l2
= 8l2

0 l2 + 4λl2 + 2μl2
0 l2 − 4μl3

2 + 4μl1l2l4 cos θ,

(A10)
∂m

∂l4
= 2λl4 − 2μl2

1 l4 + 2μl1l2
2 cos θ, (A11)

∂m

∂θ
= −2μl1l2

2 l4 sin θ, (A12)

∂m

∂λ
= l2

0 + l2
1 + 2l2

2 + l2
4 − 1, (A13)

∂m

∂μ
= l2

0 l2
2 − l4

2 − l2
1 l2

4 + 2l1l2
2 l4 cos θ. (A14)

When formulas (A8)–(A14) equal to 0, we have l0 = l2 =
l3 = 1√

3
, and l1 = l4 = 0 is the only case when C2(ρAB) attains

the maximum, that is,

max
|ψ〉ABC

[E (ρAB) + E (ρAC ) + E (ρBC )] := cmax = 3h

(
1

2
+

√
5

6

)
.

(A15)

When computing Eqs. (A8)–(A14) equal to 0, according to
Eq. (A12), we have that at least one of the equalities in the set
{μ = 0, l1 = 0, l2 = 0, l4 = 0, sin θ = 0} is valid. Then by
using the method of exclusion, we could get the result. By the
way, in the method of exclusion, we mainly use that when |ψ〉
is separable the function EM (·) cannot get the maximum.

When we take the operation σx on the first system, we get
the W state 1√

3
(|001〉 + |010〉 + |100〉). �

APPENDIX B: THE PROOF OF LEMMA 1

Up to the local unitary transformations, the W state is the
unique state that can reach the upper bound in terms of the
function CM (ψ ) = CAB + CBC + CAC for a three-qubit pure
state.

Proof. We will compute the maximum of the six classes of
a three-qubit state respectively according to Ref. [58].

Case i. When |ψ〉ABC is A − B − C, CM (ψ ) = 0.
Case ii. When |ψ〉ABC is biseparable, if |ψ〉ABC = |φ1〉A ⊗

|φ2〉BC , CAB = CAC = 0, and CM (ψ ) = CBC � 1, the other
cases are similar.

Case iii. When |ψ〉ABC belongs to the W class, according
to the formula (15), CM (ψ ) = 2r2r3 + 2r1r3 + 2r1r2. Triv-
ially, when r1 = r2 = r3, that is, |ψ〉ABC = |W 〉 = 1√

3
(|001〉 +

|010〉 + |110〉), CM (ψ ) gets the maximum.
Case iv. When |ψ〉ABC belongs to the GHZ class, ac-

cording to Ref. [58], assume |ψ〉 = M1 ⊗ M2 ⊗ M3|GHZ〉,
Mi = ( �ui, �vi ), �ui = (ui cos θi, ui sin θi )T , �vi = [vi cos(φi + θi ),
vi sin(φi + θi )]T , and

CM (ψ ) = |c1s2s3| + |c2s1s3| + |c3s1s2|
r + c1c2c3

. (B1)

Here we denote ci = cos φi, si = sin φi, i = 1, 2, 3, 2r =
u1u2u3
v1v2v3

+ v1v2v3
u1u2u3

, and r � 1. In order to let CM be the maxi-
mum, assume r = 1. When ci < 0, CM will get the maximum.
Then let φi ∈ [0, π

2 ], and CM (ψ ) = c1s2s3+c2s1s3+c3s1s2
1−c1c2c3

. Next we
prove CM (ψ ) � 2. First we define l (c1, c2, c3) as follows:

l (c1, c2, c3)

= c1 cos(φ2 − φ3) + c2 cos(φ1 − φ3) + c3 cos(φ1 − φ2)

− c1c2c3.

Assume c1 > c2 � c3, then we obtain

l (c1, c2, c3) � l (c1, c1, c1).

When c1 = c2 = c3, the function l (c1, c1, c1) is a monotonic
function of c1. When c1 → 1, the function l (c1, c1, c1) gets
the maximum, that is, CM (ψ ) → 2. Then we prove that, if
|ψ〉ABC is a GHZ class state, then CM (|ψ〉ABC ) � 2. However,
from the above analysis, when CM (|ψ〉ABC ) = 2, we have
c1 = c2 = c3 → 1; that is, the matrix Mi is singular; this is
impossible. �
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APPENDIX C: THE PROOF OF THEOREM 2

Up to the local unitary transformations, the W state is the
unique state that can reach the upper bound in terms of the
function CM (·) for a three-qubit state.

Proof. Combining with Lemma 1, we only need to present
that the mixed states cannot reach the upper bound of the
multilinear monogamy relations in terms of concurrence.

Due to Lemma 1, for a three-qubit pure state |ψ〉, CM (|ψ〉)
gets the maximum, only when |ψ〉 is LU equivalent to |W 〉.
Assume ρ is a three-qubit mixed system, and {(pi, |φi〉)|i =
1, 2, . . . , k} is a decomposition of ρ, we can always assume
k = 2. For the cases when k > 2, we can prove similarly.
As |φi〉 is LU equivalent to |W 〉, we can always assume
{(p1, |W 〉), (p2,U1 ⊗ U2 ⊗ U3|W 〉)} is a decomposition of ρ,
and then

CM (ρ) = C(ρAB) + C(ρAC ) + C(ρBC )

= C(σ1) + C(σ2) + C(σ3). (C1)

Here we assume

σ1 = p1

3
(|00〉〈00| + 2|φ+〉〈φ+|) + p2

3
τ1,

σ2 = p1

3
[|00〉〈00| + 2|φ+〉〈φ+|] + p2

3
τ2,

σ3 = p1

3
[|00〉〈00| + 2|φ+〉〈φ+|] + p2

3
τ3,

|φ+〉 = 1√
2

(|01〉 + |10〉),

where we denote τ1 = [(U1 ⊗ U2)|00〉〈00|(U1 ⊗ U2)† +
2(U1 ⊗ U2)|φ+〉〈φ+|(U1 ⊗ U2)†], τ2 = [(U1 ⊗ U3)|00〉〈00|
(U1 ⊗ U3)† + 2(U1 ⊗ U3)|φ+〉〈φ+|(U1 ⊗ U3)†], and τ3 =
[(U2 ⊗ U3)|00〉〈00|(U2 ⊗ U3)† + 2(U2 ⊗ U3)|φ+〉〈φ+|(U2 ⊗
U3)†], then we have

C(σ1) � 2
3C[p1|φ+〉〈φ+| + p2(U1 ⊗ U2)|φ+〉
× 〈φ+|(U1 ⊗ U2)†]. (C2)

By Lemmas 2, 3, and 4, we have (U1 ⊗ U2)|φ+〉 = eix|φ+〉
is a sufficient and necessary condition of C[p1|φ+〉〈φ+| +
p2(U1 ⊗ U2)|φ+〉〈φ+|(U1 ⊗ U2)†] = 1; here eix is a global
phase factor. Then we can get the similar result for σ2 and
σ3. As Sr(|01〉) = Sr(|10〉) = 1, here we denote that Sr(·) is
the Schmidt rank; then we have Ui = (eiθi 0

0 1), i = 1, 2, and 3,
that is, ρ = |W 〉〈W |. Then we finish the proof. �

Here we prove that (U1 ⊗ U2)|φ+〉 = eix|φ+〉 is a suffi-
cient and necessary condition of C[p1|φ+〉〈φ+| + p2(U1 ⊗
U2)|φ+〉〈φ+|(U1 ⊗ U2)†] = 1. As �⇒ is trivial, ⇐�: first we
present a lemma.

Lemma 2. Assume A, B ∈ Pos(H), here we denote that
Pos(H) is a linear space consisting of all the semidefinite
positive operators of a bounded Hilbert space H. Here we
denote that Eig(A) and Eig(B) are two sets consisting of all the
eigenvalues of the matrix A and B, respectively. If the biggest
elements in the set Eig(A) and Eig(B) are 1 or less, then the
biggest element in the set Eig(AB) is 1 or less.

Proof. Assume that the eigenvalues of A are λi with their
eigenvectors |αi〉, the eigenvalues of B are μ j with their eigen-
vectors |β j〉, and the eigenvalues of AB are χk with their

eigenvectors |γk〉. Here we always assume that the range of
A and B are nonsingular; then we have

AB|γk〉 = AB
∑

j

x jk|β j〉

= A
∑

j

μ jx jk|β j〉

=
∑

i j

λiμ jx jkyi j |αi〉, (C3)

AB|γk〉 = χk|γk〉 = χk

∑
i j

x jkyi j |αi〉. (C4)

In the formula (C3), we denote that |γk〉 =∑ j x jk|β j〉 and
|β j〉 =∑i yi j |αi〉. From the equalities (C3) and (C4), we have

χk =
∑

i j λiμ jx jkyi j∑
i j x jkyi j

� 1. (C5)

Here, Eq. (C5) is due to λi � 1 and μ j � 1. Then we finish
the proof. �

As ρ is semidefinite positive, then (σy ⊗ σy)ρ(σy ⊗ σy) is
semidefinite positive. Then due to Lemma 2, we have that
all the eigenvalues of ρ(σy ⊗ σy)ρ(σy ⊗ σy) are 1 or less.
Then due to Eq. (10), we have that only when Rank[ρ(σy ⊗
σy)ρ(σy ⊗ σy)] = 1 and λ1 in Eq. (10) equals to 1 can C(ρ) =
1. As σy ⊗ σy is nonsingular, we only need Rank(ρ) = 1.

Lemma 3. Rank[p1|φ+〉〈φ+| + p2(U1 ⊗ U2)|φ+〉〈φ+|
(U1 ⊗ U2)†] = 1 if and only if (U1 ⊗ U2)|φ+〉 = eix|φ+〉,
where eix is a global phase factor.

Proof. Here we denote σ = p1|φ+〉〈φ+| + p2(U1 ⊗
U2)|φ+〉〈φ+|(U1 ⊗ U2)†. If (U1 ⊗ U2)|φ+〉 �= eix|φ+〉,
then (U1 ⊗ U2)|φ+〉 and |φ+〉 are linear independent,
dim[span{|φ+〉, (U1 ⊗ U2)|φ+〉}] = 2, dim[span{|φ+〉, (U1 ⊗
U2)|φ+〉}]⊥ = n − 2. As ∀|α〉 ∈ dim(span{|φ+〉, (U1 ⊗
U2)|φ+〉}⊥, σ |α〉 = 0, that is, Rank(σ ) � 2. As we
cannot find a nontrivial vector |β〉 in the subspace
span{|φ+〉, (U1 ⊗ U2)|φ+〉} such that σ |β〉 = 0, then we
finish the proof. �

Lemma 4. Assume θ = p1|φ+〉〈φ+| + p2U1 ⊗ U2)|φ+〉
〈φ+|(U1 ⊗ U2)† with Rank(θ ) = 2, then Rank[(σy ⊗
σy)θ̃ (σy ⊗ σy)θ ] = 2.

Proof. As σy ⊗ σy is invertible, we only need to
prove Rank[θ̃ (σy ⊗ σy)θ ] = 2. As Rank[θ̃ (σy ⊗ σy)θ ] =
Rank[θ θ̃ (σy ⊗ σy)], then if we can prove Rank[θ θ̃] = 2, we
finish the proof. As θ = θ†, then Rank[θ θ̃ ] = Rank[θθT ] =
Rank(θ ) = 2. �

APPENDIX D: THE PROOF OF THEOREM 3

Assume |ψ〉 is a three-qubit pure state, then CM (|ψ〉) =
0 if and only if |ψ〉 can be represented as |ψ〉 = r0|000〉 +
r1|111〉 up to local unitary operations when 0 � r0 and r1 � 1.

Proof. First we recall CM (|ψ〉ABC ) = C2
AB + C2

AC + C2
BC .

⇐: When |ψ〉 = r0|000〉 + r1|111〉, then ρAB = ρAC =
ρBC=r2

0 |00〉〈00| + r2
1 |11〉〈11|, C(ρAB)=C(ρAC ) = C(ρBC ) =

0, that is, CM (|ψ〉) = 0.

⇒: In the proof of Theorem 1, we present that for a three-
qubit pure state |ψ〉ABC = l0|000〉 + l1eiθ |100〉 + l2|101〉 +
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l3|110〉 + l4|111〉, where li � 0 (i = 0, 1, 2, 3, 4), θ ∈ [0, π ),

C2
AB = 4l2

0 l2
2 , C2

AC = 4l2
0 l2

3 ,

C2
BC = 4l2

2 l2
3 + 4l2

1 l2
4 − 8l1l2l3l4 cos θ. (D1)

When CM (|ψ〉) = 0, we have that

l0l2 = l0l3 = 0, l2
2 l2

3 + l2
1 l2

4 = 2l1l2l3l4 cos θ. (D2)

When l0 �= 0, we have l2 = l3 = 0, that is, l1l4 = 0,
then |ψ〉 = l0|000〉 + l4|111〉 or |ψ〉 = (l0|0〉 + l1eiθ |1〉)|00〉.
When |ψ〉 is the second state, let U1 be a unitary on the first
system such that U1(|l0|0〉 + l1eiθ |1〉〉) = |0〉, then the second
state is LU equivalent to the state |000〉. Below we denote Ui

to be a unitary on the ith system, i = 1, 2, and 3.
When l0 = 0, then from the third formula in Eq. (D1),

(l2l3 cos θ − l1l4)2 + l2
2 l2

3 (sin θ )2 = 0, (D3)

that is, l2l3 cos θ = l1l4 and l2l3 sin θ = 0. When
sin θ = 0 and li � 0 (i = 1, 2, 3, 4), cos θ = 1. That is,
(l1, l2) = a(l3, l4), then |ψ〉 = |1〉(|0〉 + a|1〉)(l1|0〉 + l2|1〉).
When U2(|0〉 + a|1〉) = √

1 + a2|0〉 and U3(l1|0〉 + l2|1〉) =√
l2
1 + l2

2 |0〉, then we obtain that the above state is LU
equivalent to |000〉. When l2 = 0, then l1l4 = 0. If l1 = 0,
then |ψ〉 can be represented as |φ1〉 = l3|110〉 + l4|111〉.
Let U3(l3|0〉 + l4|1〉) = |1〉, then it is LU equivalent to
the state |111〉. If l4 = 0, then |ψ〉 can be represented as
|φ2〉 = eiθ l1|100〉 + l3|110〉. Let U2(eiθ l1|0〉 + l3|1〉) = |1〉
and U3 = σX , then it is LU equivalent to the state |111〉.

The case when l3 = 0 is similar to the case when l2 = 0.
Then we finish the proof. �

APPENDIX E: THE PROOF OF COROLLARY 1

The sole class of AMES |ψ〉 in a three-qubit system are the
states that are LU equivalent to |GHZ〉 = 1√

2
(|000〉 + |111〉).

Proof. First we provide two methods to prove that ρAB,
ρAC , and ρBC are separable. Assume |ψ〉ABC is an AMES in

a three-qubit state, then

ρA = ρB = ρC = I

2
.

Next as ρA = I
2 , then any purification state |φ〉AB′ of ρA can be

written as

|φ〉ABC = (IA ⊗ UBC )
(|00〉 + |11〉)|0〉√

2
,

where UBC is a unitary operator; then we have

ρBC =|φ1〉〈φ1| + |φ2〉〈φ2|,
|φ1〉 =UBC |00〉, |φ2〉 = UBC |10〉, (E1)

that is, r(ρBC ) = 2. Then due to Theorem 1 in Ref. [59], we
have ρBC is separable. Similarly, we have ρAB and ρAC are
separable.

Here we provide the other method to prove that ρAB, ρAC ,
and ρBC are separable. As ρA = ρB = I

2 , then from Ref. [60],
we have

ρAB = λ1�
+ + λ2�

− + λ3�
+ + λ4�

−, (E2)

�+ = 1
2 (|00〉 + |11〉)(〈11| + 〈00|),

�− = 1
2 (|00〉 − |11〉)(|00〉 − 〈11|),

�+ = 1
2 (|01〉 + 〈10|)(〈01| + 〈10|),

�− = 1
2 (|01〉 − |10〉)(〈01| − 〈10|).

As ρC and ρAB are with the same spectrum, then we have
only two of λi (i = 1, 2, 3, 4) are 1

2 . Then ρAB is separable.
Similarly, we have ρAC and ρBC are separable.

As all of ρAB, ρAC , and ρBC are separable, then we have

CM (|ψ〉) = 0.

Then from Theorem 3, we have |ψ〉 = r0|000〉 + r1|111〉
up to unitary operations when r0, r1 ∈ [0, 1]. As ρA = ρB =
ρC = 1

2 , then |ψ〉 = 1
2 (|000〉 + |111〉) up to local unitary

operations. �
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