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Pulsed characteristic-function measurement of a thermalizing harmonic oscillator
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We present a method for the direct measurement of the Wigner characteristic function of a thermalizing
harmonic oscillator that is completely inaccessible for control or measurement. The strategy employs a recently
proposed probe-measurement-based scheme [Phys. Rev. Lett. 122, 110406 (2019)] which relies on the pulsed
control of a two-level probe. We generalize this scheme to the case of a nonunitary time evolution of the target
harmonic oscillator, describing its thermalization through contact to a finite-temperature environment, given
in the form of a Lindblad master equation. This generalization is achieved using a superoperator formalism
and yields analytical expressions for the direct measurement of the characteristic function, accounting for the
decoherence during the measurement process.
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I. INTRODUCTION

The exact knowledge of the quantum state of a system is
indispensable for most modern quantum experiments. This in-
cludes not only fundamental tests of quantum mechanics, but
also the rapidly evolving field of quantum-information pro-
cessing where also continuous-variable quantum systems are
of great interest [1]. For continuous-variable states, the quan-
tum state cannot only be represented by a density operator, but
also by an equivalent description in terms of phase-space dis-
tributions or characteristic functions [2,3]. In order to obtain
the knowledge of these phase-space distributions, a standard
tool is continuous-variable quantum-state tomography [4], for
example, using homodyne detection [5,6] or photon-number
parity measurements [7,8].

However, most tomography methods require measurement
access to the continuous-variable degree of freedom. The sit-
uation changes appreciably in systems where such a direct
access is not attainable. In this kind of scenario, an established
method is to employ a readily accessible measurement probe
[9–15], often given by two-level quantum systems. For ex-
ample, such a procedure has been employed in a well-known
probe-based direct measurement of the Wigner function [9].

In this paper, we propose a strategy for a direct probe-based
measurement of the Wigner characteristic function [16–18] of
an inaccessible harmonic oscillatorwhere the probe is formed
by a two-level quantum system that exerts a state-dependent
force on the harmonic oscillator. The measurement is direct
in the sense that the values of the distribution can be di-
rectly connected to probe-measurement outcomes, without the
necessity of subsequent numerical processing, such as the
inverse Radon transform [5,19,20]. Nevertheless, in order to
obtain the Wigner function itself or other phase-space distri-
butions, one would still have to perform the complex Fourier
transform of the measured characteristic function.
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Contrary to previous probe-based schemes for the direct
measurement of phase-space distributions, such as the Wigner
function, the method for the measurement of the characteristic
function presented here does not require the control of the
harmonic oscillator, such as a displacement operation prior to
the measurement procedure [21–23], the controllability of the
coupling to the probe [24–26], or an additional third degree of
freedom [27]. In principle, displacement operations by coher-
ent fields do not necessarily pose an obstacle. Our aim here is
to present an alternative, for example, for situations when they
are not applicable. Where in our alternative the characteristic
function is measured, which, being the Fourier transform of
the Wigner function, contains the same information.

Explicitly, we use the interference generated by a pulse
sequence applied to the probe in order to engineer the time
evolution of the elements of the density operator that are
off-diagonal in the probe degree of freedom in order. These
off-diagonal elements can then be directly connected to val-
ues of the Wigner characteristic function at desired points
in reciprocal phase space. We generalize a recently pro-
posed pulsed reconstruction [14] to a sequence of temporally
nonequidistant pulses applied to the probe, resulting in the
possibility for a better reconstruction of the quantum state
of the target harmonic oscillator. We additionally account
for decoherence of the harmonic oscillator, described using
a Lindblad master equation for a Markovian thermalization
by a finite-temperature environment [16,17]. This makes it
possible to compensate for such a thermalization that occurs
during the measurement process [28–31] and, nevertheless,
obtain the exact values of the characteristic function of the
initial state. In order to do so, we employ a superoperator
formalism to derive the analytical expressions for the time
evolution under the applied pulse sequence and show how
the probe-measurement outcomes are related to the values of
the characteristic function. Furthermore, the pulse sequence
applied to the probe is of such a form that it makes the
quantum-state reconstruction robust against noise acting on
the probe two-level system during the measurement process.
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This is achieved by incorporating pulsed dynamical decou-
pling [32–34] in the form of a spin-echo method [35] where
the probe states are flipped at appropriate times and the action
of noise with a long correlation time can be reverted.

The paper is structured as follows. In Sec. II we introduce
the thermalization dynamics of the harmonic oscillator and
the probe under the pulse sequence that is applied to the
probe. The resulting effective propagators of the initial density
operator of the harmonic oscillator are derived in Sec. III.
These propagators are then used in Sec. IV to derive which
values of the characteristic function can be obtained, how they
are related to the probe-sequence parameters, and how they
are connected to expectation values of probe measurements.
Section V shows some explicit examples, before we summa-
rize our results and draw conclusions in Sec. VI. Moreover, for
self-consistency, useful identities and technical details (e.g.,
various superoperator and phase-space-distribution identities)
supporting the calculations in the main text are presented and
derived in the Appendices A–C.

II. SYSTEM AND PULSE SEQUENCE

In this section, we introduce the general form of the dissi-
pative dynamics and the pulse sequence that we employ. The
composite system we investigate consists of the thermalizing
harmonic oscillator, whose quantum state we want to recon-
struct, and a two-level probe that is accessible for a control
through pulses as well as measurements.

A. Thermalizing harmonic oscillator

The thermalizing harmonic oscillator we consider has the
frequency ν, whereas its annihilation and creation operators
are denoted by a and a†, respectively. Its unitary evolution is
thereby determined by the Hamiltonian H = h̄ν(a†a + 1/2).
Besides the unitary dynamics, generated by this Hamiltonian,
the description of the free time evolution of its density op-
erator ρ also includes a nonunitary contribution originating
in the interaction of the harmonic oscillator with its thermal
environment at the reservoir temperature �. This interaction
can be characterized by the damping rate γ and the mean ther-
mal occupation n̄ = [exp(h̄ν/kB�) − 1]−1. In a Born-Markov
approximation, this leads to the Lindblad master equation
∂ρ/∂t = Lρ in which the action of the Liouvillian superoper-
ator L, that generates the dynamics of ρ, is given by [16,17]

Lρ = −iν[a†a, ρ] + (n̄ + 1)γ

2
(2aρa† − {a†a, ρ})

+ n̄γ

2
(2a†ρa − {aa†, ρ}), (1)

with the commutator [·, ·] and the anticommutator {·, ·}. Here,
and throughout the subsequent text, we represent superoper-
ators acting on the space of harmonic-oscillator operators by
calligraphic letters and, in case they have a dependence on
parameters, we write their arguments in square brackets.

B. Two-level probe and state-dependent interaction

As a measurement probe, we consider a generic two-
level system described by the Hamiltonian Hprobe = (h̄ω/2)σz,
where σκ for κ = x, y, z denote the usual Pauli operators. We

represent the eigenstates of σz to the eigenvalues ±1 by |±〉.
The ± notation, that is often used for the σx eigenstates, is
chosen over common notations for the σz eigenstates, such as
↑↓, for later notational convenience.

We assume the interaction between the probe and the har-
monic oscillator to be of the form

Hint = h̄g

2
σz(a + a†), (2)

i.e., a probe-state-dependent constant force acting on the har-
monic oscillator [14,36] with the same strength but opposite
signs depending on the probe state.

Such a coupling can be realized in a variety of electrome-
chanical systems, for example, when an electronic spin is
coupled to the motional degree of freedom of a mechanical
element emanating a magnetic field or is embedded in a
mechanical oscillator subject to a spatially inhomogeneous
magnetic field [37–39]. Also, such an interaction can be
realized in harmonically trapped particles with an internal
electronic degree of freedom, such as ions in a linear Paul
trap. In this scenario, the above interaction can be realized
with a magnetic-field gradient along the trap axis [40–42], i.e.,
a magnetic field of the form B(z) = B0 + B1z, where the z di-
rection is the trap axis. With the position operator z ∼ a + a†

of the ion, this leads to a coupling to σz of the form (2).
Alternatively, it could be implemented by appropriately engi-
neered laser configurations, which then additionally allows to
conveniently turn the interaction on and off on demand. More
details on the feasibility of our method in such experimental
realizations have been discussed in Ref. [14] for the case of the
harmonic oscillator with thermalization. Cooling and heating
of trapped ions can be well described by a master equation of
the form (1) [43–45].

C. Pulse sequence

In order to apply an indirect control on the otherwise in-
accessible harmonic oscillator, the probe two-level system is
initially prepared in a known pure state, given by the state
vector |ψ〉 = ψ+|+〉 + ψ−|−〉, whose probability amplitudes
ψ = (ψ+, ψ−) fulfill |ψ+|2 + |ψ−|2 = 1. The initially separa-
ble density operator of the combined system, before the pulse
sequence we introduce below is applied, therefore, has the
form

�(0) = |ψ〉〈ψ|ρ0. (3)

Here, and in the following, we denote by ρ0 the unknown
density operator of the harmonic oscillator at the initial time
t = 0, namely, the state we want to reconstruct. After the
initialization, we apply a sequence of 2N pulses on the probe
that each exactly flip its states according to |±〉 ←→ |∓〉.

These so-called π pulses are assumed to be instantaneous,
and we consider a sequence of free-evolution times between
the pulses where always pairs of two adjacent free-evolution
times are of the same duration τn with n = 1, . . . , N . This
means one can represent the entire sequence as

[π−τN −π−τN ]−· · ·−[π−τ2−π−τ2]−[π−τ1−π−τ1],

where the time line goes from right to left such that it corre-
sponds to the order of the individual time-evolution operators
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that are applied. Here, every π stands for an instantaneous π

pulse and the square brackets indicate the N individual pulse-
sequence segments of length 2τn for n = 1, . . . , N . The total
length of the sequence is thereby given by T = 2

∑N
n=1 τn.

The N values of the free-evolution times are the quantities we
will control and vary in order to measure the quantum state of
the harmonic oscillator, and we summarize them in the vector
τ = (τ1, . . . , τN ).

Since the interaction commutes with the probe Hamilto-
nian, in the following, we will always work in the interaction
picture with respect to Hprobe. The dynamics of the full sys-
tem’s density operator � then contains a coherent contribution
from the interaction, that is, a commutator with Hint from
Eq. (2) and the thermalization of the harmonic oscillator de-
scribed by the superoperator L from Eq. (1). Explicitly, during
the free evolution it is governed by the master equation,

∂

∂t
� = L� − ig

2
[σz(a + a†), �]. (4)

Here, we mention that in such a description we have made the
assumption that the thermalization of the harmonic oscillator
is not affected by the interaction to the probe. This assumption
is widely used in quantum-optical calculations where damp-
ing terms of the Lindblad form are phenomenologically added
despite the presence of interaction terms, which is a good
description if one is not deep in the strong-coupling regime.
With the initial density operator �(0) from Eq. (3) this linear
differential equation can be integrated until time t , yielding

�(t ) = (|ψ+|2|+〉〈+|eC+t + |ψ−|2|−〉〈−|eC−t

+ψ+ψ∗
−|+〉〈−|eA+t + ψ−ψ∗

+|−〉〈+|eA−t )ρ0. (5)

In this expression, the reduced propagators that act on the
initial harmonic-oscillator density operator ρ0 are given in
terms of the superoperators C± and A±, whose action is

C±ρ = Lρ ∓ ig

2
[a + a†, ρ], (6)

A±ρ = Lρ ∓ ig

2
{a + a†, ρ}. (7)

They, respectively, include a commutator and an anticommu-
tator with the dimensionless position operator a + a†, that
originate from the interaction (2) with the probe.

After every free-evolution time, the probe states are flipped
through the π pulses, and the dynamics of the density operator
can be integrated over the subsequent free-evolution time,
during which the signs in the superoperators C± and A± are
changed. Iterating this procedure for the full pulse sequence
then results in the final state,

�(τ) = (|ψ+|2|+〉〈+|U+[τ] + |ψ−|2|−〉〈−|U−[τ]

+ ψ+ψ∗
−|+〉〈−|V+[τ] + ψ−ψ∗

+|−〉〈+|V−[τ])ρ0.

(8)

This is the density operator after the total length T of the
entire pulse sequence, however, since it naturally depends
on the choice of the free-evolution times τ, in the remain-
der of the text, we explicitly specify this dependence in the
notation �(τ). In the above expression for the state of the

total system, we have introduced the two pairs of effective
harmonic-oscillator propagators,

U±[τ] =
N∏

n=1

eC∓τn eC±τn , (9)

V±[τ] =
N∏

n=1

eA∓τn eA±τn , (10)

which also depend parametrically on τ. Here, and in the fol-
lowing, we always use the superoperator product convention∏N

n=1 Xn = XN · · ·X2X1, corresponding to the sequence in
which the propagators for the different building blocks of
the pulse sequence are applied to the initial density operator.
These superoperators describe the effective time evolution of
the harmonic oscillator and the influence, including the inter-
ference described by V±[τ], of the applied pulse sequence.

III. DYNAMICS UNDER THE PULSE SEQUENCE

In this section, we will derive the explicit form of the
four effective reduced propagators U±[τ] and V±[τ] and their
action on ρ0. The first kind of propagators U±[τ] are, in fact,
not strictly relevant for the later quantum-state reconstruction
scheme. However, we, nevertheless, show the derivation of
their explicit form briefly for the sake of completeness and
because this derivation is instructive for the subsequent treat-
ment of V±[τ]. The second kind of propagators V±[τ] do not
constitute trace-preserving maps since they merely describe
the interference generated by the pulse sequence.

Many of the following derivations greatly rely on some
of the well-known properties of the displacement operators
D(α) = exp(αa† − α∗a), such as their quasiclosure under
multiplication. Here, we introduce two kinds of displacement
superoperators, which we will refer to as superdisplacements.
Writing the dynamics in terms of these superdisplacements
makes it possible to conveniently trace back the actions of
C± and A± to the one of the Liouvillian superoperators L
introduced in Eq. (1). This is a great advantage since the
properties of L, such as its diagonalization [46,47] or the cor-
responding Green’s function in phase space [17], have been
well studied. In this sense, we will simply find transformations
that transform these superoperators into one with well-known
properties. When dealing with operators, one usually finds
unitary transformations that transform some operator into an-
other one with a known eigenbasis. Here, our treatment of
superoperators is analogous, we merely take the procedure to
the level of superoperators.

A. Diagonal part: U±

For the treatment of the superoperators on the diagonal in
the probe-state basis it is convenient to introduce the symmet-
ric superdisplacement D[ε], whose action is given by

D[ε]ρ = D(ε)ρD†(ε). (11)

From this definition it can be seen that the multiplication
property of the displacement operators directly translates to
the superoperator form D[ε]D[ς ] = D[ε + ς ], i.e., the su-
perdisplacements are closed under multiplication, giving them
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a genuine group character, contrary to the displacement opera-
tors themselves where an additional phase factor arises during
the multiplication. Analogous to the displacement operators
they fulfill D[ε]D[−ε] = I with the identity superoperator I.

We now employ this supertransformation with an appropri-
ate displacement parameter ε so that we can bring the action
of C± back to the one of L, viz.,

C± = D[∓ε]LD[±ε]. (12)

Here, the appropriate choice for the superdisplacement pa-
rameter ε such that this condition is fulfilled is given by the
relative coupling strength,

ε = g

2ν̃
, (13)

which we defined, for convenience and brevity, in terms of the
complex frequency,

ν̃ = ν − iγ

2
. (14)

A detailed derivation of this choice of ε is shown in
Appendix A1. Considering the superoperator defined in
Eq. (6), one sees that this transform essentially transforms a
thermalizing harmonic oscillator under a constant force into
a simple thermalizing harmonic oscillator. The transform (12)
can be written in an exponential form according to

eC±t = D[∓ε]eLtD[±ε], (15)

which is convenient for the derivation of the explicit form of
the propagators U±[τ] defined in Eq. (9).

At this point we want to move the free-thermalization
propagator exp(Lt ) to the very right and, therefore, make use
of the identity,

eLtD[ε] = D[εe−iν̃t ]eLt . (16)

This relation has already been used in other scenarios for
the direct measurement of phase-space distribution under the
influence of dissipation [31], and a detailed derivation of it is
presented in Appendix C. Using the multiplication property
of the superdisplacements, Eq. (15) can be directly rearranged
according to

eC±t = D[∓ε(1 − e−iν̃t )]eLt , (17)

where we find that exp(C±t ) may be written as a free thermal-
ization followed by a time-dependent superdisplacement.

We can now successively apply this relation to bring the
propagator U±[τ] for the full pulse sequence in a similar form.
Equation (9) for the full propagation of length T thereby
becomes

U±[τ] =
N∏

n=1

D[±ε(1 − e−iν̃τn )2]e2Lτn . (18)

Repeatedly applying identity (16) in order to bring all free-
thermalization propagators to the very right and contracting
all superdisplacements into a single one finally yields

U±[τ] = D[±υ(τ)]eLT , (19)

with the function,

υ(τ ) = εe−iν̃T
N∑

n=1

(1 − e−iν̃τn )2
n∏

k=1

e2iν̃τk , (20)

which can be readily shown by induction. This results shows
that the propagation under the full pulse sequence can be
written as a free thermalization followed by a single superdis-
placement, whose displacement arguments ±υ(τ ) depend on
the vector τ of free-evolution times.

From the formal expression (8) for the time-evolved state
�(τ) of the full system, one can perform the partial trace
over the probe degree of freedom to obtain the reduced state
of the harmonic oscillator, denoted by ρ(τ ) ≡ Trprobe{�(τ)}.
Employing the above expressions, we can write

ρ(τ) = P[ψ, τ]eLT ρ0, (21)

where the effective action of the pulse sequence, which is
applied to the probe, on the harmonic oscillator is given by
the superoperator,

P[ψ, τ] = |ψ+|2D[υ(τ)] + |ψ−|2D[−υ(τ)]. (22)

This superoperator naturally depends parametrically on the
initial probe-state probability amplitudes ψ as well as the free-
evolution times τ, and it is applied to the free thermalization
of the initial state, given by exp(LT )ρ0. Not surprisingly,
the action is that of effective probe-state dependent superdis-
placements with opposite signs of the displacement parameter,
whose weight is given by the population probabilities of the
initial probe state.

B. Off-diagonal part: V±

It is actually the off-diagonal propagators V±[τ], con-
taining the anticommutators A± in which we are mainly
interested since they describe the interference generated by
the pulse sequence. Although the procedure in this case is
slightly more intricate, it follows along similar lines as the
preceding one for the diagonal-term propagators U±[τ] in-
volving C±. The difference is that here we have to employ
an asymmetric or as we will call it skew superdisplacement.
A transform of this kind has already been employed in the
diagonalization of superoperators containing an anticommu-
tator with the dimensionless position operator [48–50]. Using
the abbreviation ξ = (ξ1, ξ2, ξ3) for three displacement pa-
rameters we have to employ in this case, we define the skew
superdisplacement as

S[ξ]ρ = eξ1aD(ξ2)ρD†(ξ3)e−ξ1a, (23)

instead of the previously introduced symmetric superdisplace-
ments D[ε]. This makes the following calculation somewhat
more tedious, however, still relatively straightforward, keep-
ing in mind the above derivation for the symmetric case. At
this point we mention that one could define an even more gen-
eral supertransform in terms of four displacement parameters.
However, since the above definition, with merely three param-
eters, is sufficient for what follows we abstain from doing so.
The product property for these skew superdisplacements reads

S[ε]S[ς] = e(ε3−ε2 )ς1 e(1/2)(ε2ς
∗
2 −ε∗

2 ς2−ε3ς
∗
3 +ε∗

3 ς3 )S[ε + ς],
(24)
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which is straightforward to derive from the multiplication
property of the displacement operators. We briefly note two
more of their properties, namely, that they are related to
the identity superoperator by S[ξ]S[−ξ] = exp[ξ1(ξ2 − ξ3)]I
and that the symmetric superdisplacements are the special
case S[ξ] = D[ε] for ξ = (0, ε, ε).

The action of A± can also be reduced to the one of L
according to

A± = eξ1(ξ3−ξ2 )S[∓ξ]LS[±ξ] − �I. (25)

The appropriate displacement parameters one has to choose
are derived in Appendix A 2 and read

ξ = g

4|ν̃|2

⎛
⎝ −4i(2n̄ + 1)γ

2ν + i(4n̄ + 1)γ
−2ν + i(4n̄ + 3)γ

⎞
⎠, (26)

whereas the constant multiplying the identity superoperator is
given by

� = g2(2n̄ + 1)γ

2|ν̃|2 . (27)

This also can be written in its exponential form

eA±t = e−�t eξ1(ξ3−ξ2 )S[∓ξ]eLtS[±ξ], (28)

where, contrary to the symmetric superdisplacement trans-
form from Eq. (15), there appears an exponential decay in
Eq. (28) with the decay rate �, which is identical for both
signs in A± and is likewise derived in Appendix A2. This
constant � is a positive real number, leading to a strict decay
of the interference described by V±[τ]. Furthermore, it goes
to zero if either γ or g vanish, whereas at zero temperature it
is still finite.

The time evolution of the terms that are off-diagonal in the
probe-state basis are governed by the superoperators V±[τ]
introduced in Eq. (10). In that form, it is already decomposed
into a product accounting for the evolution in the separate
pulse-sequence blocks labeled by n = 1, . . . , N . Using the re-
duction of exp(A±t ) to the action of skew superdisplacements
S[±ξ] and the free-thermalization exp(Lt ), given by Eq. (28),
as well as the product property (24) of these skew superdis-
placements, we can rewrite the generator of the evolution of
the off-diagonal parts for a single pulse-sequence block as

eA∓t eA±t = e−2�t e3ξ1(ξ3−ξ2 )

×S[±ξ]eLtS[∓2ξ]eLtS[±ξ]. (29)

This is the expression that we will employ in the following. It
will turn out that this form is convenient for the direct mea-
surement of the characteristic function we introduce below,
which relies on the expansion of the initial density operator
in the basis formed by the displacement operators. It is con-
venient since the action of both the skew superdisplacements
and the free-thermalization maps displacement operators onto
displacement operators.

IV. CHARACTERISTIC-FUNCTION MEASUREMENT

Having the explicit expression for the time evolution of
the initial state at hand, which was derived in the previous
section, we now come to the core of this paper, namely, how

measurements of the probe can be connected to values of the
Wigner characteristic function of the harmonic oscillator. We
mention again, that contrary to many tomographic methods,
the measurement of the characteristic function is direct in the
sense that the outcomes of the probe measurements can be
directly converted into values of the characteristic function
[10] without further numerical processing.

A. Wigner characteristic function

In the following, we will find that it is advantageous to
write the dynamics of the initial state ρ0 in terms of its Wigner
characteristic function [16–18]. Before we do so, we first give
a brief reminder on the definition of this function and some of
its properties.

The completeness of the displacement operators [51]
makes it possible to write the harmonic-oscillator density
operator as

ρ0 = 1

π

∫
d2β χ (β )D†(β ), (30)

with the Wigner characteristic function χ (β ), defined as the
expectation value of a displacement operator D(β ), viz.,

χ (β ) = Tr{D(β )ρ0}. (31)

This function on reciprocal phase space is, in fact, nothing
but the complex Fourier transform of the celebrated Wigner
function [52] and thereby contains the same information [53].
The unit-trace condition, which translates to a unit square
integrability of the Wigner distribution, is reflected in the
fact that χ (0) = 1. Furthermore, the Hermiticity of the den-
sity operator and the property D(−β ) = D†(β ) directly yield
χ (−β ) = χ (β )∗. This implies that the knowledge of the char-
acteristic function on a half-plane of the complex numbers
representing the reciprocal phase space is sufficient to fully
reconstruct ρ0.

B. Dynamics in terms of displacement operators

The linearity of the superoperators used in the above
formulation of the dynamics implies that, in a characteristic-
function description, one needs to obtain their action on the
displacement operator D†(β ) appearing in the expansion (30).
Especially, we will see that it is the terms in Eq. (8) which
are off-diagonal in the probe-state basis carrying the informa-
tion on the harmonic-oscillator density operator that can be
extracted through probe measurements. Keeping in mind the
expansion (30), this means we need to derive the expressions
V±[τ]D†(β ), which will be performed in the remainder of this
section. The harmonic-oscillator state ρ0 evolved under the
action of these superoperators is then given by the integral
over those expressions weighted with the initial characteristic
function χ (β ).

Examining Eq. (29), one finds that there are two main
ingredients necessary for the derivation of V±[τ]D†(β ),
namely, the action of: (i) the skew superdisplacement S[ε]
and (ii) the free-thermalization propagator exp(Lt ) on a
displacement operator D(ς ). Let us start with (i), which
can easily be derived by applying the multiplication prop-
erty of displacement operators twice and, furthermore, using
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exp(εa)a† exp(−εa) = a† + ε, resulting in

S[ε]D(ς ) = eε1(ε2−ε3 )e(1/2)(ε∗
2 ε3−ε2ε

∗
3 )e(1/2)[(ε2+ε3 )ς∗−(ε∗

2 +ε∗
3 )ς]

× eε1ςD(ς + ε2 − ε3). (32)

A detailed derivation of (ii) can be found in Appendix B,
yielding the action of the free-thermalization propagator
exp(Lt ) on a displacement operator, given by

eLt D(ς ) = eγ t e−n̄(t )|ς (t )|2 D(ς (t )), (33)

where we introduced the abbreviation ς (t ) = ς exp(−iν̃∗t )
and the time-dependent thermal occupation,

n̄(t ) =
(

n̄ + 1

2

)
(1 − e−γ t ). (34)

Here, we find the important property that we have mentioned
before, namely, that both of these superoperators map dis-
placement operators onto displacement operators, apart from
some prefactors. It is exactly this fact that makes our method
for the direct measurement of the characteristic function pos-
sible.

With these two properties at hand, one can successively
apply Eqs. (32) and (33) in order to derive the action of a
single sequence-segment superoperator defined in Eq. (29) on
an arbitrary displacement operator D(ς ). This is a straightfor-
ward, yet somewhat cumbersome, calculation that yields the
identity,

eA∓t eA±t D(ς ) = e2(γ−�)t+(�γ /|ν̃|2 )+ f (t,±ς )

× D(ςe−2iν̃∗t ± 2ε∗(1 − e−iν̃∗t )2), (35)

with the function,

f (t, ς ) = 2� Im

{
1

ν̃∗ (2 − e−iν̃∗t )2 + ς

g
(1 − e−iν̃∗t )2

}

− n̄(t )eγ t [|2ε∗ + ς |2 + |(2ε∗ + ς )e−iν̃∗t − 4ε∗|2].

(36)

This shows that during every pulse-sequence segment a dis-
placement operator acquires an exponential multiplier and its
argument is rotated in addition to a shift proportional to the
relative coupling strength, namely, 2ε∗ = g/ν̃∗. One also finds
that the only temperature dependence arises in the exponent
through the constant � and the function f .

Let us now come back to the expansion of the initial
density operator ρ0 in terms of its characteristic function,
i.e., Eq. (30), and extend the technique introduced in this
section to the entire pulse sequence. Iterating this procedure
for the N pulse-sequence segments yields an expression for
V±[τ]D†(β ) given by

V±[τ]D†(β ) = exp

[
(γ − �)T + N�γ

|ν̃|2 +
N∑

n=1

f (τn, β
(n)
± )

]

× D†(e−iν̃∗T [β ∓ ζ (τ)]), (37)

with the function,

ζ (τ) = 2ε∗
N∑

n=1

(1 − e−iν̃∗τn )2
n∏

k=1

e2iν̃∗τk , (38)

that bears a great resemblance with the function υ(τ) that
occurred in the diagonal case with a substitution of ν̃ by its
complex conjugate. The exponent in the exponential factor
multiplying the resulting displacement operator, in turn, is
defined in terms of the displacement parameters β

(n)
± given by

β
(n)
± = 2ε∗

n−1∑
j=1

(1 − e−iν̃∗τ j )2
n−1∏

k= j+1

e−2iν̃∗τk ∓ β

n−1∏
j=1

e−2iν̃∗τ j .

(39)
All the preceding steps have enabled us to finally write

out the full expression for the off-diagonal part of the time
evolution, which is given by the integral,

V±[τ]ρ0 =
exp

[
(γ − �)T + N�γ

|ν̃|2
]

π

×
∫

d2β exp

[
N∑

n=1

f (τn, β
(n)
± )

]
χ (β )

×D†(e−iν̃∗T [β ∓ ζ (τ)]). (40)

Let us have a closer look at this result. It constitutes the
action of the off-diagonal propagator V±[τ] on the initial state
in its displacement-operator expansion. We find that the ini-
tial characteristic function χ (β ), multiplied by an additional
exponential, is now the weight function of an expansion in
displacement operators shifted by ∓ζ (τ) as well as rotated
and stretched by the factor exp(−iν̃∗T ).

C. Pauli measurements on the probe

Remembering the expression (8) for the full state �(τ) of
the combined probe and harmonic-oscillator system after the
applied pulse sequence, one can now perform measurements
on the probe, such as a measurement of the Pauli vector σ =
(σx, σy, σz ) with the outcome 〈σ〉τ = Tr{σ�(τ)}. It is easily
seen that the outcome,

〈σ〉τ =
⎛
⎝ Tr{(ψ+ψ∗

−V+[τ] + ψ∗
+ψ−V−[τ])ρ0}

i Tr{(ψ+ψ∗
−V+[τ] − ψ∗

+ψ−V−[τ])ρ0}
|ψ+|2 − |ψ−|2

⎞
⎠, (41)

of such a measurement is directly connected with the
harmonic-oscillator initial-state ρ0. Here, the independence of
the z component of the expectation value on the harmonic-
oscillator state is due to the trace-preserving nature of the
superoperators U±[τ], viz., Tr{U±[τ]ρ0} = 1. The x and y
components, on the other hand, yield the relation,

〈σx ∓ iσy〉τ = 2ψ±ψ∗
∓Tr{V±[τ]ρ0}. (42)

The traces can then be evaluated employing the expansion
(40) of V±[τ]ρ0, which we derived exactly for this purpose.
Now, the final step is to employ the property Tr{D(β )} =
πδ2(β ) [2], with the complex Dirac-δ distribution δ2(β ) =
δ(Re{β})δ(Im{β}). The integration over the complex plane
can thereby be executed trivially, which finally yields

χ (±ζ (τ)) = C±(ψ, τ )〈σx ∓ iσy〉τ, (43)
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with the accessible reciprocal-phase-space points ±ζ (τ). The
scaling factor is given by

C±(ψ, τ ) =
exp

[
�T − N�γ

|ν̃|2 −
N∑

n=1

f (τn, φn)

]

2ψ±ψ∗∓
, (44)

with

φn = −2ε∗
N∑

j=n

(1 − e−iν̃∗τ j )2
n−1∏

k= j+1

e−2iν̃∗τk , (45)

which comes from replacing β in Eq. (39) by ±ζ (τ).
Equation (43) constitutes the main result of this paper

because it directly connects expectation values of probe mea-
surements with values of the Wigner characteristic function
of the harmonic oscillator undergoing thermalization. By en-
gineering τ, such as to sweep over one-half of the complex
plane, in principle, the full characteristic function can be mea-
sured directly. The scaling factor C±(ψ, τ ) can be regarded
as a weight factor of the characteristic-function measurement.
It is only in this factor that n̄ and thereby the temperature
appears.

V. EXAMPLES

In order to demonstrate how the choice of the pulse se-
quence influences the points in reciprocal phase space on
which the characteristic function can be sampled and how
it affects a quantum-state reconstruction, we will show three
different examples for the choice of the free-evolution times τ:

(i) A sequence of N equally long free-evolution times
[14], according to τ = (τ0, . . . , τ0), leading to a total pulse-
sequence length T = 2Nτ0.

(ii) A sequence with free-evolution times chosen uniformly
random with τ ∈ [0, 2π/ν]N , resulting in an average total
evolution time T = 2Nπ/ν.

(iii) A sequence of first linearly increasing and then linearly
decreasing free-evolution times in the form of the vector τ =
(τ0, 2τ0, . . . , (N − 1)τ0, Nτ0, (N − 1)τ0, . . . , 2τ0, τ0), yield-
ing a total length T = 2N2τ0. Since in this case the pulse
sequence consists of 2N − 1 segments, one has to replace N
by 2N − 1 in the expressions (37)–(45).

For these three pulse sequences, we will first present the
points reachable in reciprocal phase space and their depen-
dence on the damping rate γ . We will, furthermore, show
examples how these points can be employed to measure the
characteristic function of some initial quantum states of the
harmonic oscillator, which can then be used to infer the den-
sity matrix. As a last step, we will analyze the influence of the
thermalization on the reconstruction fidelity.

A. Reachable points in reciprocal phase space

Figure 1 depicts the reachable points ζ (τ) in reciprocal
phase space for the three pulse sequences (i)–(iii) introduced
above and the three damping rates γ /ν = 0, 10−4, 10−2. The
three columns correspond to the three different damping rates,
whereas the three rows correspond to the three different pulse

FIG. 1. Points in reciprocal phase space of the thermalizing har-
monic oscillator accessible through probe measurements. The three
rows (from top to bottom) correspond to three different choices of the
free-evolution times τ: (i) Equidistant pulses (blue), (ii) randomly
chosen (green), and (iii) linearly increasing and then decreasing
(red) free-evolution times. The three columns correspond to different
values of the damping rate: γ /ν = 0, 10−4, 10−2. The accessible
points for all three pulse sequences are plotted for g/ν = 0.075 and
N = 1, 2, . . . , 20. In (i) and (iii) the curves are for τ0 ∈ [0, 2π/ν],
whereas for (ii) 10 000 random configurations are shown.

sequences. For the coupling strength we have chosen g/ν =
0.075 in all cases.

(i) In the first row of Fig. 1, which corresponds to the
equidistant pulses, every blue curve shows the reachable
points ζ (τ) for a certain number N of pulses when the free-
evolution time τ0 is swept over the interval [0, 2π/ν]. The
curves from the inside to the outside correspond to the val-
ues of N = 1, 2, . . . , 20. In this case, the expression for the
reachable points ζ (τ), defined in Eq. (38), can be evaluated to

ζ (τ) = 4ε∗ sin(Nν∗τ0) tan

(
ν∗τ0

2

)
eiNν∗τ0 , (46)

yielding the same result previously obtained for a harmonic
oscillator without damping [14] if ν is replaced by the com-
plex frequency ν̃∗. The maximum of the distance to the origin
is achieved roughly at τ0 = π/ν. At this free-evolution time,
the approximate distance is given by 2g[exp(−Nπγ /ν) −
2]/πγ , which reaches −4g/πγ when N tends to infinity.
For the damping rate γ /ν = 10−4, no apparent difference
to the case without thermalization is visible. For the damp-
ing rate γ /ν = 10−2, however, the curves have shrunk quite
substantially, decreasing the area in which the values of the
characteristic function can be measured for the same number
N of pulses.
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(ii) In the second row of Fig. 1, the green points represent
reciprocal-phase-space points generated using 10 000 random
pulse sequences for N = 1, 2, . . . , 20. In this case, the points
are centered densely around the origin, and the impact of the
increasing damping rate is less pronounced.

(iii) The last row in Fig. 1 depicts the linear pulse sequence.
The different red curves correspond to N = 1, 2, . . . , 20 when
τ0 ∈ [0, 2π/ν]. Similar to the equidistant pulse sequence, the
maximum distance to the origin is approximately reached for
τ0 = π/ν. However, compared to (ii) more points are found
in the area around the origin. It is also visible that in this
case the thermalization of the harmonic oscillator has a strong
impact on the accessible points. Even for γ /ν = 10−4 a small
contraction can be seen, whereas for γ /ν = 10−2 the area
is immensely reduced. This is due to the fact that the linear
pulse sequence has an appreciably longer total length scaling
quadratically with N over which the thermalization occurs.

B. Characteristic-function measurement

In order to demonstrate how the actual measurement of
the Wigner characteristic function works, we use the three
pulse sequences introduced above and apply them to three
initial states of the harmonic oscillator. We choose pure states
ρ0 = |ϕ〉〈ϕ| with a different state vector |ϕ〉 for every pulse
sequence. The results are shown in Fig. 2 where we used
g/ν = 0.075, γ /ν = 10−4, and N = 1, 2, . . . , 20 for all three
cases, corresponding to the accessible points depicted in the
central column of Fig. 1.

(i) For the equidistant pulse sequence we choose the initial-
state |ϕ〉 = (|1〉 + |3〉)/

√
2, i.e., an equal superposition of two

Fock states of the harmonic oscillator. In this case, the char-
acteristic function reads [3]

χ (β ) = e−(|β|2/2)

2

[
L(0)

1 (|β|2) + L(0)
3 (|β|2)

+ 1√
6

(β2 + β∗2)L(2)
1 (|β|2)

]
, (47)

with the Laguerre polynomials L(k)
n (x). In Fig. 2, this char-

acteristic function, which is real in this specific case, is
shown at the top as a gray surface, and the blue curves show
the accessible points ζ (τ) where the values can be directly
measured using the equidistant pulse sequence. The darker
curves show the values that can be obtained using the property
χ (−ζ (τ)) = χ (ζ (τ))∗.

(ii) For the random pulse sequence the initial state is taken
to be a coherent state |ϕ〉 = D(α)|0〉 with α = 3/2. The cor-
responding characteristic function has the form

χ (β ) = e−(|β|2/2)eα∗β−αβ∗
. (48)

In the central panel of Fig. 2, the green points on the gray
surface representing the real part of this characteristic function
depict 10 000 points in reciprocal phase space generated with
the random pulse sequence.

(iii) For the linear pulse sequence the initial state is the cat
state |ϕ〉 = [D(α) + D(−α)]|0〉/c also with α = 3/2 where
the normalization constant reads c = √

2[1 + exp(−2|α|2)].

FIG. 2. Illustration of the values of the Wigner characteristic
function of a thermalizing harmonic oscillator that can be measured
using the pulse sequences (i)–(iii) for different initial states ρ0: An
equal superposition of the Fock states |1〉 and |3〉 for the equidis-
tant pulse sequence (i) [upper panel], the coherent state D(3/2)|0〉
for the random pulse sequence (ii) [central panel], and a cat state
∝ [D(3/2) + D(−3/2)]|0〉 for the linear pulse sequence (iii) [bot-
tom panel]. The gray surfaces show the full characteristic function
of the initial states, whereas the curves or points show the values
that are accessible through probe measurements with the parameters
g/ν = 0.075, γ /ν = 10−4, and N = 1, 2, . . . , 20.

For this state, the characteristic function has the shape,

χ (β ) = 2e−(|β|2/2)

c2
[cosh(αβ∗ − α∗β )

+ e−2|α|2 cosh(αβ∗ + α∗β )]. (49)

At the bottom of Fig. 2, the real part of this characteristic
function is again shown in gray, whereas the red and dark gray
curves correspond to χ (±ζ (τ)), respectively.

From the points that are accessible for a direct measure-
ment one can then interpolate the complete characteristic
function χ̃ (β ). The quantum state may then be recon-
structed by approaching the expansion (30) with a sufficiently
large sum to approximate the integral according to ρ̃0 =
δβ2 ∑

j χ̃ (β j )D†(β j )/π where the value of δβ depends on
the discretization of reciprocal phase space. Alternatively,
one can compute the density matrix elements 〈n|ρ̃0|m〉 =
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FIG. 3. Dependence of the reconstruction fidelity F of a coherent
state D(3/2)|0〉 for the three pulses sequences (i)–(iii) on the damp-
ing rate γ : equidistant sequence (i) [blue circles], random sequence
(ii) [green squares], and linear sequence (iii) [red diamonds]. Empty
markers correspond to a state reconstruction with N = 1, 2, . . . , 10,
whereas filled markers correspond to N = 1, 2, . . . , 20.∫

d2β 〈n|D†(β )|m〉χ̃ (β ) as described in the Supplemental
Material of Ref. [14]. In our examples above, we have con-
sidered pure initial states of the harmonic oscillator. In this
case, the fidelity of the reconstructed density operator ρ̃0

with respect to the exact one ρ0 = |ϕ〉〈ϕ| is simply given
by F = 〈ϕ|ρ̃0|ϕ〉, whereas for mixed initial states one has to
employ another form [54]. The characteristic function allows
to calculate the fidelity directly without the need to reconstruct
the density operator first, according to

F = 1

π

∫
dβ2χ (β )χ̃ (β )∗. (50)

This fidelity is above 99.5% in all three of the presented cases.

C. Impact of thermalization on state-reconstruction fidelity

We now consider the performance of the three pulse
sequences (i)–(iii) in the quantum-state reconstruction for
increasing values of the damping rate γ . For a better compar-
ison, we use the same initial state of the harmonic oscillator
for all three pulse sequences, namely, a coherent state with
amplitude α = 3/2, whose characteristic function was shown
in the central panel of Fig. 2. We characterize this performance
using the fidelity F introduced above.

Figure 3 shows this fidelity for the interval γ /ν ∈
[10−4, 1]. For the coupling we have chosen g/ν = 0.075 as
in the previous figures. Blue circles, green squares, and red
diamonds again correspond to the equidistant, random, and
linear pulse sequences, respectively. On the other hand, filled
markers show the fidelity when N = 1, 2, . . . , 20 is used for
an interpolation of the characteristic function, whereas empty
markers show the fidelity when only N = 1, 2, . . . , 10 is used.
In the former case, all three pulse sequences achieve a high-
fidelity state reconstruction up to damping rates around γ /ν =
10−2. For higher damping rates the reconstruction begins to
fail, and one would have to increase the maximum value of
N in order to compensate for the contraction of the accessible
curves shown in Fig. 1. Since the total pulse-sequence length
is the longest for the linear case, the fidelity for this pulse
sequence begins to decline first. For the latter case, when
only a maximum of ten pulse-sequence blocks are taken into
account, the fidelity starts to decline earlier in all three cases.
Here, for the random pulse sequence even for low damping
rates the accessible points are centered to densely around the
origin to allow for a reconstruction with a very high fidelity.

Due to the structure of the pulse sequence with always
pairs of equally long free-evolution times, the measurement of
the characteristic function inherits a robustness against noise
with a long correlation time acting on the probe from pulsed
dynamical decoupling [14,55]. On the other hand, if the probe
is subject to uncorrelated noise in the form of pure dephasing
with a rate �d, the influence on the dynamics can be described
by an additional term �d(σz�σz − �)/2 in the master equation
(4). This leads to an exponential decay of the elements of �

that are off-diagonal in the probe degree of freedom. Since
it is exactly these off-diagonal elements which allow for the
measurement of the characteristic function, their decay can be
compensated with a factor exp(�dT ) to nevertheless obtain
the correct values of the characteristic function. In an ion-trap
setup, noise on the probe could, for example, have its origins
in electric or magnetic-field fluctuations.

VI. CONCLUSION

To summarize, we have presented a method to measure the
Wigner characteristic function of an inaccessible harmonic
oscillator by coupling it to a controllable probe via a probe-
state-dependent force. Outcomes of Pauli measurements of
the probe, that was subject to a sequences of pulses that flip
its states, are directly related to values of the characteristic
function from which it is possible to reconstruct the initial
density operator of the harmonic oscillator.

Our method takes into account thermalization of the har-
monic oscillator by a finite-temperature bath. Assuming a
Lindblad form of the resulting master equation allows to ana-
lytically describe the thermalization during the probe-assisted
measurement process, which is conveniently achieved em-
ploying superoperators. The key point in the derivation was
to transform certain types of superoperators into products of
displacements and propagations under the Liouvillian super-
operator describing a freely thermalizing harmonic oscillator.
This, in turn, made it possible to easily connect probe expec-
tation values with values of the characteristic function.

By varying the shape of the pulse sequence, namely, the
number of pulses and the free-evolution times in between
them, the value of the characteristic function at different
points in reciprocal phase space can be accessed. We have
demonstrated this based on three distinct choices for the pulse
sequence. The results of the corresponding quantum-state re-
constructions show that the pulse-sequence parameters can be
adjusted to ensure a high reconstruction fidelity depending on
the damping rate.

Furthermore, the pulse sequence is designed in a spin-
echo-type fashion, thereby incorporating the features of
pulsed dynamical decoupling to compensate noise on the
probe with a long correlation time. Also pure dephasing of
the probe degree of freedom can be accounted for. The pre-
sented method thereby constitutes a robust way to infer the
quantum state of a thermalizing harmonic oscillator even in
the presence of noise acting on the measurement probe.
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APPENDIX A: SUPERDISPLACEMENT TRANSFORMS

In Sec. III, we relied on the fact that the two superoperators
C± and A± can be transformed in such a way that their actions
are both reduced to that of the Liouvillian superoperator L
given in Eq. (1). This is conveniently achieved by introducing
the superoperator transformations we refer to as superdis-
placements.

1. Symmetric case

In the symmetric case, we want to choose a superdisplace-
ment parameter ε such that C± = D[∓ε]LD[±ε] is fulfilled,
which can easily be rewritten as D[±ε]C±D[∓ε] = L. Em-
ploying D(±ε)aD†(±ε) = a ∓ ε in every term that occurs
when applying C± to an arbitrary operator X leads to

D(±ε)[C±D†(±ε)XD(±ε)]D†(±ε) = (L ± Y )X. (A1)

This means we have to choose ε such that the superoperator
Y with the action,

YX = i

(
εν̃ − g

2

)
[a†, X ] + i

(
εν̃ − g

2

)∗
[a, X ] (A2)

vanishes identically. The condition for this simply reads

ε = g

2ν̃
, (A3)

with the complex frequency ν̃ = ν − iγ /2 we used in the
main text. This was the rather simple case, and we turn to
the more intricate skew case in the following.

2. Skew case

In the skew case, our aim is to find a supertransformation
S[ξ] that yields A± = exp[ξ1(ξ3 − ξ2)]S[∓ξ]LS[±ξ] − �I,
which we used in the main text. In order to achieve this, we
start by applying S[±ξ]A±S[∓ξ] to an arbitrary operator X .
This yields

S[±ξ]A±S[∓ξ]X = eξ1(ξ2−ξ3 )e±ξ1a

× D(±ξ2)[A±D†(±ξ2)e∓ξ1aXe±ξ1a

× D(±ξ3)]D†(±ξ3)e∓ξ1a, (A4)

where we have used exp(εa)D(ς ) = exp(ες )D(ς ) exp(εa).
One can then write out all terms that occur in the above
expressions using the two properties,

eεaD(ς )aD†(ς )e−εa = a − ς, (A5)

eεaD(ς )a†D†(ς )e−εa = a† − ς∗ + ε, (A6)

which shows why we call this superdisplacement skew since
a and a† are displaced differently. We can thereby reshape the
superoperator from Eq. (A4) according to

S[±ξ]A±S[∓ξ] = eξ1(ξ2−ξ3 )(L ± Z − �I ). (A7)

The explicit expressions are not very insightful and some-
what lengthy, but we, nevertheless, show them for the sake of

completeness. The constant �, which depends on ξ, is given
by

� =
[

iν + (2n̄ + 1)γ

2

]
ξ2(ξ ∗

2 − ξ1) − (n̄ + 1)γ ξ2(ξ ∗
3 − ξ1)

−
[

iν − (2n̄ + 1)γ

2

]
ξ3(ξ ∗

3 − ξ1) − n̄γ ξ3(ξ ∗
2 − ξ1)

− ig

2
(ξ2 + ξ ∗

2 + ξ3 + ξ ∗
3 − 2ξ1), (A8)

and is identical for both signs in Eq. (A7). The superoperator
Z , on the other hand, is defined as

ZX = z1a†X + z2Xa† + z3aX + z4Xa, (A9)

with

z1 =
[

iν + (2n̄ + 1)γ

2

]
ξ2 − n̄γ ξ3 − ig

2
, (A10)

z2 = −(n̄ + 1)γ ξ2 −
[

iν − (2n̄ + 1)

2

]
ξ3 − ig

2
, (A11)

z3 =
[

iν + (2n̄ + 1)γ

2

]
(ξ ∗

2 − ξ1) − (n̄ + 1)γ (ξ ∗
3 − ξ1) − ig

2
,

(A12)

z4 = −n̄γ (ξ ∗
2 − ξ1) −

[
iν − (2n̄ + 1)γ

2

]
(ξ ∗

3 − ξ1) − ig

2
.

(A13)

We then start by choosing ξ2 and ξ3 such that the first two
terms of the superoperator Z from Eq. (A9) vanish, viz.,
z1a†X + z2Xa† = 0 since they do not include ξ1. This is obvi-
ously fulfilled if z1 = z2 = 0 and the condition for this can be
summarized in the form of a linear system of equations that
reads(

2ν − i(2n̄ + 1)γ 2in̄γ

2i(n̄ + 1)γ −2ν − i(2n̄ + 1)γ

)(
ξ2

ξ3

)
=

(
g
g

)
.

(A14)
This system is solved by the two values,

ξ2 = g

4|ν̃|2 [2ν + i(4n̄ + 1)γ ], (A15)

ξ3 = − g

4|ν̃|2 [2ν − i(4n̄ + 3)γ ], (A16)

which are related by ξ2 − ξ3 = 2ε∗. The condition that the re-
maining two terms in Eq. (A9), i.e., z3aX + z4Xa, also vanish
reads

ξ1 = − ig(2n̄ + 1)γ

|ν̃|2 , (A17)

since in this case one finds z3 = z4 = 0. These are the results
we summarized in Eq. (26) of the main text. Substituting this
choice for ξ into the constant � given in Eq. (A8) yields

� = g2(2n̄ + 1)γ

2|ν̃|2 , (A18)

which, in fact, is nothing but igξ1/2.
Consequently, for this choice of ξ we have guaranteed that

the supertransformation (A7) simply reads S[±ξ]A±S[∓ξ] =
exp[ξ1(ξ2 − ξ3)](L − �I ) and we can now apply S[∓ξ] from
the left and S[±ξ] from the right to arrive at

A± = eξ1(ξ3−ξ2 )S[∓ξ]LS[±ξ] − �I. (A19)
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By employing S[±ξ]S[∓ξ] = exp[ξ1(ξ2 − ξ3)]I it is straight-
forward to bring this into the exponential form shown in
Eq. (28).

APPENDIX B: THERMALIZATION
OF DISPLACEMENT OPERATORS

In several places of the main text, we encountered
the action of the free-thermalization propagator exp(Lt )
on displacement operators. We, therefore, briefly show the
derivation of the resulting expression for the sake of com-
pleteness. The derivation is conveniently achieved using the
time evolution of the Wigner function Wς (α, 0) corresponding
to a generic displacement operator D(ς ) where the second
argument of the Wigner function represents the time. Since
displacement operators are intrinsically in symmetric ordering
[2], one can immediately replace the annihilation and creation
operators by the complex variables α and α∗, respectively, in
order to obtain their corresponding Wigner transform, which
thereby simply reads

Wς (α, 0) = 1

π
eςα∗−ς∗α. (B1)

At this point, one can employ the Green’s function
G(α, η; t ) of the Fokker-Planck equation for the Wigner func-
tion [17,56], i.e., the partial differential equation for the
phase-space distribution corresponding to the thermalizing-
harmonic-oscillator master equation for the density operator.
Explicitly, it has the Gaussian form

G(α, η; t ) = 1

π n̄(t )
e−(|α−η(t )|2 )/n̄(t ), (B2)

with the two abbreviations η(t ) = η exp(−iνt − γ t/2) and
n̄(t ) = (n̄ + 1/2)[1 − exp(−γ t )]. The time-evolved Wigner
function is then naturally given by the integral of the
initial distribution Wς (α, 0) multiplied with the Green’s
function (B2), namely,

Wς (α, t ) =
∫

d2η G(α, η; t )Wς (η, 0)

= eγ t e−n̄(t )|ς (t )|2Wς (t )(α, 0). (B3)

Here, in order to arrive at the second line, we have simply
employed the complex Fourier transform of a Gaussian [57]
and defined the shorthand ς (t ) = ς exp(−iνt + γ t/2). In
fact, this is the Wigner function of the displacement operator
D(ς (t )), apart from the exponential prefactors as can be seen
by a comparison to Eq. (B1).

Again, due to the intrinsic symmetric ordering inherent
to displacement operators, one can immediately perform the
backtransform from the Wigner function to operators by a
simple replacement of phase-space variables with annihilation
and creation operators [2]. We thereby find the expression,

eLt D(ς ) = eγ t e−n̄(t )|ς (t )|2 D(ς (t )), (B4)

and we see that, contrary to the coherent time-evolution
operator, the free-thermalization propagator applied to a
displacement operator additionally entails an overall expo-
nential growth as well as a temperature- and time-dependent
Gaussian.

APPENDIX C: PERMUTING THE
FREE-THERMALIZATION PROPAGATOR

AND SUPERDISPLACEMENTS

In this Appendix, we show how the free-thermalization
propagator exp(Lt ) permutes with the superdisplacement D
we introduced in Sec. III. Some of the identities below rely
on results derived in the preceding Appendix and have, in
fact, already been presented elsewhere in the literature. We
nevertheless show the derivations here for self-consistency.

We consider the case of the symmetric superdisplacement
D[ε]. For the sake of brevity for an arbitrary operator X we
define Y = exp(Lt )D[ε]X in which we can expand X in terms
of displacement operators according to

Y = 1

π

∫
d2ς Tr{D(ς )X }eLtD[ε]D†(ς ), (C1)

where we have used the completeness of the displacement
operators [51] and the linearity of exp(Lt )D[ε].

In the next step, we employ

D[ε]D†(ς ) = eε∗ς−ες∗
D†(ς ), (C2)

as well as Eq. (B4) in order to obtain

Y = 1

π

∫
d2λ Tr{D(λ(t ))X }e−n̄(t )|λ|2 eε(t )∗λ−ε(t )λ∗

D†(λ).

(C3)
Here, we have already made the substitution λ = ς (t ) in
the integral and defined λ(t ) = λ exp(iνt − γ t/2) as well
as ε(t ) = ε exp(−iνt − γ t/2). Reintroducing the superdis-
placement with the displacement parameter ε(t ), according to
Eq. (C2), allows us to rewrite this expression as

Y = D[ε(t )]
1

π

∫
d2λ[e−n̄(t )|λ|2 Tr{D(λ(t ))X }]D†(λ). (C4)

FIG. 4. Phase-space trajectories of an initial point α0 (right red
dot). Black line: the point is first displaced by ε and then moves along
the spiral corresponding to the action of exp(Lt ). Blue line: the initial
point first moves along the spiral (ending in the blue dot) and is then
displaced by ε(t ). The final points coincide (left red dot).
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It can be shown that the expression we enclosed in square
brackets is, in fact, the time-evolved Wigner characteristic
function of the operator X , evolved under the action of the
differential-operator analogon to exp(Lt ). We refer to the
Appendix of Ref. [58] for an explicit proof. Therefore, we can
write

e−n̄(t )|λ|2 Tr{D(λ(t ))X } = Tr{D(λ)eLt X }, (C5)

which finally yields

eLtD[ε]X = D[ε(t )]eLt X, (C6)

after extracting the completeness of the displacement opera-
tors [51] again. Since we showed this for an arbitrary operator

X the superoperator identity (16) used in the main text holds in
general. The identity derived here was, e.g., already presented
in Ref. [31] without a formal proof.

This fact can easily be visualized in phase space, where,
apart from thermal diffusion, every point moves along a spi-
ral under the action of the free-thermalization propagator
exp(Lt ). In Fig. 4, we show how an initial point α0 (right
red dot) is first displaced by D[ε] and then moves along
the spiral (α0 + ε) exp(−iνt − γ t/2), shown as a black line.
However, if the same initial point first moves along the spi-
ral α0 exp(−iνt − γ t/2) before it is displaced by D[ε(t )],
shown as a blue line, the final point (left red dot) is the
same.
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