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Quantum resources and protocols are known to outperform their classical counterparts in a variety of
communication and information processing tasks. Random access codes (RACs) are one such cryptographically
significant family of bipartite communication tasks, wherein the sender encodes a data set (typically a string of
input bits) onto a physical system of bounded dimension and transmits it to the receiver, who then attempts to
guess a randomly chosen part of the sender’s data set (typically one of the sender’s input bits). In this work,
we introduce a generalization of this task wherein the receiver, in addition to the individual input bits, aims to
retrieve randomly chosen functions of the sender’s input string. Specifically, we employ sets of mutually unbiased
balanced functions, such that perfect knowledge of any one of the constituent functions yields no knowledge
about the others. We investigate and bound the performance of (i) classical, (ii) quantum prepare and measure,
and (iii) entanglement assisted classical communication (EACC) protocols for the resultant generalized RACs
(GRACs). Finally, we detail the case of GRACs with three input bits and find maximal success probabilities for
classical, quantum, and EACC protocols, along with the effect of noisy quantum channels on the performance
of quantum protocols. Moreover, with the help of this case study, we reveal several characteristic properties of
the GRACs which deviate from the standard RACs.
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I. INTRODUCTION

Quantum information theory entails the study of quan-
tum resources and protocols, which are known to enable a
plethora of communication and information processing tasks,
which otherwise remain unattainable by their classical coun-
terparts governed by Shannon’s information theory [1]. For
instance, in quantum superdense coding, a sender (say Alice)
can transfer two classical bits of information to a distant
receiver (say Bob) by transmitting a single two-level quantum
system, with the aid of preshared entanglement [2]. Simi-
larly, the counterintuitive feature of quantum entanglement is
known to empower several seemingly impossible tasks. How-
ever, in the absence of entanglement, the utility of quantum
systems in communication tasks is constrained by certain fun-
damental no-go results. For instance, the Holevo theorem [3]
constrains the informational utility of individual quantum sys-
tems. Specifically, no more than n classical bits of information
can be reliably transmitted using n quantum bits. Recently,
a more stringent constraint on quantum communication was
established by Frenkel and Weiner; namely, it has been es-
tablished that the classical information storage capacity of
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a d-level quantum system is the same as that of a classical
d-state system [4].

These no-go results seem to point towards the conclusion
that quantum resources and protocols might not be better than
their classical counterparts for transmitting classical informa-
tion in the absence of entanglement. However, in actuality,
even without entanglement, finite-dimensional quantum sys-
tems can outperform their classical counterparts in a large
variety of stochastic communication tasks. (n → 1) random
access codes (RACs) constitute such a class of communication
tasks wherein the sender is tasked with encoding a string of n
bits onto a single bit of message, such that the receiver can
decode any one of the randomly chosen initial bits with a
certain probability of success. It is known that if the message
is encoded onto a qubit,1 the parties can attain higher success
probability than any classical strategy entailing a bit of com-
munication [6,7]. RACs utilizing quantum resources (often
referred to as QRACs) have a plethora of applications, for
instance, in connection with quantum communication com-
plexity (see [8] and references therein), network coding, and
locally decodable codes [9–14]. Moreover, RACs have found
several foundational implications [15–22], in particular, pre-
shared entanglement assisted random access codes (EARACs)

1This problem was first studied by Wiesner under the name conju-
gate coding [5].
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are closely related to nonlocal games [23,24] and form the
basis for the principle of information causality [25,26].

Finally, RACs form a cryptographic primitive and conse-
quently form the basis of quantum key distribution (QKD)
schemes [27–29]. One of the features of (n → 1) RACs,
which makes them a suitable cryptographic primitive, is that
in each round the receiver intends to retrieve a single bit of
the sender’s n bit data and, as these bits are independently
distributed, such exclusive decoding reveals no nontrivial in-
formation about the other bits. In this work, we propose
a generalization of the RAC task, referred to as GRACs,
which expands on this property. To this end, we introduce
sets of n �→ 1 bit functions that are mutually unbiased (called
MUBS) such that perfect knowledge of any one of the con-
stituent functions in a MUBS yields no information about
the others. For each such MUBS, the communication task
wherein, in each round, the receiver intends to decode a con-
stituent function forms a GRAC.

The manuscript is organized in the following manner: in
Sec. II we formally introduce the concept of mutually unbi-
ased balanced functions and their sets; in Sec. III we provide
the definition of generalized RAC (GRAC) task, describe (i)
classical, (ii) quantum prepare and measure, and (iii) entan-
glement assisted classical communication (EACC) protocols
for GRACs, and derive general bounds on the success prob-
abilities of these protocols. In Sec. IV we provide a detailed
study of the case when the sender receives three independently
distributed bits as input. Here, we find that majority-encoding-
identity-decoding may not be one of the optimal classical
strategies for GRAC, which is always the case for RACs. We
also report an interesting feature of classical GRACs, namely,
the maximal average classical success probability of a GRAC
gets increased with the addition of new function(s) to the
already existing ones; a phenomenon referred to as “the harder
the goal, the greater the payoff.” In the same section, we
also analyze the performance quantum prepare and measure
protocols, the effect of noisy channels on their performance,
and the performance of EACC protocols. In Sec. V we present
a brief discussion along with some relevant open questions for
further research.

II. MUTUALLY UNBIASED BALANCED FUNCTIONS

This section specifies the definitions of balanced and
mutually unbiased balanced functions and sets of mutually un-
biased balanced functions, providing key examples along with
some notational preliminaries for subsequent use throughout
the rest of the manuscript.

Definition 1 (Balanced functions). A Boolean function f :
{0, 1}n → {0, 1} is balanced if its outputs yield as many 0’s as
1’s over its input set.

In this work, we consider n �→ 1 bit Boolean functions
which take as input an n bit string x ≡ {x1x2 · · · xn} ∈ {0, 1}n

to produce a bit of output, i.e., f : {0, 1}n → {0, 1}. Conse-
quently, for such functions to be balanced, the cardinality of
the set of inputs mapped to 0, X f (x)=0 ≡ {x ∈ {0, 1}n | f (x) =
0}, must be the same as the cardinality of the set of in-
puts mapped to 1, X f (x)=1 ≡ {x ∈ {0, 1}n | f (x) = 1}, i.e.,
|X f (x)=0| = |X f (x)=1| = 2n−1. Furthermore, this implies that,
for such balanced functions, and a uniformly distributed string

of inputs, the probability of obtaining a 0 is the same as
the probability of obtaining a 1, i.e., ∀x ∈ {0, 1}n : p(x) = 1

2n ,
p[ f (x) = 0] = p[ f (x) = 1] = 1

2 . Next, we introduce the no-
tion of mutual unbiasedness for balanced functions.

Definition 2 (MUBF). A pair of balanced Boolean func-
tions f1, f2 is called mutually unbiased if exactly half of the
inputs yielding an output for one function yields the same
output for the other function.

In particular, for a pair of MUBFs f1, f2 : {0, 1}n → {0, 1},
the sets X f1(x)=0,X f1(x)=1 have equal overlaps with the sets
X f2(x)=0,X f2(x)=1, i.e., ∀i, j ∈ {0, 1} : |X f1(x)=i ∩ X f2(x)= j | =
2n−2. This further implies for a uniformly distributed
string of inputs ∀i, j, k, l ∈ {0, 1} : p[ f2(x) = i| f1(x) = j] =
p[ f1(x) = k| f2(x) = l] = 1

2 . Next, we define sets of mutually
unbiased balanced functions.

Definition 3 (MUBS). A set of functions F ≡ { fi}|F |
i=1

forms a mutually unbiased balanced set if all of the constituent
functions are balanced and pairwise mutually unbiased.

For a n-bit string input, consider the set of 2n − 1 functions
Fn

R ≡ { fr(x) =⊕n
i=1 rixi|r ≡ {r1, . . . , rn} ∈ R}, where R ≡

{r ∈ {0, 1}n|∑i ri � 1}. Notice that all functions in the set are
balanced, i.e., ∀ f ∈ Fn

R : |X f (x)=0| = |X f (x)=1| = 2n−1. Now
any two distinct functions fi, f j ∈ Fn

R differ by XOR of at
least one completely independent bit, and XOR with a random
bit obscures all information (one-time pad) about the original
bit; all functions in such a set are pairwise mutually unbiased,
deeming the set to be MUBS. For instance, for the simplest
case of two bit input functions the set F2

R = {x1, x2, x1 ⊕ x2}
forms a MUBS. Similarly, for the case of three bit input func-
tions the set F3

R = {x1, x2, x3, x1 ⊕ x2, x2 ⊕ x3, x1 ⊕ x3, x1 ⊕
x2 ⊕ x3} forms a MUBS. In general, it is easy to see that any
nontrivial subset of Fn

R forms a MUBS, i.e., the sets Fn
R j

≡
{ fr(x) =⊕n

i=1 rixi|r ≡ {r1, . . . , rn} ∈ R j}, where R j ⊆ R.

III. GENERALIZED RANDOM ACCESS CODES

In this section, we start by introducing generalized random
access codes which utilize mutually unbiased balanced func-
tions defined above.

Definition 4 ((n,Ri)-GRAC). An (n,Ri ) generalized ran-
dom access code (GRAC) is a bipartite one-way communica-
tion task, wherein in each round the sender (Alice) receives
a uniformly distributed input n-bit string x ∈ {0, 1}n which
they encode onto a message, which is transmitted to the
receiver (Bob). Bob, upon receiving the transmission from
Alice, decodes the message based on her uniformly dis-
tributed input y ∈ Ri, where Ri ⊆ R ≡ {r ∈ {0, 1}n|∑i ri �
1} and produces an output bit z ∈ {0, 1}. They win a round
if z = fy(x) =⊕n

i=1 xiyi. They gauge their performance on
the basis of their average success probability s(n,Ri ) =

1
2n|Ri|

∑
x,y p(z = fy(x)|x, y).

We note here that the standard (n → 1) random access
codes (RACs) form restricted cases of GRACs, specifically
when Bob’s input y is uniformly sampled from RRAC ≡
{r ∈ {0, 1}n|∑i ri = 1}. We denote the success probability of
(n → 1) RACs by s(n→1).

In this work, we study three distinct classes of communi-
cation protocols for (n,Ri ) GRAC.
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(i) A classical communication protocol C for (n,Ri )
GRAC is one wherein Alice encodes their input string x onto
a bit ω ∈ {0, 1}, based on an encoding scheme E entailing
conditional probability distributions of the form {pE (ω|x)}.
Bob decodes the message based on their input to produce
the output z employing a decoding scheme D entailing condi-
tional probability distributions of the form {pD(z|ω, y)}. The
average success probability for such a protocol is s(n,Ri )

C =
1

2n|Ri|
∑

x,y,ω pE (ω|x)pD[z = fy(x)|ω, y]. The maximal clas-

sical success probability of (n,Ri ) GRAC, S(n,Ri )
C , has the

expression

S(n,Ri )
C = max

E,D

{
1

2n|Ri|
∑
x,y,ω

pE (ω|x)pD[z = fy(x)|ω, y]

}
.

(1)
We note here that, as we are considering average success prob-
ability, the parties gain no advantage even if they have access
to an arbitrary amount of shared randomness [30]. Moreover,
it is straightforward to see that, for average success probabil-
ity, it is enough to consider only deterministic encoding and
decoding schemes. Consequently, the optimal classical proto-
cols for (n,Ri ) GRAC, without loss of generality, comprise
a deterministic encoding scheme such that ω = fE (x) and a
deterministic decoding scheme such that z = fD(y, ω).

(ii) A quantum prepare and measure protocol Q for (n,Ri )
GRAC entails Alice encoding her input onto a qubit ρx,
which is transmitted to Bob. Bob, upon receiving the qubit,
performs the measurement {My

z |∀y :
∑

z My
z = I} based on

his input y to produce the outcome z. The average success
probability for such a protocol has the expression s(n,Ri )

Q =
1

2n|Ri|
∑

x,y Tr(ρxMy
z= fy (x) ). The maximal quantum success

probability of (n,Ri ) GRAC S(n,Ri )
Q has the expression

S(n,Ri )
Q = max

{ρx},{My
z }

{
1

2n|Ri|
∑
x,y

Tr
(
ρxMy

z= fy (x)

)}
, (2)

where the maximization is over all two-dimensional states
{ρx} and two-dimensional binary outcome measurements
{My

z }. For maximal average success probability it is enough
to consider pure states, i.e., ∀x : ρx ≡ |ψx〉〈ψx|, and the
measurement operators to be projectors, i.e., {My

z ≡ �
y
z |∀y :∑

z �
y
z = I}. This allows us to reexpress (2) as

S(n,Ri )
Q = max

{rx},{vy}

{
1

2n|Ri|
∑
x,y

1

2

(
1 + (−1) fy (x)rx · vy

)}
, (3)

where we have used Bloch vector notation for states ρx =
I+rx·σ

2 and for measurements My
z = I+(−1)zvy·σ

2 , where rx ∈
R3, vy ∈ R3 are unit vectors, such that ∀x : ‖rx‖ = 1,∀y :
‖vy‖ = 1, and σ is the vector of Pauli matrices.

(iii) An entanglement assisted classical communication
protocol (EACC) entails Alice and Bob presharing an en-
tangled quantum state ρAB of arbitrary local dimension.
Alice based on her input measures her part of the entangled
state employing the binary outcome measurement {Mx

ω|∀x :∑
ω Mx

ω = I} and transmits the outcome ω to Bob. Bob
upon receiving the message ω and his input y performs
the binary outcome measurements {Mω,y

z |∀y, ω :
∑

z Mω,y
z =

I} to produce the outcome z. The average success prob-
ability for such a protocol has the expression sEACC =

1
2n|Ri|

∑
x,y,ω Tr(ρABMx

ω ⊗ Mω,y
z= fy (x) ). The maximal success

probability of EACC protocols in (n,Ri ) GRAC, SEACC , has
the expression

SEACC

= max
ρAB,{Mx

ω},{Mω,y
z }

{
1

2n|Ri|
∑
x,y,ω

Tr
(
ρABMx

ω ⊗ Mω,y
z= fy (x)

)}
. (4)

Bounding success of GRACs

Now we are prepared to present our results for bounding
the average success probability of (n,Ri ) GRACs.

Theorem 1. The maximal success probability of (n,Ri )
GRACs, S(n,Ri )

O , is lower bounded by that of (|Ri| → 1) RAC,
S(|Ri|→1)
O , i.e.,

S(n,Ri )
O � S(|Ri|→1)

O , (5)

where O ∈ {C,Q, EACC}.
Proof. To prove the desired thesis we provide a vi-

able strategy for (n,Ri ) GRAC which utilizes an optimal
(|Ri| → 1) RAC as a subroutine and achieves success sn,Ri

O �
S(|Ri|→1)
O .

Given a (n,Ri ) GRAC with the input string x ≡
{x1, . . . , xn} ∈ {0, 1}n, consider the bit string [ fr(x)]r∈Ri .
Notice that [ fr(x)]r∈Ri may not be uniformly distributed.
Now, consider a (|Ri| → 1) RAC with the input string
x̃ ≡ {x̃1, . . . , x̃|Ri|} ∈ {0, 1}|Ri| with maximal success proba-
bility S|Ri|

O = 1
2|Ri ||Ri|

∑
x,ỹ∈{1,...,|Ri|} p(z̃ = x̃ỹ|x̃, ỹ), where O ∈

{C,Q, EACC} specifies the particular type of the protocol. We
use the string [ fr(x)]r∈Ri as the input string for the (|Ri| → 1)
RAC, up to optimal reordering, i.e., x̃ = Perm{[ fr(x)]r∈Ri}.
It is easy to see that this protocol achieves success prob-
ability s(n,Ri )

O � S(|Ri|→1)
O , where the inequality is saturated

when the optimal strategy of (|Ri| → 1) RAC has equal suc-
cess for all inputs, ∀x̃ ∈ {0, 1}|Ri| : 1

2|Ri ||Ri|
∑

ỹ∈{1,...,|Ri|} p(z̃ =
x̃ỹ|x̃, ỹ) = S(|Ri|→1)

O . �
Theorem 2. The maximal success probability of a prepare

and measure protocol in an (n,Ri ) GRAC, S(n,Ri )
Q , is upper

bounded as follows:

S(n,Ri )
Q � 1

2

(
1 + 1√|Ri|

)
. (6)

Proof. We start by recalling that the maximal success prob-
ability of prepare and measure protocol for an (n,Ri ) GRAC
has the expression (3)

S(n,Ri )
Q = max

{rx},{vy}

{
1

2n|Ri|
∑
x,y

1

2
(1 + (−1) fy (x)rx · vy)

}

= 1

2

⎛
⎜⎜⎜⎜⎜⎝1 + 1

2n|Ri| max
{rx},{vy}

{∑
x,y

(−1) fy (x)rx · vy

}
︸ ︷︷ ︸

�n,|Ri |({rx},{vy})

⎞
⎟⎟⎟⎟⎟⎠.(7)
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Consequently, finding maximal success probability of prepare
and measure protocols in (n,Ri ) GRACs effectively boils
down to solving the following optimization problem:

�(n, |Ri|) = max
{rx},{vy}

{
�n,|Ri|({rx}, {vy})

}
,

= max
{vy}

{∑
x

max
{rx}

{
rx ·
∑

y

(−1) fy (x)vy

}}
. (8)

Defining Vx =∑y(−1) fy (x)vy, we notice that the scalar
product rx · Vx is maximized when rx has the same direc-
tion as Vx, i.e., when rx = Vx/‖Vx‖, which implies rx.Vx =
‖Vx‖. This observation allows us to reexpress (8) as

�(n, |Ri|) = max
{vy}

{∑
x

∥∥∥∥∥∑
y

(−1) fy (x)vy

∥∥∥∥∥
}

. (9)

We now further rewrite Eq. (9) as

�(n, |Ri|) = max
{vy}

{∑
x

∥∥∥∥∥∑
y

gy(x)vy

∥∥∥∥∥
}

︸ ︷︷ ︸
�n,|Ri |({vy})

, (10)

where gy(x) = (−1) fy (x). Now, �n,|Ri|({vy}) can be thought of
as the dot product between z = (1, 1, . . . , 1) ∈ R2n

and w =
(‖∑y gy(x1)vy‖, . . . , ‖

∑
y gy(x2n )vy‖) ∈ R2n

, where x1 ≡
(x0 = 0, . . . , xn = 0), . . . , x2n ≡ (x0 = 1, . . . , xn = 1). Now
recall that Cauchy-Schwarz inequality implies

�n,|Ri|({vy}) = z · w � ‖z‖‖w‖. (11)

Now observe that

‖w‖2 =
∑

x

∥∥∥∥∥∑
y

gy(x)vy

∥∥∥∥∥
2

=
∑

x

(∑
y

gy(x)vy ·
∑

y′
gy′ (x)vy′

)
. (12)

There are two types of terms that appear in the sum in (12): (i)
whenever y = y′, in this case ∀y ∈ Ri : gy(x)vy · gy′ (x)vy′ =
‖vy‖2, and (ii) whenever y �= y′, we have terms of the form
gy(x)gy′ (x)vy · vy′ . Now, as all functions in our MUBS are
balanced and pairwise mutually unbiased, there exits 2n−1

strings x ∈ (X fy=0 ∩ X fy′=0) ∪ (X fy=1 ∩ X fy′=1) for which the
coefficients gy(x)gy′ (x) = 1, and there exists 2n−1 strings x ∈
(X fy=0 ∩ X fy′=1) ∪ (X fy=1 ∩ X fy′=0) for which the coefficients
gy(x)gy′ (x) = −1. Consequently, all terms of the form (ii)
cancel out, and we are left with

‖w‖2 =
∑

x∈{0,1}n,y∈Ri

‖vy‖2 = 2n|Ri|

⇒ ‖w‖ =
√

2n|Ri|. (13)

Since ‖z‖ = √
2n, we have �n,|Ri|({vy}) � 2n

√|Ri|, which
when plugged back in (10) and (7) yields the desired thesis,

S(n,Ri )
Q � 1

2

(
1 + 2n

√|Ri|
2n|Ri|

)
= 1

2

(
1 + 1√

Ri

)
. (14)

Theorem 3. The maximal success probability of an EACC
protocol in an (n,Ri ) GRAC, S(n,Ri )

EACC , is upper bounded by
the maximum quantum value of the following Bell expression
B(n,Ri )
Q , i.e., S(n,Ri )

EACC � B(n,Ri )
Q :

B(n,Ri ) ≡ 1

2n|Ri|
∑

x,y,y0∈{0,1}
p[u = y0, v = fy(x)|x, y0, y],

(15)

where x ∈ {0, 1}n is Alice’s input, (y0 ∈ {0, 1}, y ∈ |Ri|) are
Bob’s input, and u, v ∈ {0, 1} are outputs of Alice and Bob,
respectively.

Proof. To prove the above thesis all we need to demon-
strate is that, for an EACC (n,Ri ) GRAC achieving success
probability S(n,Ri )

EACC = 1
2n|Ri|

∑
x,y,ω Tr(ρABMx

ω ⊗ Mω,y
z= fy (x) ), a

quantum correlation can be obtained that achieves the same
value for the Bell expression in (15), so that the maximum
value of the Bell expression caps the success probability of the
EACC protocol. To this end we recall that an EACC protocol
for (n,Ri ) GRAC entails a preshared entangled state ρAB,
local measurements for Alice {Mx

ω}, and local measurements
for Bob {Mω,y

z }, where Alice’s output ω is transmitted to Bob.
Now instead of transmitting the output of her measurement,
Alice simply relabels it as her local output, i.e., u = ω. On
the other hand, Bob obtains an additional uniformly sam-
pled input bit y0 ∈ {0, 1}, utilizing it instead of the message
from Alice to decide on the measurement {My0,y

z } he per-
forms on his part of the entangled state. Finally, Bob relabels
his output as v = z. As a result, they obtain the correlation
p(u, v|x, y0, y) = Tr(ρABMx

u ⊗ My0,y
v ). Clearly, this correla-

tion because of the construction achieves the Bell value

B(n,Ri )
Q = 1

2n|Ri|
∑

x,y,y0∈{0,1}
Tr
(
ρABMx

u=y0
⊗ My0,y

v= fy (x)

)

= 1

2n|Ri|
∑
x,y,ω

Tr
(
ρABMx

ω ⊗ Mω,y
z= fy (x)

) = S(n,Ri )
EACC .

Therefore, the maximum Bell value of the Bell expression
(15), B(n,Ri )

Q , caps the success probability of EACC protocols

in (n,Ri ) GRAC, S(n,Ri )
EACC .2 �

IV. n = 3: A CASE STUDY

In this section, we study and characterize (n = 3,Ri )
GRACs, finding out optimal classical and quantum protocol
and success probabilities, as well as noise tolerance of the
latter.

A. Classical protocols

We recall that, in classical (n = 3,Ri ) GRACs, Alice en-
codes her input string x ∈ {0, 1}3 onto a classical bit message
ω ∈ {0, 1}, based on a deterministic encoding scheme E , ω =
fE (x). On the other end, Bob, upon receiving ω from Alice,

2We note here that this thesis and the proof thereof builds on the
observations contained in [24,31].
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TABLE I. Explicit comparison of classical strategies: (i) majority encoding and identity decoding [ω = maj(x1, x2, x3)] and (ii) an encoding
strategy entailing ω = x1 ∧ ¬(x2 ∧ x3), along with the decoding scheme wherein Bob outputs z = ω ⊕ 1 whenever he is asked to guess x2, x3,
or x1 ⊕ x2 ⊕ x3, and z = ω otherwise, for (n = 3,R) GRAC. We also enlist the guessing probabilities s(n=3,R)

C (y) for the functions fi ∈ F 3
R;

the upper row denotes the success probabilities corresponding to the majority-encoding and identity-decoding strategy (i) and the bottom row
with the strategy (ii). The asterisk (�) indicates the use of inverse identity decoding, i.e., z = ω ⊕ 1 for the particular function. The arrows
indicate the change in success probabilities of strategy (ii) in comparison with strategy (i).

x 0ω = maj(x1, x2, x3) ω = x1 ∧ ¬(x2 ∧ x3) x1 x2 x3 x1 ⊕ x2 x1 ⊕ x3 x2 ⊕ x3 x1 ⊕ x2 ⊕ x3

(000) 0 0 0 0 0 0 0 0 0
(001) 0 0 0 0 1 0 1 1 1
(010) 0 0 0 1 0 1 0 1 1
(011) 1 0 0 1 1 1 1 0 0
(100) 0 1 1 0 0 1 1 0 1
(101) 1 1 1 0 1 1 0 1 0
(110) 1 1 1 1 0 0 1 1 0
(111) 1 0 1 1 1 0 0 0 1

s(n=3,R)
C (y) 06/8 06/8 06/8 04/8 04/8 04/8 06/8(�)

7/8[↑] 5/8(�)[↓] 5/8(�)[↓] 5/8[↑] 5/8[↑] 5/8[↑] 5/8(�)[↓]

decodes it to produce his output z = fD(y, ω) based on a de-
terministic decoding scheme D. The optimal classical strategy
for (n → 1) RACs, without loss of generality, turns out to
be majority encoding, i.e., ω = maj(x1, . . . , xn), and identity
decoding, i.e., z = ω [30,32]. However, as we demonstrate be-
low, this strategy may not be optimal for (n = 3,Ri ) GRACs.

Observation 1. Unlike (n → 1) RAC, majority encoding
and identity decoding is not optimal for all (n = 3,Ri )
GRACs.3

Proof. To prove this thesis, we shall consider the (n =
3,R) GRAC which entails the entire MUBS F3

R. For this
task, the majority encoding, i.e., ω = maj(x1, x2, x3), and
identity decoding, i.e., z = ω, strategy yields a success proba-
bility of s(n,R)

C = 32
56 . Moreover, even if we allow for a inverse

identity decoding, for the function x1 ⊕ x2 ⊕ x3, i.e., z = ω ⊕
1, we obtain success probability of s(3,R)

C = 36
56 (see Table I).

However, employing a straightforward linear program, we
find that the optimal success probability of (n = 3,R) GRAC
turns out to be S(3,R)

C = 37
56 . Specifically, Alice’s encoding

strategy entails ω = x1 ∧ ¬(x2 ∧ x3), whereas Bob’s decoding
scheme entails producing z = ω ⊕ 1 whenever he is asked to
guess x2, x3, or x1 ⊕ x2 ⊕ x3, and z = ω otherwise. We note
that this strategy is not unique, as there exists other strategies
that saturate the classical optimal success probability.

Moving on, we used straightforward linear programs to
obtain the optimal classical success probabilities for all non-
trivial (n = 3,Ri ) GRACs (see Table II). We find that the
optimal strategies for all cases are (equivalent up to rebelling)
to either majority encoding and identity decoding, or the strat-
egy entailing the encoding ω = x1 ∧ ¬(x2 ∧ x3). While for
|Ri| ∈ {2, 3}, we find the maximal classical success probabil-
ity of the (n = 3,Ri ) GRACs remains the same as that of the
(|Ri| → 1) RACs. For |Ri| = {5, 6}, the maximal classical
success probability of the (n = 3,Ri ) GRACs exceeds that of
the (|Ri| → 1) RACs. The case of four questions, |Ri| = 4,

3We note that a similar thesis was observed in [33,34] in the context
of multipartite RACs.

presents a peculiarity, and forms the basis of the following
observation.

Observation 2. The maximum average success probability
of (n = 3,Ri ) GRAC depends on the list of functions that
Bob needs to guess, when |Ri| = 4.

Proof. Consider the case when Bob is required to guess
F3

Ri
≡ {x1, x2, x3, x1 ⊕ x2 ⊕ x3} ∈ F3

R; then majority encod-
ing and identity decoding yields the optimal success proba-

TABLE II. Maximal classical success probability of (3,Ri )
GRACs, S(3,Ri )

C , listed along with the number of MUBFs Bob is
required to guess. These values are contrasted against the maximal
success probability of standard (n = |Ri| → 1) RACs, S(|Ri |→1)

C ,
which form lower bounds for the former according to Theorem
1. These were obtained via linear programming and by retrieving
explicit classical strategies. The case of four MUBFs presents a
peculiarity, i.e., when the four functions { fi, f j, fk, fl} as such that
fi ⊕ f j = fk ⊕ fl , the classical protocols can attain a success proba-
bility of 0.75, whereas, in the other cases, classical protocols cannot
go beyond 11

16 , which is also the maximal success probability of
(4 → 1) RAC (see Observation 2). Moreover, notice that, for the
latter case, adding any MUBF to the latter increases the maximal
classical average success probability, demonstrating a surprising
feature of GRACs termed harder the task, greater the payoff (see
Observation 3).

|Ri| S(|Ri |→1)
C S(3,Ri )

C

2 3
4 = 0.75 3

4 = 0.75

3 3
4 = 0.75 3

4 = 0.75
3
4 = 0.75

4 11
16 = 0.6875 (if fi ⊕ f j = fk ⊕ fl )

11
16 = 0.6875

(if fi ⊕ f j �= fk ⊕ fl )

5 11
16 = 0.6875 7

10 = 0.7

6 21
32 = 0.65625 2

3 ≈ 0.6667

7 21
32 = 0.65625 37

56 ≈ 0.6607

012420-5



VAISAKH M et al. PHYSICAL REVIEW A 104, 012420 (2021)

TABLE III. Maximal quantum success probability of prepare and measure qubit protocols for (3,Ri ) GRACs, S(3,Ri )
Q , listed along with the

number of MUBFs Bob is required to guess. These values are contrasted against the maximal quantum success probability of standard (n =
|Ri| → 1) RACs, S(|Ri |→1)

Q , which form lower bounds for the former according to Theorem 1. All values were obtained upon coincidence (up
to numerical precision) of lower bounds obtained from the seesaw semidefinite programing method and upper bounds obtained via Navascues-
Vertesi hierarchy of semidefinite programing relaxations, along with retrieval of explicit quantum protocols. In all cases except when |Ri| = 4,
notice that the maximal quantum success probabilities saturate the upper bounds, 1

2 (1 + 1√|Ri | ), which follow from Theorem 2. In particular,
for the case of four MUBFs, when the four functions { fi, f j, fk, fl} are such that fi ⊕ f j = fk ⊕ fl , the qubit prepare and measure protocols
cannot exceed the classical maximum success probability 0.75, whereas in the remaining cases the qubit protocols can go beyond the classical
bound, 11

16 = 0.6875, but saturate the maximal success probability of qubits for (4 → 1) RAC, 1
2 (1 +

√
2+√

6
8 ) ≈ 0.7415.

|Ri| S(|Ri |→1)
Q S(3,Ri )

Q

2 1
2

(
1 + 1√

2

) ≈ 0.8536 1
2

(
1 + 1√

2

) ≈ 0.8536

3 1
2

(
1 + 1√

3

) ≈ 0.7887 1
2

(
1 + 1√

3

) ≈ 0.7887
3
4 = 0.75

4 1
2

(
1 +

√
2+√

6
8

) ≈ 0.7415 (if fi ⊕ f j �= fk ⊕ fl )

(if fi ⊕ f j = fk ⊕ fl )
1
2

(
1 +

√
2+√

6
8

) ≈ 0.7415

5 ≈0.7135 1
2

(
1 + 1√

5

) ≈ 0.7236

6 ≈0.6940 1
2

(
1 + 1√

6

) ≈ 0.7041

7 ≈0.6786 1
2

(
1 + 1√

7

) ≈ 0.6890

bility, S(n=3,Ri )
C = 3

4 . In general, whenever Bob has to guess
F3

Ri
≡ { fi, f j, fk, fl ∈ F3

R} such that ∀x ∈ {0, 1}3 : fi(x) ⊕
f j (x) = fk (x) ⊕ fl (x), a strategy equivalent up to relabeling
majority encoding and identity decoding yields the optimal
success probability, S(n=3,Ri )

C = 3
4 .

Now consider the case when Bob is required to guess
F3

Ri
≡ {x1, x2, x3, x1 ⊕ x2} ∈ F3

R. In this case the strategy en-
tailing the encoding scheme ω = x1 ∧ ¬(x2 ∧ x3), and the
decoding scheme z = ω when Bob is asked to guess x1 or
x1 ⊕ x2, and z = ω ⊕ 1 otherwise, attains the optimal success
probability S(n=3,Ri )

C = 11
16 . In fact, whenever ∃x ∈ {0, 1}3 :

fi(x) ⊕ f j (x) �= fk (x) ⊕ fl (x), a strategy equivalent up to re-
labeling to the aforementioned strategy attains the optimal
success probability, S(n=3,Ri )

C = 11
16 .

The case of (n = 3,Ri ) GRAC with four questions, i.e.,
when |Ri| = 4, presents yet another peculiarity.

Observation 3. (Harder the task, greater the payoff.) In the
case of four questions, |Ri| = 4, and ∃x ∈ {0, 1}3 : fi(x) ⊕
f j (x) �= fk (x) ⊕ fl (x), the maximal average success probabil-
ity increases from 11

16 = 0.6875 to 7
10 = 0.7 when Bob is asked

to guess any additional mutually unbiased balanced function
of Alice’s input.

This is especially surprising as, in general, for (n → 1)
RAC and generic communication complexity tasks, increas-
ing the number of questions that Bob is required to guess,
n, decreases the maximal average success probability (see
Table II).

B. Quantum prepare and measure protocols

We now investigate the performance of qubit prepare and
measure protocols in (n = 3,Ri ) GRACs. We employed a
standard seesaw semidefinite programing technique to ob-
tain lower bounds on maximal success probability of such

protocols. Additionally, we employed the Navascues-Vertesi
hierarchy of semidefinite programing relaxations to obtain
tight upper bounds. Whenever the lower and upper bounds
coincide (up to machine precision), they yield a proof of opti-
mality. The consequent optimal values are listed in Table III.
Additionally, we retrieve explicit quantum protocols which
saturate these values (see the Appendix).

Noisy channels

In this section, we investigate the effect of noisy channels
on the performance of qubit prepare and measure protocols in
(n = 3,Ri ) GRACs. Recall that a quantum channel is mathe-
matically described by a completely positive trace preserving
map � : L(Hin ) → L(Hout ), where L(X ) is the set of linear
operators acting on the Hilbert space X ; Hin and Hout respec-
tively denote input and output Hilbert space of the map � [35].
Since we are considering qubit communication therefore we
have Hin ≡ Hout ≡ C2. Furthermore, a channel is known to
be unital if completely mixed state remains invariant under
it. In the following we analyze the effect of the following
two unital qubit channels on the performance of (n = 3,Ri )
GRACs.

(a) Depolarizing channel. The effect of a depolarizing
channel �λ

Depol is to keep the input state intact with probability
(1 − λ), while with probability λ an “error” occurs entirely
replacing the input state by white noise, i.e., a generic initial
state ρin = I+n·σ

2 is distorted to

ρout = �λ
Depol(ρin ) = λ

I

2
+ (1 − λ)ρin, (16)

where λ ∈ [0, 1] is the noise parameter. Now, for qubits,
increasing the noise parameter λ shrinks the Bloch sphere
uniformly, so it is enough to consider the noisy versions of
the optimal preparations we recovered above. In Table IV we
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TABLE IV. Threshold value of the noise parameter λcrit for depolarizing channel, such that we continue to retrieve the quantum advantage
in n = 3,Ri GRACs. Note that for |Ri| = 4 we considered only the cases for which fi ⊕ f j �= fk ⊕ fl . Consequently, we observe that for
|Ri| = 3 the noise tolerance is lower than that of |Ri| = 5, 6, 7, which forms yet another instance of harder the task, greater the payoff.

|Ri| 2 3 4 5 6 7

λcrit 0.29289 0.13396 0.22354 0.10555 0.18349 0.14957

list the threshold value of the noise parameter λ such that
we continue to retrieve a quantum advantage in (n = 3,Ri )
GRACs. Yet again, we witness the reappearance of the char-
acteristic phenomenon of GRACs, namely, harder the task,
greater the payoff, as the noise threshold λcrit in the cases with
|Ri| = 5, 6, 7 MUBFs exceeds that of |Ri| = 3.

(b) Dephasing channel. The effect of a qubit dephasing
channel �λ

Dephase along a given spin direction n is given by

ρout = �λ
Dephase(ρin ) = λ(n · σ )ρin(n · σ) + (1 − λ)ρin,

(17)
where λ ∈ [0, 1

2 ] is the noise parameter. Unlike the depo-
larizing channel, here, the optimal quantum strategy always
performs as well as the optimal classical strategy. Therefore,
in Fig. 1 we plot the ratio optimal quantum success proba-
bility to that of maximal classical success probability, RQ/C

= S
(n=3,Ri )
Q

S
(n=3,Ri )
C

, for different numbers of MUBFs, wherein we em-

ployed a bit-flip channel, i.e., n ≡ [1, 0, 0]T , and numerically
optimized over qubit preparations and measurements for all
λ ∈ [0, 1]. Moreover, even in this case we find the reappear-
ance of the phenomenon, harder the task, greater the payoff,
as for a range of the noise parameter 1 − λ ∈ (0.5, 0.871)
the maximal quantum success probability (n = 3,Ri ) GRAC
with four MUBFs exceeds that of (n = 3,Ri ) GRAC with five
MUBFs (see Fig. 2).

C. Entanglement assisted classical communication

Finally, we investigate the performance of shared entangle-
ment and cbit communication protocols. Again, we employ

FIG. 1. Ratio of maximal quantum success probability to max-

imal classical success probability, RQ/C = S
(n=3,Ri )
Q

S
(n=3,Ri )
C

, for (n = 3,Ri )

GRACs with |Ri| = [2, 7] plotted against 1 − λ, where λ is the noise
parameter of the dephasing channel.

the standard seesaw semidefinite programing technique to
obtain dimension dependent lower bounds on maximal suc-
cess probability of such protocols. Moreover, we employ
Navascues-Pironio-Acin hierarchy of semidefinite program-
ing relaxations to obtain upper bounds on the quantum
violation of associated (Theorem 3) Bell inequalities. Yet
again, a coincidence (up to machine precision) implies the
optimality of these bounds, listed in Table V. It is known
that entanglement assistance can increase classical capacity
of a quantum channel as established in the seminal super-
dense coding protocol [2] (see also [36]). Moreover, it has
also been shown that entanglement, more generally nonlocal
correlations, can increase the zero-error capacity [37,38] of
a noisy classical channel [39,40]. More strikingly, as estab-
lished recently, entanglement can empower even a noiseless
classical channel [41]. It is known that EACC protocols can
outperform qubit prepare and measure protocols in standard
(n → 1) RACs when the number of input bits to the sender
exceeds three, i.e., for n > 3 [23]. However, as we will report
in the following observation, EACC protocols can outperform
quantum prepare and measure even with three inputs to the
sender in GRACs.

Observation 4. For the case of four MUBFs { fi, f j, fk, fl},
such that ∃x : fi(x) ⊕ f j (x) �= fk (x) ⊕ fl (x), entanglement
assisted classical communication protocols can outperform
the prepare and measure qubit protocols.

FIG. 2. Maximal quantum success probability of (n = 3,Ri )
GRAC with |Ri| = {4, 5} in the presence of dephasing channel with
noise parameter λ. Note that for |Ri| = 4 we considered only the
cases for which fi ⊕ f j �= fk ⊕ fl . Moreover, we find that for a range
of the noise parameter 1 − λ ∈ (0.5, 0.871) the maximal quantum
success probability (n = 3,Ri ) GRAC with four MUBFs (curve
with circles) exceeds that of (n = 3,Ri ) GRAC with five MUBFs
(curve with triangles), which is yet another instance of harder the
task, greater the payoff.
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TABLE V. Maximal quantum success probability of entanglement assisted one bit communication protocols for (3,Ri ) GRACs, S(3,Ri )
EACC ,

listed along with the number of MUBFs Bob is required to guess. These values are contrasted against the maximal quantum success
probability of standard (n = |Ri| → 1) RACs from [23], S(|Ri |→1)

EACC , which form lower bounds for the former according to Theorem 1. All
values were obtained upon coincidence of lower bounds obtained from the seesaw semidefinite programing method and upper bounds obtained
from Navascues-Pironio-Acin hierarchy of semidefinite programing relaxations. For all cases, shared entanglement and one bit of classical
communication can achieve a maximal success probability of 1

2 (1 + 1√|Ri | ).

|Ri| S(|Ri |→1)
EACC S(3,Ri )

EACC

2 1
2

(
1 + 1√

2

) ≈ 0.8536 1
2

(
1 + 1√

2

) ≈ 0.8535

3 1
2

(
1 + 1√

3

) ≈ 0.7887 1
2

(
1 + 1√

3

) ≈ 0.7887

4 1
2

(
1 + 1√

4

) = 3
4 = 0.75 1

2

(
1 + 1√

4

) = 3
4 = 0.75

5 1
20 (12 + √

6) ≈ 0.7225 1
2

(
1 + 1√

5

) ≈ 0.7236

6 1
2

(
1 + 1√

6

) ≈ 0.7041 1
2

(
1 + 1√

6

) ≈ 0.7041

7 1
21 (12 + √

6) ≈ 0.6880 1
2

(
1 + 1√

7

) ≈ 0.6890

V. DISCUSSIONS AND OUTLOOK

We introduced a generalization of a widely studied family
of communication tasks, namely, the random access codes.
At this point, it is worth mentioning the recent work of [42],
wherein the authors also consider a generalization of RACs,
referred to as f -RACs. In these tasks, the receiver intends
to recover the value of a given Boolean function f of any
subset of a fixed size of the sender’s input bits. Manifestly,
the generalization considered in this work differs from that
considered in [42]. The generalization of RACs introduced in
this work, namely, GRACs, entail the receiver intending to
recover certain Boolean functions of the sender’s input bits.
These functions belong to sets of mutually unbiased functions
(MUBS) with the cryptographic property that recovering the
value of any one such function does not yield any information
about the values of the rest of the functions in the set. We study
three distinct classes of protocols for GRACs: (i) classical,
(ii) quantum prepare and measure, and (iii) entanglement as-
sisted classical communication protocols. Along with finding
general bounds on the success probability of these protocols
in GRACs, we have detailed the specific case of GRACs
with the sender’s input data comprised of three independently
distributed bits.

This work motivates several possible directions for fu-
ture research. While we have studied only classical and
quantum strategies, it is also possible to explore more gen-
eralized strategies. Note that for the axiomatic derivation
of Hilbert space quantum mechanics research has initi-
ated the study of generalized probability theories (GPT)
[43–47]. The seminal two-party-two-input-two-output (2 −
2 − 2) Popescu-Rohrlich (PR) correlation [48] that exhibits
stronger nonlocal behavior than quantum theory can be stud-
ied in this GPT framework. In [16], it has been shown that
the (2 → 1) RAC task can be perfectly accomplished in a
particular GPT model called box world that can be thought
of as the marginal state space of the set of all 2 − 2 − 2
no-signaling correlations. A particular generalization of this
box world is the polygon model where state spaces are de-
scribed by symmetric polygons [49] which has been studied

extensively in the recent past [50–57]. The performance of
these polygonal models in GRACs is worth exploring.

Moreover, researchers have generalized the study of
RAC-QRAC with larger input-output alphabets, wherein Al-
ice is given random string x ≡ x1 · · · xn ∈ {0, 1, . . . , d − 1}n

[21,32,58]. Indeed, it is possible to generalize MUBF-MUBS
and GRACs with larger input-output alphabets. However, we
leave this for future study. Finally, as we have demonstrated,
GRACs allow for quantum over classical advantage; hence
GRACs may be used for certification of private randomness
and quantum key distribution schemes. It remains to be seen
whether GRACs provide an advantage over RACs in such
tasks.
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APPENDIX: EXPLICIT QUBIT PREPARE AND MEASURE
PROTOCOLS FOR (n = 3,Ri ) GRACs

In this section, we present qubit states and measurements
that attain maximal quantum success probability in (n =
3,Ri ) GRACs.

(A) |Ri| = 2. All choices of Ri ⊂ R (|Ri| = 2) are equiv-
alent up to a reordering of the input strings. We give an explicit
example using F3

Ri
= {x1, x2}. If Bob is asked to evaluate one

of the functions from a MUBS of cardinality 2 then they can
have the optimal quantum success by following a strategy
similar to the standard (2 �→ 1) RAC. Recall that optimal

012420-8



MUTUALLY UNBIASED BALANCED FUNCTIONS AND … PHYSICAL REVIEW A 104, 012420 (2021)

FIG. 3. Optimal quantum protocol for GRAC (|Ri| = 2). Op-
timal quantum protocol for any (n = 3,Ri ) GRAC with F3

Ri
≡

{ fq, fr}. Shown in the figure is a projection of the Bloch sphere
onto a plane with the black dots denoting the encoded states and
blue arrows representing the measurement basis. The set of strings
f i
q ∩ f j

r ⊂ {0, 1}3 are encoded in one of the black dots representing a
quantum state, where f i

q denote the set of strings whose output value
under the function fq is i; f i

q = {x ∈ {0, 1}3| fq(x) = i, i ∈ {0, 1}}. For
evaluating the function fq ( fr ) von Neumann measurement along
vq (vr ) is performed and function value is reported as 0 (1) if the
“+1” (“−1”) outcome clicks.

quantum protocol for (2 �→ 1) RAC is given by

Alice’s encoding: {0, 1}2 � x1x2 �→ ρx1x2 ,

e.g.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

00 �→ 1
2

(
I + 1√

2
σx + 1√

2
σy
)
,

01 �→ 1
2

(
I + 1√

2
σx − 1√

2
σy
)
,

10 �→ 1
2

(
I − 1√

2
σx + 1√

2
σy
)
,

11 �→ 1
2

(
I − 1√

2
σx − 1√

2
σy
)
,

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

{
1st function → v1 ≡ (1, 0, 0),
2nd function → v2 ≡ (0, 1, 0).

Bob will guess the bit value as 0 whenever he obtains +1
outcome; otherwise, he guesses the value as 1. To make this
protocol work for an arbitrary Fn

Ri
= { fq, fr}, Alice follows

the encoding fx1
q ∩ fx2

r �→ |ψ〉x1x2
and Bob performs the mea-

surement M1 for evaluating the function fq and performs the
measurement M2 for fr (see Fig. 3). Importantly, in this case
both the worst case success probability as well as the average
success probability turns out to be 1

2 (1 + 1√
2

).
(B) |Ri| = 3. Unlike the previous case, all choices of

Ri ⊂ R (|Ri| = 3)| are not equivalent under a permutation
of the input strings. If F3

Ri
= { fq, fr, fs}, then the two pos-

sible equivalence classes are defined by fq
⊕

fr �= fs and
fq
⊕

fr = fs.

FIG. 4. Optimal quantum protocol for GRAC
F n{3} ≡ { fq, fr, fs}, where fq

⊕
fr �= fs. The set of

strings f i
q ∩ f j

r ∩ f k
s ⊂ {0, 1}n are encoded in qubit state

ρi jk := 1
2 (I + (−1)i 1√

3
σx + (−1) j 1√

3
σy + (−1)k 1√

3
σz ), where

the decoding measurements are along vq ≡ (1, 0, 0), vr ≡ (0, 1, 0),
and vs ≡ (0, 0, 1).

Case (i). If fq
⊕

fr �= fs, then every such set is equivalent
to the set F3

Ri
= {x1, x2, x3}. Employing the standard (3 �→

1) RAC protocol (see Fig. 4) on this set attains the optimal
quantum success probability of 1

2 (1 + 1/
√

3).

Alice’s encoding:

e.g.

{
x1x2x3 �→ ρx1x2x3

= 1
2

(
I + (−1)x1 1√

3
σx + (−1)x2 1√

3
σy + (−1)x3 1√

3
σz
)
.

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎨
⎩

x1 → v1 ≡ (1, 0, 0),
x2 → v2 ≡ (0, 1, 0),
x3 → v2 ≡ (0, 0, 1).

Case (ii). If fq
⊕

fr = fs, then every such set is equivalent
to the set F3

Ri
= {x1, x2, x1 ⊕ x2}. (See Fig. 5.)

Alice’s encoding:

e.g.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{000, 001} �→ 1
2

(
I + 1√

3
σx + 1√

3
σy + 1√

3
σz
)
,

{010, 011} �→ 1
2

(
I + 1√

3
σx − 1√

3
σy − 1√

3
σz
)
,

{100, 101} �→ 1
2

(
I − 1√

3
σx + 1√

3
σy − 1√

3
σz
)
,

{110, 111} �→ 1
2

(
I − 1√

3
σx − 1√

3
σy + 1√

3
σz
)
.

(A1)

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎨
⎩

x1 → v1 ≡ (1, 0, 0),
x2 → v2 ≡ (0, 1, 0),
x1 ⊕ x2 → v12 ≡ (0, 0, 1).
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FIG. 5. (|Ri|=3) Optimal encoding protocol for F3
Ri

=
{ fq, fr, fs} with fq

⊕
fr = fs. Black dots denote the encoded states

of Eq. (A1). They form the vertices of a regular tetrahedron. For
evaluating the function xα ∈ {x1, x2, x1 ⊕ x2}, Bob performs the mea-
surement Mα ≡ { 1

2 (I + vα · σ ), 1
2 (I − vα · σ )} on the received state

and guesses the function value as “0” if he obtains outcome “+1”;
otherwise, he guesses the value as “1”. He chooses v1 = (1, 0, 0) =
v2 and v12 = (0, 0, 1).

(C) F3
Ri

(|Ri| = 4). If F3
Ri

= { fi, f j, fk, fl}, such that fi ⊕
f j = fk ⊕ fl , then the optimal classical success is the same
as the optimal possible quantum success. So in those cases
there is no question of quantum advantage. However, when
fi ⊕ f j �= fk ⊕ fl optimal classical success is 11/16, whereas
the optimal possible quantum success can go up to 3/4. We
have found that for these cases the optimal quantum suc-
cess indeed is higher than the classical value. For instance,
consider F3

Ri
≡ {x1, x2, x3, x1 ⊕ x2}. (See Fig. 6.)

Alice’s encoding:

e.g.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 �→ 1
2

(
I +
√

2
3σx + 1√

6
σy + 1√

6
σz
)
,

001 �→ 1
2

(
I +
√

2
3σx − 1√

6
σy + 1√

6
σz
)
,

{010, 100} �→ 1
2

(
I + 1√

2
σy − 1√

2
σz
)
,

{011, 101} �→ 1
2

(
I − 1√

2
σy − 1√

2
σz
)
,

110 �→ 1
2

(
I −
√

2
3σx + 1√

6
σy + 1√

6
σz
)
,

111 �→ 1
2

(
I −
√

2
3σx − 1√

6
σy + 1√

6
σz
)
.

(A2)

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎪⎨
⎪⎩

x1 → v1 ≡ (1, 0, 0),
x2 → v2 ≡ v1,

x3 → v3 ≡ (0, 1, 0),
x1 ⊕ x2 → v12 ≡ (0, 0, 1).

This protocol yields the average success probability 1
2 (1 +√

2+√
6

8 ). Note that the average success is still less than 3/4.
However, up to numerical precision, the lower bound obtained
from the seesaw semidefinite programing method and the
upper bounds obtained via Navascues-Vertesi hierarchy of

FIG. 6. (|Ri| = 4) Black dots denote the encoded states of
Eq. (A2). For evaluating the function xα ∈ {x1, x2, x3, x1 ⊕ x2}, Bob
performs the measurement Mα ≡ { 1

2 (I + vα · σ ), 1
2 (I − vα · σ )} on

the received state and guesses the function value as “0” if he obtains
outcome “+1”; otherwise, he guesses the value as “1”. He chooses
v1 = (1, 0, 0) = v2, v3 = (0, 1, 0), and v12 = (0, 0, 1).

semidefinite programing relaxations is the same as the value
obtained with the present explicit protocol (see Table III).

(D) |Ri| = 5. Let us consider a particular case F3
Ri

≡
{x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3}.

Alice’s encoding (nonplanar):

e.g.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 �→ 1
2

(
I + 1√

5
σx + 2√

5
σz
)
,

001 �→ 1
2

(
I + 1√

5
σx + 2√

5
σy
)
,

010 �→ 1
2

(
I + 1√

5
σx − 2√

5
σy
)
,

011 �→ 1
2

(
I + 1√

5
σx − 2√

5
σz
)
,

100 �→ 1
2

(
I − 1√

5
σx + 2√

5
σy
)
,

101 �→ 1
2

(
I − 1√

5
σx − 2√

5
σz
)
,

110 �→ 1
2

(
I − 1√

5
σx + 2√

5
σz
)
,

111 �→ 1
2

(
I − 1√

5
σx − 2√

5
σy
)
,

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 → v1 ≡ (1, 0, 0),
x2 → v2 ≡ (0, 1, 0),
x3 → v3 ≡ (0, 0, 1),
x1 ⊕ x2 → v12 ≡ v3,

x1 ⊕ x3 → v13 ≡ −v2.

A straightforward calculation yields the average success
probability 1

2 (1 + 1√
5

) for this particular encoding decoding,
which turns out to be the optimal quantum success (see
Table III). Note that the encoded states form a rectangular
box (see Fig. 7). We, however, find a different strategy where
the encoded states lie on a great circle (Fig. 8) but yield the
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FIG. 7. (|Ri| = 5) Optimal quantum protocol (nonplanar) for a
GRAC with F3

Ri
≡ {x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3}.

maximum success.

Alice’s encoding (planar):

e.g.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{000, 001} �→ 1
2

(
I + 1√

5
σx + 2√

5
σy
)
,

{010, 011} �→ 1
2

(
I + 1√

5
σx − 2√

5
σy
)
,

{101, 111} �→ 1
2

(
I − 1√

5
σx + 2√

5
σy
)
,

{100, 110} �→ 1
2

(
I − 1√

5
σx − 2√

5
σy
)
,

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 → v1 ≡ (1, 0, 0),
x2 → v2 ≡ (0, 1, 0),
x3 → v3 ≡ −v2,

x1 ⊕ x2 → v12 ≡ v2,

x1 ⊕ x3 → v13 ≡ v2.

FIG. 8. (|Ri| = 5) Optimal quantum protocol (planar) for a
GRAC with F3

Ri
≡ {x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3}.

FIG. 9. (|Ri| = 6) Encoded states and decoding measure-
ments corresponding to the optimal quantum protocol for F3

Ri
≡

{x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3}.

(E) F3
Ri

(|Ri| = 6). Let us consider a particular case F3
Ri

≡
{x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3}. (See Fig. 9.)

Alice’s encoding (planar):

e.g.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 �→ 1
2

(
I +
√

2
3σx + 1√

6
σy + 1√

6
σz

)
,

001 �→ 1
2

(
I −
√

2
3σx + 1√

6
σy − 1√

6
σz

)
,

010 �→ 1
2

(
I +
√

2
3σx − 1√

6
σy + 1√

6
σz

)
,

011 �→ 1
2

(
I +
√

2
3σx − 1√

6
σy − 1√

6
σz

)
,

100 �→ 1
2

(
I −
√

2
3σx − 1√

6
σy + 1√

6
σz

)
,

101 �→ 1
2

(
I −
√

2
3σx − 1√

6
σy − 1√

6
σz

)
,

110 �→ 1
2

(
I −
√

2
3σx + 1√

6
σy + 1√

6
σz

)
,

111 �→ 1
2

(
I +
√

2
3σx + 1√

6
σy − 1√

6
σz

)
,

Bob’s decoding: Mi ≡ { 1
2 (I + vi · σ ), 1

2 (I − vi · σ )
}
,

e.g.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 → v1 ≡ (1, 0, 0),
x3 → v3 ≡ (0, 0, 1),
x1 ⊕ x2 → v12 ≡ (0, 1, 0),
x2 → v2 ≡ −v1,

x1 ⊕ x3 → v13 ≡ v1,

x2 ⊕ x3 → v23 ≡ v1.

For this encoding decoding the average success probability
turns out to be P = 1

2 (1 + 1√
6

), which is the optimal possible
quantum success.
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