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Self-consistent state and measurement tomography with fewer measurements
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We describe a technique for self-consistently characterizing both the quantum state of a single-qubit system,
and the positive-operator-valued measure (POVM) that describes measurements on the system. The method
works with only 10 measurements. We assume that a series of unitary transformations performed on the quantum
state are fully known, while making minimal assumptions about both the density operator of the state and
the POVM. The technique returns maximum-likely estimates of both the density operator and the POVM. To
experimentally demonstrate the method, we perform reconstructions of over 300 state-measurement pairs, and
we compare them to their expected density operators and POVMs. We find that 95% of the reconstructed POVMs
have fidelities of 0.98 or greater, and 92% of the density operators have fidelities that are 0.98 or greater.
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I. INTRODUCTION

Quantum tomography is an important tool for characteriz-
ing quantum systems, and it is useful for a diverse range of
quantum information processing applications. It is useful not
only for characterizing quantum gates [1,2], but also for tasks
such as detecting errors in quantum key distribution [3,4] and
quantifying the randomness or privacy of quantum-random-
number generators [5,6].

Quantum-state tomography (QST) estimates the density
operator of an unknown quantum state by performing a se-
ries of measurements with well-calibrated detectors [7–10].
Quantum-detector tomography (QDT) estimates the positive-
operator-valued measure (POVM) that describes a detector by
probing it with a series of well-characterized quantum states
[11–13]. In quantum process tomography (QPT), the proper-
ties of an operation that is applied to a state is characterized by
operating on known states and performing QST on the outputs
[14–16].

Additionally, there exist techniques for self-consistently
determining an unknown state and an unknown measurement
POVM if one has some known state preparations or mea-
surements available. For example, it is possible to use known
states to calibrate detector POVMs, which are then used for
QST [17]. Another option is to use a single, well-characterized
state and a limited number of high-fidelity unitary operations
[18]. In data-pattern tomography, one measures outcomes
(data patterns) for known states and then matches them to out-
comes for unknown states [19–21]. The use of self-calibrating
states is a further option [22]. Using somewhat different as-
sumptions, Stark has shown that the state and measurement
operators can be determined if one has a large set of state
preparations and projective measurements (not more general
POVMs) that are globally complete [23].
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There are some techniques for self-consistently determin-
ing the state and/or the POVM if there are no known states
or POVMs. It is possible to perform self-characterization
of quantum detectors without the need to know any states
[24]. Gate-set tomography (GST) is a very general technique,
where not only are the state and the POVM determined, but
so are the operators describing a series of gate operations that
are applied between the state and the measurement [1,25–27].
Operational tomography accomplishes what GST does while
using a Bayesian framework [28].

Here we describe a technique for self-consistently esti-
mating both the state of a single qubit, and the parameters
of a POVM that describes a detector, while attempting to
minimize assumptions made about the state and the POVM.
Our technique is similar to that of Ref. [18] in that we assume
that we can perform known unitary transformations between
the state preparations and the measurements. Our technique
differs from that of Ref. [18] in that we do not require any
known state preparations.

The assumption that the transformations are known will
not be valid in all situations. But it is valid if the transfor-
mations can be calibrated using a bright, classical source and
a classical detector, and this is the case for the polarization
transformations in our experiments (see Appendix A). Indeed,
in optical quantum information processing applications it is
often the case that unitary transformations can be calibrated
classically. For example, it is possible to implement an ar-
bitrary linear transformation of optical modes by using an
array of 2 × 2 beam splitters and phase shifters [29,30], and
these transformations are now frequently implemented using
photonic integrated circuits (PICs) [31–33]. Such circuits have
been used to perform boson sampling [34], teleportation [35],
quantum state synthesis [36], quantum simulation [37], and
quantum logic operations [31]. PICs are often characterized
using classical optics [32,35,38].

Both self-characterization and GST are more general than
our technique in that they do not require known transforma-
tions [24,25]. However, because of this they require more
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measurements. Fifty probe states were used in Ref. [24] to
self-characterize the detectors, while GST requires at least
56 measurements. The technique we describe here uses 10
measurements to determine both the density operator and the
POVM describing a single-qubit system. This smaller number
of measurements offers an advantage, even if only in time
saved, to experimentalists interested in performing these types
of experiments. As is the case with most other self-consistent
tomography methods, the state and POVM are determined to
within a choice of gauge [24,25,39]. We note that operational
tomography can eliminate the need to choose a gauge, but it
requires some a priori knowledge of the system [28].

II. THEORY

A. Operators and probabilities

Suppose we have a qubit that is prepared in a state de-
scribed by the density operator ρ̂, which can be expressed in
terms of the Pauli matrices σ̂i (i = 1, 2, 3) and the identity
operator 1̂ as

ρ̂ = 1

2

(
1̂ +

3∑
i=1

piσ̂i

)
. (1)

The parameters that describe ρ̂ can be arranged into a three-
component vector �p, whose magnitude is p. Furthermore,
we have a two-outcome POVM described by the operators
{�̂1, �̂2}, These operators can be written in terms of a three-
component vector �w (magnitude w) and a bias parameter u as
[39]

�̂1 = 1

2

[
(1 + u)1̂ +

3∑
i=1

wiσ̂i

]
, (2a)

�̂2 = 1

2

[
(1 − u)1̂ −

3∑
i=1

wiσ̂i

]
. (2b)

These satisfy the constraint on two-outcome POVMs, �̂1 +
�̂2 = 1̂. Positivity is ensured by the constraints p � 1 and
w + |u| � 1.

As shown in Fig. 1, we define the vector �k(θ, φ) to make
an angle of θ from the 2-axis in the Bloch sphere, and its
projection onto the plane perpendicular to this axis to make
an angle of φ from the 3-axis [40]. With this convention, �k is
given by

�k =

⎛
⎜⎝

k1

k2

k3

⎞
⎟⎠ =

⎛
⎜⎝

sin (θ ) sin (φ)

cos (θ )

sin (θ ) cos (φ)

⎞
⎟⎠. (3)

Rotations in the Bloch sphere are given by unitary trans-
formations Ũj = Ũ [�k(θ j, φ j ), ϕ j] that are performed between
the state preparation and the measurement. Here j labels the
device settings, and we use the tilde to denote a 3 × 3 ma-
trix. This transformation rotates �p in the Bloch sphere by an
angle ϕ j about the axis �k(θ j, φ j ), and transforms it into �p j

′:
�p j

′ = Ũj �p. This transformation is equivalent to ρ̂ j
′ = Ûj ρ̂,

where Ûj is the Hilbert-space operator that corresponds to the
Bloch-sphere rotation Ũj .

FIG. 1. (a) The rotation axis �k (red) is described in the Bloch
sphere by a polar angle θ and an azimuthal angle φ. Since in our
experiments we use the polarization of individual photons as qubits,
we take the 1-axis to correspond to |+45〉, the 2-axis to correspond to
|R〉, and the 3-axis to correspond to |H〉. (b) A vector that describes
the polarization state �p (blue) is rotated by an angle ϕ about the
rotation axis.

After such a transformation, the probability that a photon
will be detected on detector 1, P1, j , is

P1, j = Tr(�̂1ρ̂ j
′) = 1

2 [(1 + u) + �w · �p j
′]

= 1
2 [(1 + u) + �w · Ũj �p]. (4)

Similarly, we have

P2, j = 1
2 [(1 − u) − �w · Ũj �p]. (5)

Assigning a value of +1 to a detection at 1, and −1 to a detec-
tion at 2, we can use Eqs. (4) and (5) to write the expectation
value of a measurement as

Ej = P1, j − P2, j = u + �w · Ũj �p. (6)

To distinguish experimentally measured and theoretically
predicted probabilities, we will use Pi, j to represent the the-
oretical probability of detection on detector i for setting j
[Eqs. (4) and (5)], and fi, j to represent the corresponding
experimentally measured fraction.

B. Self-consistent tomography

Our goal is to determine, in a self-consistent manner, the
parameters �p, �w, and u that determine the state and the
POVMs. They are determined by applying a set of transfor-
mations Ũj and experimentally measuring the fractions fi, j .
An initial solution is obtained by substituting fi, j for Pi, j in
Eq. (6) and solving for �p, �w, and u.

Equation (6) is nonlinear in the components of �p and
�w, but if we define the products of these components as
xi j = piw j (i, j = 1, 2, 3), Eq. (6) is linear in u and the nine
different xi j’s. If we make 10 measurements, we can solve 10
linear equations in these 10 unknowns to determine a solution
for u and the xi j’s. Details of how we do this are given in
Appendix B.

As is well described in Ref. [25], self-consistent tomog-
raphy techniques determine the parameters that describe the
state and the measurements to within a choice of gauge. State
and measurement operators expressed in different gauges
are equivalent, and every observable probability is identical.
Each gauge, therefore, corresponds to an arbitrary “reference
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frame” that one must use to express the operators mathe-
matically [24,25]. For example, by examining Eqs. (4) and
(5) we see that if we simultaneously make the substitutions
�w → −�w and �p → −�p, the probabilities are unchanged. As
such, the two solutions ( �w, �p) and (−�w,−�p) are equivalent,
but they represent different gauges and we must choose one.
Physically, what does this choice of gauge represent? Chang-
ing the sign of �p, for example, would change the polarization
state |H〉 → |V 〉. For photons this choice of gauge effectively
defines what we mean by “horizontal” and “vertical.”

Next, recall that positivity places the constraints p � 1 and
w � 1 − |u|. Furthermore, if Ũ1 = 1̃, for example, we can
rewrite Eq. (6) as �w · �p = wp cos(β ) = E1 − u, where β is the
angle between �w and �p. From this we see that the measured
expectation values (probabilities) determine the product of the
magnitudes of �p and �w, but cannot determine their individual
magnitudes because of a gauge degree of freedom. Physically,
this gauge choice trades off between the purity of the state
and the discrimination power of the detector. Because of this,
in the reconstructions presented below we choose the gauge
where w = 1 − |u|, and this choice then determines p. This
choice is motivated by the design of our experiment, where we
expect that the bias parameter is the only thing that degrades
the discriminating power of the detector [41].

The solution to the 10 linear equations, as described in
Appendix B, determines u, which, given the discussion above,
determines w and p. What we now need to determine is the
directions of �w and �p. Given the measured values of the xi j’s,
if we find pi, we could determine w j from w j = xi j/pi. How-
ever, this is problematic if pi is 0, or nearly so. Dividing by w j

to find pi is similarly problematic. To avoid this problem, we
first find the maximum of the xi j’s, which we refer to as

max xi j = ximax jmax = pimaxw jmax . (7)

With this definition, we can be confident that neither pimax nor
w jmax is nearly 0. We can then safely write the w j’s as

w j = ximax j

pimax

. (8)

To eliminate the pi’s, we can solve these equations to write
two of the w j’s in terms of the third. For example, suppose
that the maximum xi j is x23, so imax = 2 and jmax = 3; then
p2 = x23/w3 and

w1 = x21

x23
w3, (9a)

w2 = x22

x23
w3. (9b)

The w3 component is used to ensure that the magnitude of �w
is consistent with our choice of gauge, and this determines �w.
We can then solve for the components of �p using

pi = xi jmax

w jmax

. (10)

This completes the analytic solutions for u, �p, and �w. These
solutions are used as the initial starting point for a maximum-
likelihood solution.

Before moving on, note that there are seven parameters
that determine u and the components of �p and �w. In principle
one should be able to find these parameters with only seven

measurements. Indeed, we find that it is possible to do this for
most states and POVMs. However, there are certain special
cases in which a particular set of seven measurements might
not be enough. For example, assume that �p = (1, 0, 0) and
�w = (0, 1, 0). In this case, x12 = 1, and all other xi j’s are 0. To
determine u and all the xi j’s, we need 10 measurements, and
with only seven measurements x12 might not be determined.
If there are not too many 0’s in the components of �p or �w, it
is possible to determine them with only seven measurements,
but in general we cannot assume that this will be the case.

C. Maximum-likelihood analysis

The expected probability of measuring a photon on detec-
tor i for measurement setting j, Pi, j , is given in Eqs. (4) and
(5). The log-likelihood of obtaining a measured fraction of
photons on this detector, fi, j , is given by

L( f , P) = ln L( f , P) =
∑
i, j

fi, j ln(Pi, j ). (11)

Following Ref. [18], we maximize the likelihood function
by alternating between QST and QDT. When performing
QST, we hold the POVM fixed, and the density operator is
fixed while performing QDT.

For QST we use the RρR method [42,43]. In this method,
the density operator at iteration k + 1 is written in terms of the
density operator at iteration k as

ρ̂ (k+1) = R̂(k)ρ̂ (k)R̂(k), (12)

where

R̂(k) =
∑
i, j

fi, j

P(k)
i, j

�̂i, j (13)

and �̂i, j = �̂iÛ j . At each iteration, the likelihood is guar-
anteed to increase, and the density operator is guaranteed
to remain positive. After each iteration, we renormalize the
density operator.

For QDT we use the method of Lagrange multipliers de-
scribed in Refs. [12,44]. The POVM in iteration k + 1 is given
by

�̂
(k+1)
i = R̂′(k)

i �̂
(k)
i R̂′(k)

i , (14)

where

R̂′(k)
i =

∑
j

fi, j

P(k)
i, j

(∑
l

∑
m,n

fl,m

P(k)
l,m

fl,n

P(k)
l,n

ρ̂m�̂
(k)
l ρ̂n

)1/2

ρ̂ j . (15)

Here ρ̂ j = Ûj ρ̂. Again, the likelihood is guaranteed to in-
crease after each iteration, and the POVM will always be
positive.

We use separate termination conditions for QST and QDT,
stopping when both conditions are reached. To set the stop-
ping point for QST, we follow the method of Refs. [18,43].
At each iteration we calculate Sρ , which is an upper bound on
the difference between the current likelihood and the unknown
maximum likelihood,

L(ρ̂ML) − L(ρ̂k ) � max[eigenvalues(R̂(k) )] − N = Sρ. (16)
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Here ρ̂ML is the density operator at maximum likelihood, and
N is the number of measurements, in our case 10.

To set the stopping point for QDT, we use the Frobenius
norm of consecutive iterations of the POVM. At each itera-
tion, we calculate ∥∥�̂

(k)
1 − �̂

(k+1)
1

∥∥ = S�. (17)

We stop once both Sρ and S� are less than 10−5.
It would be possible to use other, possibly more efficient,

techniques for maximizing the likelihood. But we have found
that the technique we use works well, and is more than effi-
cient enough (the experimental data are acquired in minutes,
while the data analysis takes only seconds).

D. Figures of merit

To compare the theoretically expected POVM (or state) to
that reconstructed by our technique, we use the fidelity F ,
which for two POVMs is given by [45,46]

F =
[
Tr

(√√
�̂1�̂2

√
�̂1

)]2

Tr(�̂1)Tr(�̂2)
. (18)

The fidelity takes on values 0 � F � 1, with F = 1 corre-
sponding to �̂1 = �̂2 and F = 0 corresponding to orthogonal
operators. To compare density operators, we simply replace �̂

by ρ̂.
The fidelity is a convenient figure of merit in that it is

a measure of how well the measured state agrees with the
expected state. However, one needs to trust one’s knowledge
of the expected state in order to have confidence in the fidelity.
As such, it is also convenient to have a measure that does not
depend on explicit knowledge of the expected state. Here we
use the total variation distance (TVD) to compare the experi-
mentally measured fractions fi, j to the probabilities returned
by the fit to the model, Pi, j [47]. The TVD is a measure of
how close the measured and modeled probabilities are, and it
is given by

TVD = 1

2

∑
i, j

|Pi, j − fi, j |. (19)

The TVD also has another useful property. Since it depends
only on measured and modeled probabilities, and these are in-
dependent of the choice of gauge, the TVD is gauge-invariant.
Any choice of gauge that we make will not affect our deter-
mination of the TVD. However, there is no well-motivated
measure of fidelity that is gauge-invariant [25]. As such, in
our experiments we choose between the ( �w, �p) and (−�w,−�p)
gauges by using the one that maximizes the fidelity with the
expected state [48].

E. Larger numbers of qubits

The potential exists for scaling this technique to larger
numbers of qubits. An efficient means for doing this is as
follows. Imagine a two-qubit system with two detectors. We
can simply use the technique above to perform detector to-
mography on each of the two detectors, even without knowing
the state. This requires 10 measurements to be performed with
each detector. We can then use the reconstructed POVMs to

perform QST on the source. For a two-qubit system, QST can
be accomplished with as few as nine measurements [10]. As
such, we can self-consistently determine both the unknown
state and both POVMs for a two-qubit system, with ∼30
measurements. Due to the gauge degrees of freedom, there are
four possible state-POVM pairs that describe the system (the
continuous gauge degrees of freedom are also still present).

Note, however, that if the source is in a Bell state, for
example, the marginal density operator for each individual
qubit is a perfectly random mixed state. In this case, all of the
xi j’s are 0, and the technique described above will not work.
As such, we need to use conditional measurements on one
qubit to project the other qubit into a state that is not perfectly
random. In this way, we can perform detector tomography on
each detector. Note that conditional measurements are only
needed if the marginal distributions for one or both of the
qubits are perfectly random.

No knowledge of the underlying state is needed here. For
example, consider the Bell state

|φ+〉 = 1
2 (|H, H〉 + |V,V 〉). (20)

A measurement of polarization on one of the pho-
tons will project it onto some elliptical polarization state
|e1〉 = a|H〉 + beiφ |V 〉. This projects the other photon into
the polarization state |e2〉 = a|H〉 + be−iφ |V 〉 via quantum
steering. If measurements of the second photon are performed
conditionally with the first, the second photon will not be in
a random mixed state, and it will be possible to reconstruct
both its state and the POVM of the detector that performs
measurements on it. If the original beam is in a different Bell
state, then the second photon will be projected into a different
state, but it will always be the case that it will not be in a
perfectly random mixed state.

For other more general two-qubit states whose marginals
are perfectly random, any conditional measurement that
projects the conditionally prepared state into a state that is not
perfectly random will suffice. As long as there is some cor-
relation between the qubits, nearly any measurement should
accomplish this.

III. EXPERIMENT

A. Apparatus

We use 5 mW of power from a 405 nm, single-
frequency laser diode to pump a 25-mm-long, type-II,
periodically polled, potassium titanyl phosphate (PPKTP)
crystal. This produces spontaneous-parametric-down conver-
sion at 810 nm, and we separate signal and idler beams with
a polarizing beam splitter (PBS). The idler beam is focused
into a single-mode optical fiber, filtered by a 10 nm bandwidth
filter centered at 810 nm, and detected by a single-photon-
counting module (SPCM). Detection of an idler photon
heralds the production of a coincident, single photon in the
signal beam. For coincidence counting, we use a coincidence
window of 3.2 ns on a commercial time-to-digital converter,
and we subtract the expected accidental coincidences.

The signal beam is focused into a single-mode,
polarization-preserving optical fiber, and emerges as the
“Source” in Fig. 2. Before being detected with SPCMs,
signal photons are also filtered with 10 nm bandwidth,
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FIG. 2. The experimental apparatus. The source consists of her-
alded single photons emerging from a single-mode optical fiber. BDP
denotes a beam-displacing polarizer, λ/2 denotes a half-wave plate,
λ/4 denotes a quarter-wave plate, WP denotes optional half- and/or
quarter-wave plates, SBC denotes a Soleil-Babinet compensator, LP
denotes a linear polarizer, and PBS denotes a polarizing beam splitter
(a Rochon prism). Light emerging from the LPs is wavelength-
filtered and coupled into multimode optical fibers (not shown), which
are then coupled to single-photon-counting modules (labeled Da and
Db).

810 nm filters. The heralded signal photons produced by our
source have a measured degree of second-order coherence
g(2)(0) = 0.024 ± 0.002, so the signal beam is well described
by a single-photon state. Furthermore, by blocking the signal
beam we find that the ratio of heralded background detections,
including dark counts, to heralded signal-photon detections
is 0.0004. As such, we conclude that background detections
have a minimal effect on our measurements.

Linearly polarized photons from the source pass through a
half-wave plate that rotates their polarization. These photons
then pass through a beam-displacing polarizer (BDP) that spa-
tially displaces the horizontal component of the polarization
from the vertical component; the fraction of the horizontal
and vertical components is adjusted by the rotation angle of
the half-wave plate. A second BPD spatially recombines the
beams, but the horizontal component is delayed by a time
longer than the coherence time of the individual photons.
This creates an adjustable mixture of horizontal and vertical
polarizations. Half- and/or quarter-wave plates placed after
the BDPs allow us to rotate the polarization, and create any
state of single-photon polarization. Likewise, half- and/or
quarter-wave plates in front of a PBS allow us to perform
measurements of any projection of the polarization.

In our data analysis, we are able to model the POVMs
that describe our detectors in two different ways, and we
will present the results separately. In the first model, we treat
the entire subsystem labeled “Measurement” in Fig. 2 as a
two-outcome POVM. We post-select on coincident detections
between an idler photon and a signal photon at either Da or
Db. In this model, detection at Da corresponds to �̂1 and
detection at Db corresponds to �̂2. We exclude events with
heralded detections at both Da and Db, which are small in

FIG. 3. Experimental determinations of the vectors that describe
the state �p (blue) and the POVM �w (yellow); parts (a)–(d) show
four different experiments. The corresponding theoretically expected
vectors are shown as dashed red arrows. The reconstructions here use
the first detector model.

number because of our low measured value of g(2)(0). As
described above, background events are a small percentage
of coincidence detections, so the vast majority of our post-
selected events represent true signal-photon detections, and
include only a very small number of events where no photons
were present at Da or Db.

To treat the two detectors as corresponding to different
operators in a two-outcome POVM, it is necessary for their
corresponding values of u and �w to be the same. The use
of a high-quality Rochon PBS (extinction ratio of >104 for
both polarizations) ensures that the two detectors monitor
orthogonal polarizations, thus ensuring that �w is the same. To
ensure that u is the same, we need the detection efficiencies to
be the same. We do this by inserting linear polarizers after the
PBS. These allow us to adjust the amount of light hitting the
two detectors, and hence balance their measured count rates
to within ∼3%. The advantage of this post-selected detector
model is that inefficiencies in detection do not effect the
POVMs.

In the second model, each detector is assigned its own two-
outcome POVM. For example, consider Da: �̂1 corresponds
to a coincident detection between the idler detector and Da,
while �̂2 corresponds to a heralding detection at the idler de-
tector, but no coincident detection at Da. The heralding serves
as a “clock” that tells us when to interrogate the detector and
observe the outcome. This model has the advantage that we
need not assume that the values of u and �w for Da and Db

are the same. The disadvantage is that for our relatively low
heralding efficiency, the imbalance u between no detections
and detections is large, and dominates the parameters of the
POVM.
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TABLE I. The data corresponding to the plots in Fig. 3.

Fig. �p Expected �p Measured �w Expected �w Measured u Expected u Measured

3(a) (−1/2, 1/
√

2, −1/2) (−0.486, 0.697, −0.488) (0,0,1) (0.017,−0.084, 0.970) 0 0.026
3(b) (0, 0, −1) (0.057, 0.117, −0.991) (1/2, −1/

√
2, 1/2) (0.487,−0.620, 0.553) 0 0.037

3(c) (0, 0, −0.6) (−0.076, −0.074, −587) (0,1,0) (0.045,0.998,0.0004) 0 0.0006
3(d) (0.275, −0.389, 0.275) (0.356, −0.364, 0.201) (−1/2, −1/

√
2, −1/2) (−0.571, −0.588, −0.556) 0 0.009

We use a Soleil-Babinet compensator (SBC) placed
between two quarter-wave plates to implement the transfor-
mations Ũ [�k(θ j, φ j ), ϕ j]. The rotation angles of the wave
plates and the phase shift of the SBC that make up these
transformations are all under computer control. We use the
theoretically expected Ũj’s, given the settings of our device,
to perform our tomographic reconstructions. Our calibrations,
details of which are found in Appendix A, show that all of our
Ũj’s have a mean process fidelity of at least 0.994 with the
actual experimentally implemented transformation.

To generate the 10 measurements necessary to determine
the state and the detector POVMs, the computer steps through
the transformations and records the singles and coincidence
counts. For each measurement setting we acquire approxi-
mately 20 000 coincident detections. From the raw counts we
calculate the probabilities and expectation values necessary to
perform the reconstructions.

B. Results

We have performed measurements for different states and
detector POVMs. Essentially, we place �p and �w in different
places in the Bloch sphere. We vary the directions of both of
these vectors, and we also vary the magnitude of �p by con-
trolling the purity of the state. We perform five trials for each
set of parameters that determine the state and the POVMs. We
performed a total of 310 trials.

1. First detector model

Four example reconstructions are shown in Fig. 3. In this
figure, we are using the first detector model, in which detec-
tion at Da corresponds to �̂1 and detection at Db corresponds
to �̂2. The theoretically expected and experimentally deter-
mined parameters that describe the state and the POVMs
corresponding to those displayed in Fig. 3 are given in Table I.
The theoretically expected parameters are calculated from the
known wave-plate settings that determine the state and the
measurement.

From the reconstructed state and POVM parameters, we
can use Eqs. (4) and (5) to calculate the detection probabil-

TABLE II. The fidelities and total variation distances corre-
sponding to the data in Fig. 3 and Table I.

Fig. Fidelity ρ̂ Fidelity �̂1 Fidelity �̂2 TVD

3(a) 0.990 0.998 0.998 0.065
3(b) 0.996 0.998 0.998 0.073
3(c) 0.997 0.988 0.999 0.124
3(d) 0.997 0.994 0.994 0.049

ities Pi, j associated with the model. These and the measured
fractions fi, j determine the TVD of the reconstruction using
Eq. (19). We can use Eq. (18) to calculate the corresponding
fidelities. The TVDs and fidelities corresponding to the entries
in Table I are given in Table II.

The fidelities of ρ̂ and the �̂i’s, and the total variation
distances of all the trials, are shown as histograms in Fig. 4.
For the POVMs the fidelities are above 0.99 for 82% of the
trials, and above 0.98 for 95% of the trials. Fidelities for the
density matrices are above 0.99 in 91% of the trials, and above
0.98 in 98% of the trials. The mean TVD for all trials was
found to be 0.11 ± 0.05. There are 20 terms in the sum of
Eq. (19) for the TVD (2 outcomes, 10 measurements), so on
average the modeled probabilities and the measured fractions
differ by approximately 0.01.

We have estimated our experimental ability to accurately
generate the Bloch sphere transformations Ũ [�k(θ j, φ j ), ϕ j] by
comparing our experimentally measured TVD data to numeri-
cally simulated data. We performed simulations while varying
the amount of error in the transformation angles, and we
compared the resulting TVDs to the distribution in Fig. 4(d).
The statistics of the errors were assumed to be the same for
each of the three angles, having a Gaussian distribution with 0
mean and an adjustable standard deviation. Statistical errors
due to finite numbers of counts were also simulated. After
performing simulations with differing amounts of error, we
find that the distribution of TVDs in the simulations was most
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FIG. 4. Histograms (a) and (b) show the fidelities of the theo-
retically expected �̂1 and �̂2 with the experimentally determined
operators, (c) shows the fidelity of the theoretical and experimental
ρ̂, and (d) shows the total variation distance between the measured
and the model probability distributions. These data were analyzed
using the first detector model.
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FIG. 5. Histogram of TVDs obtained from numerically sim-
ulated data, using parameters chosen to align with those of the
experimental TVDs displayed in Fig. 4(d).

similar to those of Fig. 4(d) for a standard deviation of 0.05
radians, and the simulated TVDs in this case are shown in
Fig. 5. For this amount of error, the simulated TVD’s had a
mean of 0.11 ± 0.04. The agreement between the simulations
and the experiment lead us to believe that the accuracy of
our technique is currently limited by errors on the order of
0.05 radians in controlling the angles in the transformations
Ũ [�k(θ j, φ j ), ϕ j] that we desire [49]. It might be possible
to improve our results by applying a neural network or a
Bayesian analysis to help us compensate for these errors
[28,50].

2. Second detector model

In the second detector model, each detector is treated sep-
arately, and the two-outcome POVMs correspond to heralded
detections �̂1 or no detections �̂2 for each detector. We use
the same experimental data as were used in the first detector
model, we just analyze them differently.

Expected and reconstructed state and measurement param-
eters for detector Db are shown in Table III (all results for
detector Da are very similar to those of Db), while Table IV
shows the measured fidelities and TVDs corresponding to
these data. Each row of Table III corresponds to an analysis
of the same data used to construct the corresponding row of
Table I. The primary difference between the two models is
the imbalance parameter u. The first model is insensitive to
the heralding efficiency, while the second model is sensitive
to it. The heralding efficiency is equal to 1 − |u|, and we see
that the data in Table III reflect an overall heralding efficiency
of 3–5%, which is consistent with independent measurements
of this parameter. We measure this efficiency by dividing the
total number of signal-idler coincidence detections by the
total number of idler (heralding beam) detections [51]. We
find that the efficiency fluctuates slightly from day to day as
the fiber-coupling of the source changes. The low efficiency

TABLE IV. The fidelities and total variation distances corre-
sponding to the data in Table III.

Fidelity ρ̂ Fidelity �̂1 Fidelity �̂2 TVD

0.986 0.998 0.999996 0.0042
0.986 0.999 0.999991 0.0066
0.997 0.999 0.999998 0.0030
0.997 0.993 0.999675 0.0029

is primarily due to the fact that we have not optimized the
coupling of our source into the single-mode fibers.

In Table III the theoretically expected parameters that de-
scribe �p and �w are calculated from the known wave-plate
settings that determine the state and the measurement. We use
an expected value for the bias parameter of u = −0.96, corre-
sponding to a heralding efficiency of 4%, which is consistent
with our measured efficiencies. We note that the fidelities are
not particularly sensitive to changes in the expected value of u.
If this value is varied between −0.93 and −0.98, the fidelities
for �̂1 in Table IV are unchanged, while those of �̂2 remain
above 0.999.

Figure 6 shows histograms of the measured fidelities and
TVDs corresponding to all of the trials. One thing to note is
that despite the relatively low heralding efficiency, the recon-
struction of the density operator is nearly as good here as it
was for the first detector model. The fidelity of ρ̂ is over 0.99
for 76% of the trials, and over 0.98 for 92% of the trials.

The fidelities for the POVMs are better for the second de-
tector model than they were for the first. For �̂1 the fidelities
exceed 0.99 for 89% of the trials, and 0.98 for 97% of the
trials. For �̂2 the lowest fidelity is 0.999 424. Clearly, the
large imbalance is having a strong effect on the fidelities of
�̂2. With u ≈ −1, �̂2 is approximately equal to the identity
operator and is largely independent of �w.

Finally, the TVDs for the second detector model have an
average value of 0.006 ± 0.003, so the model fits the data
quite well. Note that this measure is independent of any as-
sumptions about the theoretically expected state or POVMs.
In particular, it is independent of the expected value of u.

3. Discussion of the models

Recall that the first detector model treats the apparatus in
the box labeled “Measurement” in Fig. 2 as a single, two-
outcome POVM. The advantage of this model is that because
the detections are post-selected, it is insensitive to the herald-
ing efficiency of the single-photon detections. For this model
to be valid, it is necessary for u and �w to be the same for both
Da and Db. Important contributors to these parameters are the

TABLE III. The data for the second detector model, as applied to detector Db, and corresponding to the same measurements as in Table I.

�p Expected �p Measured �w Expected �w Measured u Expected u Measured

(−1/2, 1/
√

2, −1/2) (−0.482, 0.694, −0.482) (0, 0, −0.046) (−0.001, 0.004, −0.046) −0.960 −0.954
(0, 0, −1) (0.057, 0.089, −0.972) (−0.025, 0.035, −0.025) −0.027, 0.033 − 0.028) −0.960 −0.949
(0, 0, −0.6) (−0.060, −0.068, −0.558) (0, −0.035, 0) (−0.002, −0.035, −0.001) −0.960 −0.964
(0.275, −0.389, 0.275) (0.329,−0.347, 0.194) (0.017,0.023,0.017) (0.020,0.019,0.019) −0.960 −0.967
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FIG. 6. Histograms (a) and (b) show the fidelities of the theo-
retically expected �̂1 and �̂2 with the experimentally determined
operators, (c) shows the fidelity of the theoretical and experimental
ρ̂, and (d) shows the total variation distance between the measured
and the model probability distributions. These data were analyzed
using the second detector model, as applied to Db.

detector efficiencies and the ability of the PBS to accurately
separate orthogonally polarized photons.

If the detection apparatus does not satisfy these conditions,
it is necessary to use the second detector model and determine
separate POVMs for Da and Db. In our experiments, the low
heralding efficiency meant that there was a significant bias to-
ward no detections, so the no-detection measurement operator
was nearly equal to the identity operator, and hence largely
independent of the measurement parameters. The fidelity of
the operator corresponding to a detection was found to be
somewhat insensitive to changes in the expected value of u,
and hence to changes in the expected w. Thus, if the detection
efficiency is low, one should be aware of these limitations in
the reconstructed POVMs. This problem would be reduced or
eliminated in the case of higher detection efficiencies. Despite
these issues, the polarization state is reconstructed with high
fidelity, so one can still have high confidence in it, even with
low efficiency detection.

IV. CONCLUSIONS

We have described a technique that is capable of estimat-
ing both the unknown quantum state of a single qubit, and
a two-outcome POVM that performs measurements of this
qubit, in a self-consistent manner. This is done by performing
a series of known, unitary transformations between the state
preparation and measurement stages. This technique makes
minimal assumptions about the state and the POVMs. We
present two different models for the POVMs. In one model
we assume that the u and �w parameters of the two detectors
are the same, but in the other we do not need this assumption.

We assume that the unitary transformations are known. In
our experiments, this assumption is valid because the trans-
formations are characterized classically with high fidelity, as
demonstrated in Appendix A. While our assumption will not
be valid in all experiments, it will be valid in many optical
experiments where the transformations can be calibrated clas-

sically [31–33]. Knowing these transformations is what allows
us to self-consistently determine the state and the POVMs
with only 10 measurements. This saves time when compared
to other techniques that do not assume the transformations are
known, but require approximately 50 measurements [24,25].

We have experimentally implemented this technique and
applied it to a system described by the polarization of individ-
ual photons. We find that the technique works quite well, as
the fidelities between expected and measured density opera-
tors and POVMs are found to exceed 0.98 for at least 92% of
our 310 experimental trials.
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APPENDIX A: POLARIZATION TRANSFORMATIONS

Here we describe our apparatus that generates rotations
Ũ [�k(θ, φ), ϕ] in the Bloch sphere for polarization qubits. We
describe the theory behind the design of our device that im-
plements these general polarization transformations [52–54],
and we present experimental results that demonstrate its per-
formance.

1. Theory

Polarization transformations that do not modify the to-
tal intensity are unitary transformations, and they may be
represented by 3 × 3 matrices. As seen in Fig. 1, a general
polarization transformation is represented in the Bloch sphere
by a rotation R̃(θ, φ, ϕ), having a rotation axis �k and a rotation
angle ϕ. The rotation axis is parametrized by two angles, θ

and φ.
As seen in Fig. 1, we take the rotation axis �k to make an

angle of θ from the 2-axis (|R〉) in the Bloch sphere, and
we take its projection onto the plane perpendicular to this
axis to make an angle of φ from the 3-axis (|H〉). With this
convention, the rotation axis is given by Eq. (3).

If we define c = cos(ϕ), d = 1 − cos(ϕ), s = sin(ϕ), we
can express R̃(θ, φ, ϕ) in matrix form as

R̃(θ, φ, ϕ)

=

⎛
⎜⎝

dk2
1 + c dk1k2 − sk3 dk3k1 + sk2

dk1k2 + sk3 dk2
2 + c dk3k2 − sk1

dk3k1 − sk2 dk3k2 + sk1 dk2
3 + c

⎞
⎟⎠.

(A1)

Furthermore, let Ri j be the element in the ith row and
jth column of matrix R̃. Given a 3 × 3 unitary matrix that
represents a rotation, we can extract the rotation angle and
rotation axis using [55]

cos (ϕ) = 1

2
[Tr(R̃) − 1], (A2a)
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k1 = 1

2 sin (ϕ)
(R32 − R23), (A2b)

k2 = 1

2 sin (ϕ)
(R13 − R31), (A2c)

k3 = 1

2 sin (ϕ)
(R21 − R12). (A2d)

We wish to implement general polarization transforma-
tions, described by Eq. (A1), using wave plates. Consider a
wave plate that has a phase shift φW between its fast and
slow axes, and whose fast-axis is rotated by θW from the
horizontal. If we define c′ = cos(2θW ) and s′ = sin(2θW ), the
transformation matrix that describes this wave plate can be
written as [56]

M̃(θW , φW )

=
⎛
⎝s′2 + c′2 cos (φW ) −c′ sin (φW ) c′s′[1 − cos (φW )]

c′ sin (φW ) cos (φW ) −s′ sin (φW )
c′s′[1 − cos (φW )] s′ sin (φW ) c′2 + s′2 cos (φW )

⎞
⎠.

A special case that is of interest to us is the ma-
trix that corresponds to a quarter-wave plate, M̃Q(θW ) =
M̃(θW , φW = π/2).

The wave plate implementation of a general polarization
transformation that we use is given by

R̃(θ, φ, ϕ) = M̃Q

(
φ

2

)
M̃

[
π

4
+ 1

2
(φ − θ ), ϕ

]
M̃Q

(
φ

2
+ π

2

)
.

(A3)

Multiplying the matrices to the right of the equals sign
in Eq. (A3), and applying Eq. (A2) to the resulting ma-
trix, verifies that this combination of wave plates does
indeed implement R̃(θ, φ, ϕ). Physically, this corresponds to a
variable-wave plate placed between two quarter-wave plates.
From Eq. (A3) we find that the phase shift of the variable-
wave plate must be equal to the rotation angle in the Bloch
sphere, φW = ϕ, and its rotation angle must be

θW = π

4
+ 1

2
(φ − θ ). (A4)

The rotation angle of the second quarter-wave plate is θQ =
φ/2, while the rotation angle of the first is θQ + π/2.

2. Process fidelity

We verify the operation of our device by inputting classical
light of known polarization into it, and measuring three of
the Stokes parameters of the light that emerges from it. (The
fourth Stokes parameter is the total intensity, and we normal-
ize this to 1.) The classical Stokes parameters are equivalent to
the parameters of the vector �p that we use to describe the quan-
tum state of polarization (although the numbering scheme for
the two is different: p1 = S2, p2 = S3, and p3 = S1).

We wish to determine the “classical fidelity” of our
transformations. Note that the theoretically expected Stokes
vectors in our experiment are “pure”: they have unit mag-
nitude. If one of the states is pure, the quantum fidelity of
Eq. (18) can be simplified to [57]

F = Tr(ρ̂1ρ̂2). (A5)

Source
/2

LP

/4

SBC

/4 /4

 jU

Polarimeter

FIG. 7. The experimental apparatus for characterizing our device
that implements Ũj . The source is a laser diode coupled to a single-
mode optical fiber. Here LP denotes a linear polarizer, SBC denotes a
Soleil-Babinet compensator, λ/2 denotes a half-wave plate, and λ/4
denotes a quarter-wave plate. The two quarter-wave plates on either
side of the SBC are Berek compensators that have been adjusted for
λ/4 retardation.

Using Eq. (1), it is straightforward to demonstrate that we can
rewrite this expression in terms of the vectors that describe the
states as

F = 1
2 (1 + �p1 · �p2). (A6)

As such, we take the classical fidelity to be given by Eq. (A6),
where �p1 and �p2 are the Stokes vectors of the expected and
measured polarizations. The fidelity of the entire process that
describes the transformation is given by the fidelity between
the measured output state and the theoretically expected out-
put state, averaged over many states [15,58].

3. Experiment

Our experimental apparatus is depicted in Fig. 7. The light
source is an 808 nm laser diode, coupled to a polarization-
preserving, single-mode fiber, which acts as a spatial filter. We
prepare the polarization that we input to our device by rotating
a linear polarizer and a quarter-wave plate. A half-wave plate
preceding the linear polarizer allows us to adjust the intensity.
The beam passes through our unitary-transformation appara-
tus, and the polarization emerging from it is analyzed by a
commercial polarimeter (Thorlabs PAX1000IR1).

To illustrate how our device implements general polariza-
tion transformations, we perform a series of measurements.
We begin by fixing the rotation angles of the wave plates in
our device that implements Ũj , which fixes the rotation axis in
the Bloch sphere. Next we fix the input polarization by setting
the rotation angles of the linear polarizer and quarter-wave
plate that follow our source. Now we scan the phase shift of
the SBC (which scans the rotation angle) in 17 equally spaced
steps that range from 0 to 2π inclusive, while measuring the
normalized Stokes vectors of the output polarization. These
vectors should form a “ring” around the rotation axis. We can
now vary the input polarization, and we repeat the sequence of
measurements described above to sweep out another ring. To
obtain reproducible results, the rotation axes of the three wave
plates that make up our device are controlled by computer via
stepper motors. The phase shift of the SBC is also computer-
controlled using a DC servo motor.

Figure 8 shows the result of measurements performed with
our device set to perform a rotation about the |R〉 axis. In this
figure, there are five different input polarizations, so there are
five rings. The black dots show the experimentally measured
Stokes vectors, while the green lines represent the theoretical
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FIG. 8. Experimentally measured Stokes vectors (black dots) and
corresponding theoretical predictions (green lines). The rotation axis
is shown as a red arrow. Part (a) is a side view of the Bloch sphere,
while (b) shows a view looking down along the rotation axis.

predictions. Figure 9 shows the same thing, but for a rota-
tion axis given by the angles θ = φ = π/4. As expected, the
experimental Stokes vectors all lie near the surface of the
Bloch sphere, which means that the measured polarization
states are nearly pure. The experimental points lie near the
theoretical curves, indicating at least qualitative agreement
between the theory and the experiments.

To verify that the agreement is quantitative, we can com-
pute process fidelities from our measurements. The data from
the transformation displayed in Fig. 8 yield an average process
fidelity of F = 0.997 ± 0.002. For the data depicted in Fig. 9
we find F = 0.994 ± 0.005. The transformations that we use
in our experiments are listed in Table V. We have determined
the fidelities for each of these and find that the mean process
fidelity between the theoretically expected and corresponding
measured transformation is at least 0.994. These fidelities are
similar to those that we obtained for the quantum density

FIG. 9. Experimentally measured Stokes vectors (black dots) and
corresponding theoretical predictions (green lines). The rotation axis
is shown as a red arrow. Parts (a) and (b) are side views of the Bloch
sphere, while (c) shows a view looking down along the rotation axis.

TABLE V. The 10 unitary transformations that we use in our
experiments.

Ũj θ j φ j ϕ j

Ũ1 0 0 0
Ũ2 0 0 π/2
Ũ3 0 0 π

Ũ4 π/2 0 π

Ũ5 π/2 0 π/2
Ũ6 π/2 π/2 π/2
Ũ7 π/2 π/2 π

Ũ8 π/2 π/4 π

Ũ9 π/4 0 π

Ũ10 π/4 π/2 π

operators (e.g., Fig. 4). These measurements are thus con-
sistent with the idea that the thing that currently limits the
precision of our measurements is our ability to control the
unitary transformations.

In the tomographic reconstructions of Sec. III B, we use
the theoretically expected Ũj’s of Table V. We do this because
it is these transformations that yield the linear inversion of
Eq. (B2), given below. It might be possible in the future to
perform some form of “classical process tomography” from
our classical calibration data to yield maximum-likely de-
scriptions of our transformations, and this might improve our
results. But, as stated above, the theoretical transformations
we use in our reconstructions have a process fidelity of at least
0.994 with the measured transformations, so a full process
tomography determination of the Ũj’s cannot yield transfor-
mations that are significantly more accurate than the ones we
use.

To ensure that the classical calibration we perform here is
still valid for the quantum experiments, the apparatus labeled
Ũj in Fig. 7 is left in place, and the beam path is defined
with irises. The polarization preparation is then replaced by
the single-photon state preparation apparatus in Fig. 2, which
is mode-matched into the irises. The polarimeter is replaced
by the measurement apparatus in Fig. 2

APPENDIX B: LINEAR EQUATIONS

Here we describe our solutions to the set of linear equa-
tions.

The ten Block-sphere rotations that we use for our mea-
surements are listed in Table V. Substituting these into Eq. (6)
yields

u + p1w1 + p2w2 + p3w3 = E1, (B1a)

u + p3w1 + p2w2 − p1w3 = E2, (B1b)

u − p1w1 + p2w2 − p3w3 = E3, (B1c)

u − p1w1 − p2w2 + p3w3 = E4, (B1d)

u − p2w1 + p1w2 + p3w3 = E5, (B1e)

u + p1w1 − p3w2 + p2w3 = E6, (B1f)

u + p1w1 − p2w2 − p3w3 = E7, (B1g)

u + p3w1 − p2w2 + p1w3 = E8, (B1h)
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u − p1w1 + p3w2 + p2w3 = E9, (B1i)

u + p2w1 + p1w2 − p3w3 = E10. (B1j)

Substituting xi j = piw j into Eq. (B1), we see that Eq. (B1)
represents a set of 10 linear equations in 10 unknowns
u, xi j (i, j = 1, 2, 3). Solving them yields

u = 1
4 (E1 + E3 + E4 + E7), (B2a)

x11 = 1
4 (E1 − E3 − E4 + E7), (B2b)

x12 = 1
4 (−E1 − E3 − E4 + 2E5 − E7 + 2E10), (B2c)

x13 = 1
4 (E1 − 2E2 + E3 − E4 − E7 + 2E8), (B2d)

x21 = 1
4 (E1 − E3 + E4 − 2E5 − E7 + 2E10), (B2e)

x22 = 1
4 (E1 + E3 − E4 − E7), (B2f)

x23 = 1
4 (−E1 − E3 − E4 + 2E6 − E7 + 2E9), (B2g)

x31 = 1
4 (−E1 + 2E2 − E3 − E4 − E7 + 2E8), (B2h)

x32 = 1
4 (E1 − E3 − E4 − 2E6 + E7 + 2E9), (B2i)

x33 = 1
4 (E1 − E3 + E4 − E7). (B2j)

Thus, performing measurements of expectation values with
the settings given in Table V and using Eq. (B2) yields values
for the quantities u, xi j .

Note that the settings given in Table V are not unique. Any
10 settings that yield linearly independent equations for the
expectation values [Eq. (B1)] will allow us to solve for u and
the xi j’s. We have chosen these particular settings because the
solutions in this case [Eq. (B2)] are fairly simple.
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[19] J. Řeháček, D. Mogilevtsev, and Z. Hradil, Operational Tomog-
raphy: Fitting of Data Patterns, Phys. Rev. Lett. 105, 010402
(2010).

[20] D. Mogilevtsev, A. Ignatenko, A. Maloshtan, B. Stoklasa, J.
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