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Adaptive filtering is a powerful class of control theoretic concepts useful in extracting information from noisy
data sets or performing forward prediction in time for a dynamic system. The broad utilization of the associated
algorithms makes them attractive targets for similar problems in the quantum domain. To date, however, the
construction of adaptive filters for quantum systems has typically been carried out in terms of stochastic
differential equations for weak, continuous quantum measurements, as used in linear quantum systems such as
optical cavities. Discretized measurement models are not as easily treated in this framework, but are frequently
employed in quantum information systems leveraging projective measurements. This paper presents a detailed
analysis of several technical innovations that enable classical filtering of discrete projective measurements, useful
for adaptively learning system dynamics, noise properties, or hardware performance variations in classically cor-
related measurement data from quantum devices. In previous work we studied a specific case of this framework,
in which noise and calibration errors on qubit arrays could be efficiently characterized in space; here, we present
a generalized analysis of filtering in quantum systems and demonstrate that the traditional convergence properties
of nonlinear classical filtering hold using single-shot projective measurements. These results are important early
demonstrations indicating that a range of concepts and techniques from classical nonlinear filtering theory may
be applied to the characterization of quantum systems involving discretized projective measurements, paving the

way for broader adoption of control theoretic techniques in quantum technology.
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I. INTRODUCTION

Quantum computers in the noisy intermediate-scale quan-
tum (NISQ) era face considerable challenges in mitigating
the effects of decoherence on intermediate-scale multiqubit
devices. In realistic operating environments subject to noise,
difficulties arise in device calibration, control, and error miti-
gation and the complexity of these challenges increases with
system size. As the number of qubits on a device increases,
existing calibration and control techniques typically lead to
an infeasible resource overhead at the expense of available
compute time. In overcoming these contemporary challenges,
insights from classical inference and control engineering lit-
erature generally appear to be relevant. Indeed, contemporary
classical techniques for quantum systems characterization
[1-3], adaptive tomography [4-8], and parameter estimation
[9-12] add to a growing body of literature in the last decade
which has focused on realizing inexpensive and scalable char-
acterization and control methods. Classical protocols have
also been used for implementing optimal or efficient experi-
ments [13,14] by enabling adaptive measurement selection or
qubit allocation [15,16].

However, applying concepts from classical control engi-
neering to quantum systems is not straightforward due to the
peculiar role of measurement in quantum mechanics. This
complication has been typically addressed by focusing on
weak measurement of quantum systems captured via con-
tinuous stochastic differential equations [17—19]. In contrast,
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when considering projective measurement records, continu-
ous stochastic filtering methods are no longer applicable as a
quantum state is reset after each projective measurement. In-
stead, many approaches for analyzing discrete measurements
rely on rapid averaging or batch postprocessing single-shot
raw data [20,21]. The conversion of discretized measurement
outcomes into continuous variables through these means ul-
timately discards useful time-domain information and adds
a computational bottleneck that unnecessarily slows state-
estimation algorithms. Despite the importance of discrete
measurement analysis in a wide range of applications for
the characterization, calibration, and control of quantum
systems, single-shot projective measurements have not yet
been directly incorporated into classical filtering techniques
for quantum control. In particular, one requires a measure-
ment model that is quantum mechanically accurate but also
correctly captures the statistical properties of discrete obser-
vations of an otherwise continuous state space.

In this work we rigorously demonstrate how adaptive fil-
tering incorporating quantum projective measurements can
be understood through the theoretical framework of classical
nonlinear filtering, and describe in full a set of algorithmic
modifications enabling their use. First, we demonstrate an
efficient computational technique to discretize the amplitude
domain of a classical signal in a manner that preserves sta-
tistical compatibility with classical filtering theory; this is
achieved by combining Born’s rule with an appropriate ansatz
for measurement noise in accordance with classical ampli-
tude quantization. Second, we solve the resulting inference
problem using a sequential Monte Carlo framework called
particle filtering. Here, continuous probability distributions
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over a state space are approximately solved by a collection
of discrete particles that undergo nonlinear transformations.
We introduce a set of rules to perform particle transformations
in a manner compatible with single-qubit projective measure-
ments.

With these modifications, we numerically validate that dis-
cretizing the continuous amplitudes of classical random sig-
nals, and performing discrete approximations to continuous
probability distributions permits the convergence properties
of classical nonlinear filtering carry over to classical filtering
of discretized single-qubit projective measurements. Build-
ing on the experimental demonstration of adaptive spatial
dephasing-field characterization first presented in Ref. [22],
we use simulations to study the true error scaling coefficient
with particle number. This error scaling coefficient is asso-
ciated with the rate at which discrete empirical distributions
tend to the true, continuous Bayesian posterior as the number
of particles increase, thereby providing a numerical charac-
terization of the convergence behavior of the filter. We probe
the properties of our proposed filter using two different types
of numerical tests. First, our desired operation, where we run
our particle filter using single-shot projective measurements.
Here, the error scaling coefficient with particle number agrees
with theoretically expected values from classical convergence
analysis, which is unanticipated for the modifications intro-
duced here for projective measurements. Second, we break
our filter by uniformly randomizing (discarding) some state
information before receiving the next single-shot projective
measurement for every iteration of the filter. As the over-
all injection of random information progressively increases,
the error scaling coefficient gradually increases above theo-
retically anticipated values. These empirical studies provide
evidence that our methods approximate the true classical fil-
tration generated by a sequence of projective measurements,
and demonstrate model robustness for a range of challenging
operating conditions.

The paper is presented in the following parts. In Sec. I we
discuss the use of particle filters as a discrete approximation
to continuous probability distributions in classical inference
and their utility in solving difficult Bayesian inference prob-
lems. In Sec. III, we outline how the quantum mechanical
Born’s rule can be combined with insights from classical dis-
crete signal analysis so that individual projective measurement
outcomes can be analyzed by classical filtering techniques.
Subsequently, we show that classical convergence properties
of particle filters are retained even if discrete, projective mea-
surements are used. In Sec. IV, we consider adaptive filtering
with single-shot projective measurements, first presented in
Ref. [22], now discussed with greater generality and a fo-
cus on the convergence properties of filtering distributions
in a general physical setting. Using the specific example of
Ref. [22], in Sec. V we present numerical evidence for fa-
vorable convergence characteristics. Concluding remarks are
provided in Sec. VI.

II. PARTICLE FILTERING METHODS

Particle filters belong to a broader class of classical algo-
rithms, known as sequential Monte Carlo algorithms, but have
featured in quantum characterization and control applications.

Quantum particle filters were developed in the context of con-
tinuous quantum measurements [23], while particle methods
have also been used for adaptive Hamiltonian learning using
projective measurements [9,24]. Outside of quantum systems
characterization, these methods have been popularized in non-
linear engineering control theory and probabilistic robotics,
for example, in classical simultaneous localization and map-
ping (SLAM) problems [25-27] where a robot must character-
ize (“map”’) and physically navigate through an unknown ter-
rain. A common theme arising from these diverse applications
is that particle filters perform strongly in high-dimensional,
non-Gaussian, and nonlinear state spaces [28-30] that typi-
cally arise in context of characterizing quantum systems.

The efficacy of these particle filtering methods in solving
inference problems is due to their so-called particle branching
mechanisms. These branching mechanisms are an essential
part of assessing convergence, computational efficiency, and
correctness for a particle filter, irrespective of the specific de-
tails about measurement or system dynamics in any physical
application. The subset of particle filters discussed here have
extremely convenient convergence characteristics that can be
exploited for designing algorithms for quantum control. In
particular, a convenient convergence property is that the sta-
tistical behavior of branching process determines the rate at
which a particle filter converges to the true Bayesian posterior
distribution as the number of particles increase [31]. Fur-
thermore, these convergence characteristics do not place any
major constraints on the dynamical evolution or measurement
procedures for the system under consideration. This insight
paves the way for using nonlinear classical filtering directly
on discrete, single-shot outcomes obtained from quantum sys-
tems in a wide range of physical applications.

The key objective of any particle filter is to approx-
imate a true continuous Bayesian posterior distribution
[28-30,32,33]. A true continuous Bayesian posterior distribu-
tion, denoted m,, is the conditional probability of observing
X, given a set of measurements Yy,. The distribution =, is
expressed as the conditional probability of X; given the o field
generated by the observations Yy;. In general, a transforma-
tion from X, — Y; is nonlinear, and in case of single-qubit
measurements, the binary nature of ¥; € {0, 1} further makes
it difficult or impossible to derive an analytical filter update
using measurement data.

In the particle filtering approximation, the ith particle rep-
resents a hypothesis about X, = x,(” , known as the “position”
of the particle in Sy, the state space associated with X; (re-
fer Table I). The collection of particle positions represents
the empirical approximation to 7. This approach permits a
mechanism by which a filtering algorithm may be applied in
order to obtain a numerical estimate of the posterior distribu-
tion by directly transforming particles at each iteration, rather
than seeking analytical solutions using algebraic inversions or
decomposition methods. This discrete approximation 7;* for
the true 7; is expressed as

1 n
= - Z 805 (1)
i=1

where n represent the total number of particles {x,(i)}f’zl, and

each particle represents a hypothesis for X;. In the above, the
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TABLEI. State, function, and measure space notation (consistent
with [31]). The abbreviation R.V. stands for any random variable and
S =0(S), i.e., the o field generated by the state space S.

Sym. Definition

S A complete, separable metric (state) space for a R.V.
S The Borel o algebra [34] generated by S

Cc(S) The space of real continuous functions on S

M(S) The space of S-measurable functions on S

B(S) The space of bounded S-measurable functions on S
Cu(S) The space of bounded continuous functions on S
P(S) The space of probability measures on (S, S)

s.t. u € P(S) satisfies u(S) =1

Kronecker delta dy (. is used because the approximate prob-
ability measures represent discrete probability distributions.
This discrete approximation to a continuous distribution is
schematically depicted in Fig. 1(a), where a set of n = 5 dis-
crete particle positions are illustrated as points on a continuous
probability density by colored circular markers.

We now provide an overview of the particle-filtering al-
gorithm. During filtering, particles {x,’)} are transformed by
operations which represent dynamical or measurement pro-
cesses, represented by K; and the likelihood function g,
respectively. In general the transformations represented by K;
and g, are nonlinear, and the resulting transformed particles
need not resemble the forms of analytic probability distri-
butions. Under the additional assumption that X is Markov,
one uses the transition kernel for a Markov chain to obtain
the distribution at ¢ if the distribution at # — 1 is known. The
result is called the predictive probability measure p; or, equiv-
alently, the dynamical model for the filtering problem if drift
characterization is relevant to a system under consideration.
Thus, Bayes rule for the conditional probability of X; given
observations Y, is written in the typical recursive form as

i g (A = 2B, @)
Pt 8t

pr = Ki_1m_1, pr € P(Sx), 3)

D18 = /S & (x)dp:(x) > 0. “4)

The use of the projective product in the first line, *, is es-
sentially a restatement of Bayes rule. While the distribution
p; is the true continuous predictive distribution, it can also
be approximated by individually transforming particles in an
empirical distribution p} := K;_ /" ;.

For each incoming measurement at ¢, a particle weight,
denoted G,' , is computed for all i =1,2,...,n particles.
These weighted particles x,(’) form the welghted distribution
7T;, expressed as

n

—n . __ § : (i)

7Tt = Gl 8)6’)?:1),
i=1

Here, the particle weight Gﬁi) represents the probability of
receiving a measurement Y; = y, if the hypothesis captured by
the ith particle X, = x,(’) is taken to be true. The bar notation ~

0~ pl. (5)
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FIG. 1. Schematic overview of discrete approximations to con-

tinuous, classical quantities and their convergence behavior. (a) Illus-
tration of a true continuous probability density dz, /dx with respect to
a state space x € Sy in one dimension (1D) (blue solid line). Discrete
particle positions (colored markers) for n = 5 correspond to particle
indices in (b). (b) Illustrative plot of particle weights G vs particle
index i for some fixed ¢ computed from the particle filter. Weights are
normalized, ) ;| G =1, and the limit n — oo recovers continu-
ous distributions from empirical approximations in the mean-square
limit. (c) Idealized depiction of discrete-time observations (red open
circles) of a continuous signal (blue solid). (d) Discretization of
signal amplitude in (c) into two levels yields binary measurements
(red solid markers). Both discrete-time and discrete-amplitude prop-
erties of the signal are emphasized by vertical and horizontal gray
lines, respectively. (e) Schematic representation of a semilog plot of
mean-square errors £, vs number of particles as n increases for fixed
but sufficiently large . Convergent (nonconvergent) behavior in blue
(red) crosses corresponds to the extent of overlap of weighted particle
positions and the true continuous distribution in the lower inset
(upper inset). Error scaling coefficient &, describes rate of change
of errors as n — oo for each ¢ and negative values for ¢, indicate
convergent behavior.

indicates that the distribution should be computed after evolv-
ing particles from ¢ — 1 into the current iteration at 7, and G,(’)
are calculated based on a single measurement Y; received at 7.
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As a schematic illustration, for each colored circular marker in
Fig. 1(a), the corresponding particle weight vs particle index
i=1,2...,nisshown in Fig. 1(b).

The frequency with which a particle position is represented
in the next generation at ¢ 4+ 1 is proportional to its particle
weight. Here, the weighted empirical distribution of Eq. (5) is
sam})led according to the distribution of the particle weights
{Gﬁ’ }. The resulting offspring particles form posterior 7;';
equivalently, the prior distribution for the iteration at# 4 1 and
weights are reset to uniform. Over many iterations, particles
with higher weights are represented more frequently in the
particle populations enabling empirical particle distributions
to gradually converge to the true, continuous Bayesian pos-
terior. In words, as n — oo, the set of weights in Fig. 1(b)
approximate Fig. 1(a) for the schematic introduced earlier.

The efficacy of any particle filter is linked to particle
branching processes. These depend on how particle weights
{Gfl)} are calculated whenever new measurement informa-
tion is received, and how particles are propagated from one
iteration ¢ to the next ¢ 4+ 1 via resampling. Branching mecha-
nisms therefore form the core algorithmic representation of
the approach to providing an approximate solution to the
Bayesian inference problem. Many different particle branch-
ing processes have been proposed in particle filtering literature
[35-38]. We focus on branching processes satisfying Propo-
sition 1 which benefit from a number of well-understood
convergence characteristics [31]. One of these characteristics
is that the correctness of a particle filter can be analyzed as
convergence to the true Bayesian posterior distribution as the
number of particles » increase for any ¢:

CANEE 6)

This equation describes the convergence of a particle filter to
the true Bayesian posterior. The arrow schematically depicted
in Eq. (6) can be interpreted as “convergence in expecta-
tion” and “almost-sure convergence” of the empirical to the
true Bayesian distributions. Both these forms of convergence
describe the expected distance between two probability distri-
butions, where the first focuses on distances between moments
of a distribution and the second describes overall convergence
between distributions, subject to several technical considera-
tions [31].

A schematic illustration of different convergence behav-
ior is given in Fig. 1(e). Here, the square error between the
means of the target and estimated conditional distribution of
X, given data Yp, increases (decreases) with particle number
n for a divergent (convergent) particle filter, as depicted in
red (blue) crosses. The consideration of higher-order moments
of the posterior distribution is omitted from this schematic
figure. Upper and lower insets plot particle locations (circu-
lar markers) against a target continuous distribution (shaded
blue) for divergent vs convergent particle filtering, respec-
tively, illustrating differences between the target and estimated
distribution of X; given data ¥, during particle filtering.

We now explore the technical considerations under which
convergent particle filtering can be guaranteed. To achieve
convergence during particle filtering applications, the two
important technical conditions are that g, is continuous and
bounded and K; is Feller [31]. Once these conditions are
satisfied, a particle filter possessing branching properties of

Proposition 1 is guaranteed to have both convergence in ex-
pectation and almost-sure convergence to the true Bayesian
posterior as n increases [31,39].

Proposition 1. Let i denote a particle label with 7=
1,2,...,n, G denote a particle weight, and £ denote the
frequency of a particle position at ¢. Branching mechanisms
for a particle filter satisfy [31] the following:

(1) Constant particle number n = Y »_, £ for all 7.

(2) Conditional mean proportional to G;i), that is,
E[£71G] = nG}".

(3) Conditional covariance matrix (A7);; := E[(§") —
nGNT (£D) — nGY)|G,] satisfy " Aq, < nc; for some con-
stant ¢, and for any n-dimensional vector g with entries
g < 1.

In Proposition 1, the quantity £ is the number of times the
parent particle x,(’) is copied and represented in the offspring
generation of particles. The first proposition specifies that the
total number of particles remains » for all # enabling a simpler
analysis of the full branching random process from # = 0 to
t, i.e., only the branching transitions within each ¢ need to
be considered. The second proposition restates that empirical
weight of the particle is associated with the true probability
of observing that particle (state information) given some ob-
served history via G,. The last property places a constraint on
the covariance matrix associated with the branching process.
This constraint appears to have no a priori justification, but
it is a condition associated with a particle filter’s convergence
properties [31].

In particular, we focus on one aspect of convergence
analysis which concerns the scaling behavior of empirical
distributions with particle number. This scaling behavior can
be associated with the behavior of true errors generated during
filtering irrespective of the system under consideration, and
can be compared with the actual performance of particle filters
in numerical simulations. Using Proposition 1, one can derive
conditions on empirical filtering distributions as

2
Eq%f—ﬂQWFJﬁ)<L%Eu (7)
2
Bl - )] < ®)

forall f € B(Sx),t > 0, where B(Sy ) is the space of bounded
measurable functions on Sy (see Table I), and || f ||c2>O is a
infinity norm for the function. These inequalities state that the
expected distances between empirical distributions shrink as
filtration proceeds. The two different types of distances under
consideration are first, from posterior distributions at # — 1 to
predictive distribution at ¢ [Eq. (7)], and second, the empirical
distribution before and after particle resampling within each
t [Eq. (8)]. The specific value of ¢; in Eqgs. (7) and (8) de-
pends on the type of branching process and its value cannot
always be deduced a priori. Supporting technical derivations
for these equations and their relevance to the overall proofs
for convergent particle filters is restated for completeness in
Ref. [39].

Of the branching processes satisfying Proposition 1, “boot-
strap” filters are a popular example; an example algorithmic
implementation is outlined in Algorithm 1. Here, particle
weights are calculated only using the likelihood function g, (-).

012412-4



ADAPTIVE FILTERING OF PROJECTIVE QUANTUM ...

PHYSICAL REVIEW A 104, 012412 (2021)

Algorithm 1 Bootstrap

if # = O then
Samplexé” ~m, i=1,2,...,n
end if
if t > O then
Sample 5 ~ )y, i=1,2, .. r)z
. vt =i
Receive ¥, = y,; compute G = %
. . i 8 Xy .
Replace 3" with £ offspring, such that n = Y, £®
Relabel offspring as x7; reset GP = 1/nfori=1,...,n.

end if

In Algorithm 1, one sees that the empirical distributions of the
bootstrap particle filter follow the progression

I(t_lﬂtn_l N J_Ttn resample JTtn, (9)

n
and all empirical distributions have a constant particle number
n. In the above, the first arrow represents computing parti-
cle weights using the likelihood function. The second arrow
represents particle resampling as summarized by the last two
lines of Algorithm 1. For bootstrap particle filters of Algo-
rithm 1, the progression depicted in Eq. (9) is a multinomial
branching process and it is theoretically tractable to show that
¢ =1[39].

In the next section we introduce a model for projective
measurements on quantum systems that may be employed in
a data inference problem in which we must learn or estimate
system dynamics based on a measurement record. Subse-
quently, we will proceed to establish a central result of this
paper: that the use of the likelihood function introduced in
Sec. III for projective measurements on quantum systems
does not disrupt the essential convergence properties of these
particle filters.

III. NONLINEAR FILTERING OF SINGLE-QUBIT
MEASUREMENTS

In many physical settings, it is often desired that some
continuous-valued classical process X is inferred from a
discrete-time sequence of measurements. The challenge posed
by single-qubit measurements is that measurements can only
assume certain allowed values Y € {0, 1}. This challenge that
a continuous X can only be observed as discrete outcomes
Y is well known in classical literature as the quantiza-
tion of signal amplitude. The key insight described in this
section is that the combination of an analytic prescrip-
tion of Born’s rule with classical amplitude quantization
theory to describe single-shot projective measurement out-
comes provides compatibility with any classical filtering
algorithm.

In classical signal processing, it is often the case that the
continuous amplitude of some classical process is measured
by a sensor that can only record discrete amplitude levels.
In this context, amplitude-quantization theory specifies the
statistical properties of discrete measurements of an otherwise
continuous-amplitude signal [40]. The amplitude of a classical
signal is said to be discretized by B bits if its continuous-
amplitude is measured by a physical sensor which only has 28

discrete amplitude levels, up to some constant offset. These
classical amplitude-quantized signals are analyzed via sam-
pling a signal in the amplitude domain leading to an increase
in the overall noise floor [40]. We illustrate the procedure of
amplitude quantization in Figs. 1(c) and 1(d). An example of
a continuous-amplitude discrete-time classical signal is first
shown in Fig. 1(c) as red open markers, corresponding to
discrete-time noisy measurements of a continuous-time signal
(blue solid). This signal further undergoes a classical dis-
cretization of signal amplitude, where the y axis is discretized
into two discrete levels (B = 1 case). The resulting signal is a
discrete-amplitude discrete-time signal given by the red filled
markers in Fig. 1(d).

For concreteness, we treat the case B = 1 and extend this
classical analogy to single-qubit projective measurements. We
consider a classical signal consisting of a sequence of pro-
jective measurements. Let single-qubit states be expressed
in the &, basis, and U (t',t;X) be some single-qubit unitary
interaction that depends on X for a qubit initially prepared
in the ground state at the start of the procedure at ¢. The
Born probability for the outcome Y; of the projective measure-
ment commenced at ¢ is | (Y;|U (', t; X)|0)| for ¥, € {0, 1} and
t" < t. Under these circumstances, the nonlinear measurement
model for single-qubit measurements can be described as an
outcome Y; of a Bernoulli trial. This model is denoted in
notation by the symbol Q(-) for taking a biased coin flip with
the bias given by the argument

Y, = QUYIT (@, 1: X)10)%), (10)
Q(z):=Binom(p=z;n=1,k=1). (11)

In the above, a binomial distribution has success probability z,
number of trials n = 1, and k = 1 successes. These repeated
single-shot measurements spaced Ar apart gives rise to dis-
crete classical random processes. We now interpret ¢ to be
a discrete-time index marking a set of repeated single-shot
measurements Yy, := {Yy, Y1, ..., Y;} associated with Xy, :=
{Xo, X1, ...,X,}. The time step Az is set by total time for
system preparation, interaction, measurement, and reset, with
At typically much greater than the unitary interaction period
in practical experiments. The slowly varying assumption on
X 1is that Ar is much faster that any variation in X and X is
approximately constant over the interaction U.

The key observation is that some classical continuous am-
plitude X; yields only a discrete allowed value of ¥, upon
observation. If a sensor measures a continuous amplitude sig-
nal s(X;), only as discrete allowed amplitude levels Y; € {0, 1},
then this sensor has the overall effect of adding noise in the ¢
domain of the signal [40—43], represented by v,. We express
the association of the classical abstract signal with Born’s rule
as

IO, X100 < s(X) + v + 3, 12)

where v, represents uncertainty in our knowledge of the

true Born probability inferred from single-shot measurements,
and the term % is an arbitrary global rescaling factor so

that s(X;) + v, is zero mean for a single-shot measurement
of a maximally mixed qubit state. For typical single-qubit
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measurements characterizing a quantum system, we assume
commuting projective measurement procedures such that a
joint probability density over the random variates Y;, s(X;), v,
exist for all 7.

The statistical properties of v, determine how effectively
one can incorporate discrete-amplitude measurements into
conventional classical filtering by proposing an appropriate
noise model for capturing uncertainty in single-shot measure-
ment information. Examples of classical amplitude quantized
sensor information assume a variety of models, for example,
where signal distributions are convolved (x) with a pulse
train or uniform distribution, or integrated above and below
each discrete amplitude level and renormalized to represent
measurement errors [40,42,43]. Our departure from these ap-
proaches is to consider that any uncertainty in our knowledge
of the true Born probabilities arise from truncated error distri-
butions representing amplitude quantization into two discrete
levels. Specifically, we assume a noise model to be zero-mean
Gaussian distribution A(0, ¥,) with variance X,, which is
convolved with a uniform ¢/ distribution as

Prv;] = N(0, ©,) xU(a,b), Yit, S,=R, (13)
where Pr[Z] represents a probability measure for the real-
valued, random variate Z defined over the space z € Sz, and
a, b represents finite bounds on the values of these errors due
to amplitude discretization. In the above, the notation Pr[Z] is
interpreted as a probability mass function over discrete values
in Sz, or density over continuous values in Sz.

Under these considerations, the continuous-amplitude
measurement model takes the form

Pr(Y, = yls(X;)]

1
= / <[S(X1) + v ](8y,1 — dy0) + §>Pr[vt](v)dv, (14)

v

where 8, , takes the value 1 if x =y or zero otherwise. As
one example of the noiseless ideal case v; = 0, the ideal Born
probability of observing the qubit in |1) is then s(X;) + % or
% — s(X;) for observing the qubit in the |0) state.

Substituting Eq. (13) into (14), and performing the relevant
integration yields the final form of likelihood function under
amplitude discretization of Born probabilities,

Pr[Y, = yls(X,)] = % + p0s(X)(By1 — 8y0)
= g =" (X)), (15)

with the real-valued scalar py obtained from integration as

(2, N> L W)
= €r. _— s
po ) T Jr 2 Jx

where erf is the error function with values between [—1, 1].
For error sources that are symmetric with respect to how
they affect single-qubit states, one sets —a = b in the cal-
culation above. Asymmetric error distributions —a # b may
arise, for example, when noise during state detection depends
on the state of qubit at the start of a projective measure-
ment procedure, e.g., state-dependent decay of hyperfine

(16)

qubits in trapped-ion quantum computers [44,45], but are
not treated in this paper. In circumstances when b < 3%,
model failure may occur as information in the original dis-
tribution is being discarded by the procedure for amplitude
discretization.

While we have focused on single-qubit measurements with
two possible discrete amplitude levels (“0” or “1”), one may
extend to B-qubit measurements with 22 discrete levels if
these states are individually discernible in experiments. In
all of these cases, we assume that s(X;) is continuous such
that the properties of the resulting discrete-amplitude signal
can be described via methods of Refs. [40,42]. Additionally,
we will also assume that s(-) is bounded and s(-) has an
inverse s~!(-) on Sx,, the space of allowed continuous values
for X, € Sx,. As discussed below, the boundedness property
ensures that our likelihood function can be safely incorporated
into bootstrap particle filtering while preserving convergence
properties of these filters. Subsequently, in Sec. IV, the in-
verse s~ is used to share estimated state information in small
regions for adaptive particle filtering.

We now establish that the likelihood for projective mea-
surements proposed here can be incorporated within bootstrap
particle filtering without affecting standard convergence theo-
rems. Our likelihood function is given by Eqgs. (15) and (16).
As discussed in Sec. II, this function needs to be bounded
and continuous for conventional convergence properties of
bootstrap particle filters to hold. Examining Eq. (16), we see
that for b # 0, the scalar value py is bounded, as evident by
considering the following two limiting cases. The limit ¥, —
0, the scalar py — 1, and the ideal case of a coin flip with
the win probability given by Born’s rule is obtained. In the
opposite limit, X, — oo, the scalar py — 0 and no inference
is possible. Assuming s(-) is bounded and b # 0, the proposed
likelihood function g"="(X,) is also bounded. For continuity,
itis required that the likelihood function is continuous over the
state space of X; for a specific instance of data Y; [31,42,46].
For a fixed instance, Y¥; = y;, gf‘:y’ (X;)in Eq. (15) is expressed
by either po/2 + pos(X;) or po/2 — pos(X;). Assuming s(-) is
continuous, the proposed likelihood function g"="(X,) is also
continuous with respect to X; for an instance of y,. Thus, for
continuous and bounded s(-) and b # 0, the proposed like-
lihood satisfies the key properties required for conventional
convergence properties. Further, our result is general in the
sense that aside from the observation process, no further in-
formation about the physical application, system dynamics,
or the noise environment is being assumed. The specific case
b= % is considered in the remaining sections.

So far our work allows quantum projective measurements
to be analyzed by fully exploiting the power of particle tech-
niques for nonlinear, non-Gaussian, high-dimensional state
spaces typically arising in the context of quantum characteri-
zation problems. Next, we provide technical details about an
adaptive filtering framework as a variant of bootstrap particle
filter with multinomial branching. However, our framework
departs substantially from traditional bootstrap filters as it
incorporates features for adaptive control using quantum pro-
jective measurements. We outline these features in the next
section and subsequently investigate the numerical error scal-
ing behavior of our protocol with the 1/n behavior predicted
by Eqgs. (7) and (8).
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IV. ADAPTIVE FILTERING FOR QUANTUM SYSTEMS
CHARACTERIZATION

Our challenge in this section is to outline a theoretical
framework capable of adaptively characterizing and predict-
ing classical correlations arising in projective measurement
records. These classical correlations may arise, for instance,
due to the interaction of the quantum system with its ambient
environment, unanticipated system dynamics, or intrinsic per-
formance variations or noise in hardware. However, a naive
application of multivariate filtering techniques to projective
measurement records, even of commuting quantum observ-
ables, presents several difficulties. One issue is that quantum
projective measurements are inherently local. In particular,
Born’s rule provides an unambiguous link between the mea-
surement information and the elements of some multivariate
X being inferred. In the language of classical estimation and
mapping, this statement means that there is often no imme-
diate benefit in defining a joint, classical Bayesian inference
problem over elements of a multivariate X in filtering, a
stark contrast to related classical literature, for example, for
simultaneous localization and mapping (SLAM) applications
[26,27,47]. Below, we present a deeper analysis of the impli-
cations of our adaptive methods, as first presented in [22], on
overcoming these challenges and on filter convergence.

To accommodate predictive estimation of classical corre-
lations in projective measurement records, we now associate
points in some classical (continuous) parameter space with an
index j as well as the discrete sequencing index ¢. This param-
eter space may arise in different physical applications where
classical, continuous variables are sparsely sampled, as exam-
ples, due to geometric arrangement of qubits in space [16];
the choice different measurement procedures, tomography of
continuous-variable systems [48], or noise spectroscopy. For
a d-dimensional observation vector, we assume a classical
joint probability distribution must exist over all d elements
of Y,(j ), j=1,2,...d,1ie., quantum mechanical observables
associated with Yt(/ ) commute for all j and ¢. If the labels
j=1,2,...,d are measurements of different points in this
parameter space, then each observation Y,(" ) is local and pro-
vides information only about the elements of X,(i) uniquely
associated with the label j at iteration ¢. If instead the labels
j=1,2,...,d are repeated measurements of the same point
in parameter space, then the empirical mean of repeated mea-
surements 5 Zj’z 1 Y,(’ ) is the empirical Born probability.

In order to efficiently learn classical correlations in pro-
jective measurement records and overcome these technical
challenges, the adaptive filtering framework of this section
shares estimated state information between elements of X dur-
ing filtering, while behaving in accordance with the branching
properties of Proposition 1. Our key observation is that many
physical settings and noise sources lead to classical, contin-
uously varying phenomena in j and ¢. In our framework, the
outputs of classical state estimation at one coordinate point
associated j can be spread locally about that location. The
region or neighborhood within which information sharing
occurs can also be estimated as part of the particle filtering
process. Thus, in the language of classical mapping problems,
for each ¢ we estimate both map values at the point j and
approximate map gradients in small regions about j. The

resulting output of the particle filter is a characterization of
classical correlations over parameter space indexed by j and ¢
using projective measurement records.

Framed in the language of classical map building, a true
state vector X, contains both the register of map values F; and
local approximate map gradient information R;, that is,

X = [F"

LED RD L RYI=[F R (17

Sy = Sf x Sg, Vi, (18)

SF = [Fmina Fmax]» SR = [Rminv Rmax]- (19)

In the above the quantities F; and R, represent d-dimensional,
real, continuous-vector-valued random variables, and their
outcomes take values between F,(’ ) e [Finin, Fmax] and R,(/ ) e
[Rmin, Rmax] for any location in parameter space labeled j =
1,2,....d.

Unlike typical particle filtering, our algorithm locally es-
timates the value of the field for a measured point at j,
before sharing this information with neighboring points in the
vicinity of j. The algorithm is responsible for determining
the appropriate size of circular neighborhoods of radius R[(j )
about the point labeled by j. The set of points inside the
neighborhood Q; shrinks or grows about j as the autonomous
inference process progresses. Under these circumstances, this
adaptive filtering protocol incorporates not only a local phys-
ical single-qubit projective measurement at j using Eq. (12),

v =0(s(F”) + v +1), Sy=10,1}, (20

but also data messages generated by j for locations ¢;,

A Q(s(x,(j"")) +1). Sp=1{0.1},
Va €0 D

In the above, X,(j’q’) is a convex combination of the existing

estimate at ¢; and new information due to a measurement
Y,(’ ) received at j. The calculations associated with the term
X;('] 4 invoke continuity of physical phenomena whereby new
information at j is shared over a region about j via any
choice of a sigmoidal function [49], here set to be a Gaussian
function, parametrized by the estimate of Rfj ). The term X,(j 4
is computed using the posterior information at ¢ and has the
effect of introducing correlations between the elements of
particle positions in the next iteration ¢ + 1. Detailed technical
information is provided in Sec. 2 of Ref. [39] for complete-
ness.

Having modified conventional filtering with this
information-sharing mechanism, we now focus on the
branching properties of this framework and any potential
implications on convergence properties of typical particle
filters. In particular, two different types of particle species are
used by the filter within a bootstrap filtering structure. Let «
particles be a set of n, number of particles. For each parent
«a particle, let B, particles be a set of ng number of daughter
particles useful for enabling neighborhood discovery and
adaptation during filtering. The layer of « particles {)cl(o‘)}’;":1
carry a hypothesis about X,

xt(vt) — [ft(fx) rt(Ot)]7 (22)
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where lowercase x;, f;, r; refer to instances of the true process
in uppercase X;, F;, R,. Additionally in Eq. (26), 8, particles
are a set of ng number of particles for each of the n, parents.
A single B, particle carries a hypothesis for R,(’ ) assuming
that F; and neighborhoods at other locations R,(j D
expressed in our notation as

xUeho [r;j,a,ﬁa)]’ (23)

are known,

where the distribution of g particles is the conditional distri-
bution of R,(j ) given X, \Rt(j ). Here, the superscript notation
U.@.ha) refers to the location label j for the parent a-particle
index, o, and its associated B, particle. This empirical distri-
bution of B, particles is related to the parent « particle using
the empirical mean

' = Eg, [x 0. (24)

The expression above relates the empirical mean of the S,
particles for each parent « particle to the element r,(j ),

These manipulations lead to the following progression of
empirical distributions for each ¢:

_ (jngng) resample _ (; » resample
K7, — nl(’ artp) — 7 ona) e, (25)
1=y

Nz =Ny

where the index j makes explicit that each iteration ¢ receives
physical measurements at the label j, and the superscript n,ng
(or n,) indicates the total number of particles in the weighted
distribution 7‘1,(’ ) Two resampling steps are required to move
from 77" — 7" s gl corresponding to the arrows,
where N; and N, represent the total number of particles in
the new generation after resampling. This progression of em-
pirical distributions of Egs. (26) to (28) in Eq. (25) can be
compared to the bootstrap particle filter in Eq. (9), where these
measures are expressed as

Ny ng
ﬁt(J,nan/ﬁ) — Z Z G;J,(x,ﬁa)gx’x’(jvmﬁa)’ (26)
a=1 =1
Ny
gl =3 "8, 7
a=l1
N
A=y 8, (28)
a=1

Gt(j»a:ﬁu)

In Eq. (26), the particle weights are computed using

()
a scoring function g% "*" (1, A2, A,),

G = Gy, A, (29)
which incorporates the likelihood function of Sec. III and
whose form and parameters are detailed in full in Sec. 2
of Ref. [39]. The weights G;j’“’ﬂ “) are rearranged into new
weights QY after the first resampling step in Eq. (27). The
use of the overbar notation (7) indicates that posterior parti-
cle positions at t — 1 have been propagated by the transition
kernel to the step ¢, as indicated by sequence in Eq. (25).
Using the empirical definitions above, the pseudocode
summarizing our proposed framework is given in Algorithm
2. As with standard particle filters, our algorithm is initi-
ated by sampling from a prior distribution. At any iteration

Algorithm 2 Adaptive filtering for quantum measurements

if + = 0 then
Samplex(()i) ~my, i=1,2,...,n
end if
if # > O then
(i) Sample & ~ K, 7w/, i=1,2,...,n,
(ii) Receive Y,<j ) = y,(j ). generate f, particles from Eq. (36)
or (37)

(iii)—(v) Compute GV"*#) ysing gﬁy’(j)'a’ﬂ“)(kl, A2y Ar)

(vi) Replace ¥“#) with £ offspring; Ny = Z;“iﬁ gP
Reset to uniform weights 1/Nj.

(vii) Store r,(j ) and C,('/ ) from surviving particle pairs

(viii) Compute V% = %ﬁmm; discard B, particles,
VY«

(ix) Replace %" with 1\’ offspring; Ny = > 1« | 1\*). Reset
to uniform weights 1/N,.

(x) Relabel surviving particles as x*', fora = 1,2, ..., n,

(xi) Schedule next measurement j = argmaka,(k)

(xii) Generate and update ?,(‘1’) ,forall g, € Q,(j )

end if

t, all particles from the posterior distribution at + — 1 are
propagated to ¢ via the transition kernel K; in (i). Upon re-
ceiving measurements and data messages in step (ii), particles
are subsequently scored using the likelihood function in (iii)
and (iv) in a manner similar to bootstrap particle filtering.
The subsequent steps involve particle resampling steps and
adaptive control actions. In particular, step (vi) corresponds
to computing the empirical variance estimate with respect
to the B, particles for each «. The resulting quantity C,(k)
for k=1,2,...,d is a Fano factor and it is used in the
control step (xi) by scheduling the ¢ + 1 physical measure-
ment for the label ;' associated with maximal uncertainty
Jj = argmaxk{C,(k)}Zzl. Individual calculation steps for our
code are fully specified in Sec. 2 of Ref. [39].

Under this adaptive protocol, we seek the convenient con-
vergence properties of particle filtering discussed in earlier
sections and we discuss the extent to which particle branching
in Algorithm 2 satisfies Proposition 1. The following progres-
sion of empirical distributions in Algorithm 2,

ﬁ,t(./vnzx”ﬂ) N J—Tl(jana) — n.tnn , (30)

is found to be a multinomial process similar to conventional
particle filtering. This process represents a rearrangement of
particle weights into the weights Ql(j’a) and it forms a multi-
nomial random process if particle number is conserved during
each resampling step. To see this, let 8’ be the labels over
all particle pairs («, B,) so that these labels correspond to
the indices B’ = 1,2, ..., nyng. Let A, be the grouping of
Bu-particle weights for each o parent, where « is the label
over parent particles 1,2, ..., n, as before. This means that
the labels B’ are partitioned into n, nonoverlapping categories.
Then the weights for each A, category are

Q= "GP 31)
B'eAa
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The recategorization given by the equation above occurs in
(viii) of Algorithm 2 where the weights Q,(j ) are proportional
to the count over surviving f, particles for each parent. Ad-
ditionally, for N = N, = N, the number of offspring in each
resampled offspring generation satisfy

Nghg

N=7) " (32)
B=1
=Y > &” (33)
a=1 p’'eA,
Ny
=Y 0@ =Y &". (34)
a=1 BeAy

Thus, the resampling steps represent a recategorization of By
particle weights into nonoverlapping sets associated with each
o parent. If particle number is conserved Ny = N, = ng, then
two consecutive particle resampling steps in Algorithm 2 are
multinomial and satisfy Proposition 1. These observations es-
tablish the second result that the adaptive filter of Algorithm 2
shares the same multinomial particle resampling process con-
sistent with traditional particle filtering in Algorithm 1.

The departure of Algorithm 2 from conventional particle
filtering lies in the following step of Eq. (25),

Ko, — 7", (35)

which requires the generation of §, particles by creating sam-
ples of r[(j’o”ﬁ “) at the start of each iteration 7. We propose
two methods for particle generation: “Uniform” or “Trunc.
Gauss.” The Uniform method resets all B, particles to the

initial distribution for R at any ¢ or parent index o,

V,(j'a’ﬁ“’) ~U(Sg), Vt, rt(j’a'ﬂ“) € Sg. (36)

This method represents a strong breakdown of the transfer of
estimated state information about R, from ¢ to ¢ 4+ 1 during
the estimation procedure. In contrast, Trunc. Gauss preserves
some information about the estimated R, from ¢ to ¢t + 1 for
each parent index o,

rt(j’a’ﬁ“) ~ N(f[(j’a), ’—,r(j,a)ct(i‘)l)’

Here, one uses the approximation that the true distribution of
R; at each step can be summarized by the first two moments
of a truncated Gaussian distribution. Second, one assumes that
?fj ’a)Ct(i )1 is an appropriate approximation for the true second
moment of R;. As before, the barred quantities 7, denote that
the posterior information at + — 1 have been propagated into
the current ¢ via the transition kernel K.

The impact of these departures on the convergence proper-
ties for particle filtering is now investigated numerically in the
next section. In particular, the scaling behavior of true errors
with particle number n will be explored via simulating the
specific example in Ref. [22].

Vi, P e Sp. (37)

V. NUMERICAL ANALYSIS

In previous sections, we discussed the convergence proper-
ties of particle filters. For the specific case of bootstrap particle
filters with multinomial resampling, of which both Algorithms

1 and 2 are examples, the condition ¢; = 1 means that ex-
pected value of distance between the two empirical probability
measures in Egs. (7) and (8) decays as % as n — oo almost
surely, where n is the particle number. However, Algorithm 2
additionally accommodates both single-qubit measurements
(Sec. III) and adaptive control features (Sec. IV) that depart
substantially from conventional filtering literature and thus it
is not at all clear if the scaling behavior predicted by con-
ventional convergence theory apply here. In this section, we
numerically analyze whether the true error scaling behavior
of Algorithm 2 with particle number accords with predictions
from conventional convergence theory.

Instead of comparing the distance between empirical mea-
sures for the state X; in Egs. (7) and (8), in our analyses, we
focus on the first moments associated with these empirical
measures and compare the posterior estimate of F; from the
algorithm with the true F; using simulations. Under these
approximations, let £, be the expected value of the true mean-
square error per label j at iteration z. From Eq. (8), let L,
scale with particle number n = n, according to the following
postulated relationship,

InL, = glnng, (38)

where ¢; is a real-valued scalar for finite values of ¢. Broadly,
a value of & < 0 indicates that expanding the particle num-
ber improves the inference procedure (error decreases with
greater n,), while a value & > 0 indicates increased error
with n,. We expect ¢; € [—1, 0) for an algorithm that accords
with conventional convergence theory, where ¢, = —¢; = —1
holds if multinomial resampling satisfying Proposition 1 is the
slowest contribution to overall algorithmic convergence.

For this empirical analysis, we focus on a specific example
presented in Refs. [16,22]. In this example, one assumes that a
set of independent qubits are subject to a classical, externally
applied dephasing field, k € {1, 2, ..., d} labels coordinate
positions of qubits in two-dimensional (2D) space, and s(-) is
given by a relative phase single-qubit Ramsey measurement.
For classical dephasing in Ramsey measurements,

s(F) = 5 cos(F), Sr:=10,7], (39)

where F; has the physical interpretation of qubit phases at
each location, giving rise to interference between quantum
amplitudes of single-qubit states. In Ramsey measurements,
the form of s(-) is nonlinear, bounded, continuous over the
half-cycle [0, 7], and this gives rise to a nonlinear particle
filtering problem discussed in previous sections. Substituting
Eq. (39) into (12) gives the measurement model for single
qubits under dephasing:

Y, = Q(§ cos(F) + v, + 1),

We further assume that a slowly varying X, is sampled rapidly
using measurement data, and the approximation

Ki(x,A) =Pr[X,; € AlX; = x] = d(x) (41)

Sy = {0, 1}. (40)

is used, where the symbol §(x) is interpreted as the Dirac delta
at x. The equation above defines the assumption that F; is
approximately static relative to a high-measurement sample
rate in t.

By taking the first d elements of the posterior X;, and com-
paring it with a true dephasing field used during simulations,
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the error is computed as
£, = E[||(E[£] - F)|[3/4] (42)

In the above, the true map used in simulations is the vector-
valued F*, [E[-] is an expectation taken over repetitions of each
simulation, E,[-] captures the first moment of the particle dis-
tribution. Specifically, E, [ fr(a)] are the first d elements of the
posterior estimated X, obtained as the mean of the posterior
particle positions at #, and || - ||§ represents the total squared
error on all d locations.

Using this error metric for the three case studies examined
in [22], a plot of the logarithm true mean-square error per
qubit against logarithm number of particles yields the esti-
mated slope & in Fig. 2. For each case study, the true map F*
over the arrangement of d = 25 qubit locations is provided in
the right insets in both 1D and 2D. In the main panel, we plot
the extracted &; against ¢ for both Uniform (red crosses) and
Trunc. Gaussian (blue circles) expansion strategies. For each
value of ¢, these ¢, values are calculated from the gradient of a
line of best fit for the logarithm of true mean-square error per
qubit in map reconstruction against the logarithm of #n,, the
total number of « particles at the beginning and end of each
t. Example raw and best fits for the case t = 75 are shown in
the left insets in Figs. 2(a)-2(c).

Fort < d = 25, we observe ¢; < 0 for both data sets. This
means that increasing n, under any expansion strategy (Uni-
form or Trunc. Gaussian) improves the inference procedure
when data are sparse, assuming that the correct initial distri-
bution has been specified. For the high-data regime ¢ > d,
the values of ¢, diverge between the two expansion strategies.
The Uniform approach in Figs. 2(a)-2(c) shows that &, > 0 as
t increases. In contrast, under a Trunc. Gaussian strategy, we
see that &; € [—1, 0) is satisfied for all values of # > d in all
cases studied.

These observations are consistent with our expectations.
For the Uniform strategy, we expect &; > 0 since filter conver-
gence does not hold asymptotically as information about R, is
reset to the prior distribution for Ry even for large values of ¢.
In this limit, increasing particle number n,, increases the level
of randomness in the filtering distributions. By contrast, under
a Trunc. Gaussian strategy, we expect that in some physical
applications, it is reasonable to assume that that length-scale
distributions are well described by the first two moments
of an appropriately designed truncated Gaussian distribu-
tion at each ¢. Under these conditions, information transfer
from ¢ to ¢ 4+ 1 occurs such that filter convergence may hold
and we expect that the condition & € [—1,0) is satisfied
asymptotically.

Thus, true error scales in a predictable way for Algo-
rithm 2 under a Trunc. Gaussian approach. Our results provide
compelling numerical evidence that classical convergence
behavior appears to hold even if single-qubit projective mea-
surements and adaptive control features are incorporated into
a classical filtering framework. Additional supporting numer-
ical results are provided in the final section of Ref. [39].

VI. CONCLUSION

In this work, we explore an alternative implementation of
adaptive filters for quantum systems with projective measure-

True Map 0 (rad)lEm
a =
@ el T[T [T
060F 5 . L 1 70 ok
16T | Qubit #
S 1615200409 o
030 9- £o oM bt —» Uniform
: =-1.9 A
= 1 2 3 runc. Gauss
In(ny) (arb. units)
5 HEXHNXX]
0.00 S—
Og,gé S0e606c00200600)
-0.30 ! | .
b =
(b) Lasft=1 L, o
m 060F 5 o =~ * <
= g == =2 o a8 o™
c =-1.6 0 ~—-— Q
> o £=01 o] G N
£ 030f SqgL=P00 -
S = 1 2 3 . 5
In(nq) (arb. units) Qubit #
(:JQ x—x-)(-x-x*><-><x—x—><x-x-><x-)<-xx-><-><
0.00 3
©9006500009000000)
-0.30 ! | .
© T E im Led e
oo SR 2o o
£l -~ T 3| HEE
S T Fe=017 o Gt LM
L Q. e=-p.1 -
PR E T 12345
In(nq) (arb. units) OO0
ey YN
0.00 200X XX
' 06600006866
6990960990990990
-0.30 L I |
0 20 40 60

t (num)

FIG. 2. Error scaling behavior for Uniform and Trunc.
Gaussian. Rows represent 1D linear array, a 2D array with a
square field, and a 2D array Gaussian field with d =25 (right
insets); with high- and low-qubit phase values of 0.257,0.757
radians depicted on color scales. (a)—(c) Main panels depict &,
against ¢ for tuned parameters. ¢ > 0 for Uniform; ¢ € [—1,0)
for Trunc. Gaussian for ¢ > d agrees with typical convergence
analysis. Data for Uniform (red crosses) and Trunc. Gaussian
(blue circles). Left insets depict the natural logarithm of the
expected mean-square map reconstruction error per qubit over 50
runs against the natural logarithm of n, number of o particles.
From left to right, the x axis shows increased particle number
ny =3,9,15,21,30; ng = %na, fort = 75. ¢ is the gradient of the
line of best fit (dashed lines). Vertical colored lines mark particle
configurations yielding lowest empirical error for tuned parameters
(2, Zp, A1, A2)  for  Uniform: (a) (6.0e7%,0.10,0.88,0.72);
(b) (7.1¢77,0.04,0.88,0.72); (c) (5.9¢7°,0.10,0.72,0.95).
Trunc. Gaussian: (a) (9.0¢7%,2.6¢7,0.88, 0.72);
(b) (8.9¢77,1.9¢7°,0.88, 0.72); (c) (0.77, 4.6e75,0.72, 0.95).

ment models and rigorously demonstrate that the theoretical
basis of classical nonlinear filtering applies in this context.
Taking inspiration from classical signal processing, we com-
bine discrete analysis of continuous amplitude signals with
Born’s rule and show that a likelihood function can be used
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to individually filter a sequence of single-shot projective mea-
surements. While this likelihood function can be incorporated
in any classical filtering framework, we show that its inclusion
into particle filtering methods preserves important conver-
gence properties of particle-based solutions generalizable to
a broad range of difficult inference problems encountered in
quantum characterization and control.

Extending these insights, we investigate convergence of
classical adaptive filtering of quantum projective measure-
ments. These convergence properties are especially useful if
practical implementations limit a priori knowledge typically
required for filter tuning or training machine-learning meth-
ods. Indeed, the technical approach we introduce here for the
modification of classical filtering algorithms is generalizable
to a wide class of problems as we make minimal assumptions
about measurement procedure, noise characteristics, or the
dynamics of an open multiqubit system. Applications include
adaptive measurement selection [16,22], but other examples
could include classical noise spectroscopy, efficient tomogra-
phy, spatiotemporal forecasting, or adaptive calibration and
control tasks using time series of discrete projective measure-
ments.

Focusing on numerical studies for one such example in
Ref. [22], an empirical rate of convergence computed as
the scaling factor ¢, of true error with particle number was
shown to be theoretically expected to satisfy the condition
& € [—1,0). This condition & € [—1, 0) appears to hold for
a range of algorithmic and physical configurations under
a Trunc. Gaussian particle expansion strategy in a manner
similar to convergence properties for conventional particle

filtering. While these numeric studies represent only one type
of application of what is a broadly deployable algorithmic
framework, the empirical results provide compelling evidence
that it may be possible to extend conventional convergence
theorems to our methods.

Thus far, we have put forth the idea that effect of quantum
projective measurements on classical filtering methods can
instead be understood as the effect of a discrete likelihood
function on convergence properties of the underlying branch-
ing processes. In the case that these branching processes can
be viewed as classical random walks, for instance, in clas-
sification and regression tree analysis, the insights presented
in this paper can be used to appropriately customize alterna-
tive stochastic frameworks for predictive control. All of these
stochastic methods have wide-ranging implications for device
calibration, crosstalk analysis, non-Markovian noise charac-
terization, and automated system tuneup. We look forward to
exploring how the rigorous analysis we have performed here
may be applied to a broad class of adaptive filtering problems
for near-term quantum computers.

Unrestricted access to the code base and data are provided
in Ref. [52].
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