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Symmetry plays a fundamental role in the security analysis of quantum key distribution (QKD). Here we
review how symmetry is exploited in continuous-variable (CV) QKD to prove the optimality of Gaussian
attacks in the finite-size regime. We then apply these results to improve the feasibility and the key rate of
these protocols. First we show how to improve the feasibility of the energy test, which is one important
routine aimed at establishing an upper bound on the effective dimensions of the otherwise infinite-dimensional
Hilbert space of CV systems. Second, we show how the routine of parameter estimation can be made resource
efficient in measurement-device independent QKD. These results show that all the raw data can be used
both for key extraction and for the routines of the energy test and parameter estimation. Furthermore, the
improved energy test does not require active symmetrization of the measured data, which is computationally
demanding.
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I. INTRODUCTION

Quantum key distribution (QKD) is the art of exploiting
quantum optics to generate a secret key between two distant
users linked by an insecure quantum communication channel
[1]. Once the secret key is established, it can be used as a one-
time pad to achieve ever-lasting security in communication.
This is in contrast with public-key cryptography, including
postquantum cryptography, whose security relies on compu-
tational complexity and is, thus, undermined by increasing
computational power as well as quantum computing [2].

QKD protocols can be classified according to the nature of
the degrees of freedom that are used to encode information
in the quantum electromagnetic field. Discrete-variable (DV)
protocols encode information in a discrete way (often binary)
using, for example, polarization or time delay. Continuous-
variable (CV) protocols encode information in continuous
degrees of freedom, for example, quadrature and phase.

CV QKD has the strategic advantages of requiring for
decoding off-the-shelf components as homodyne or hetero-
dyne detection, which are mature technologies developed in
standard telecommunication, whereas DV QKD needs high-
efficiency and low-noise single-photon detectors [3]. For
recent experimental demonstrations of CV QKD, see, for ex-
ample, Refs. [4–6]. However, CV QKD is still not completely
characterized from a theoretical point of view. Indeed, techni-
cal issues make the mathematical analysis of CV QKD more
challenging than DV QKD. This is essentially due to the fact
that the quantum states prepared and shared in CV QKD live
in a Hilbert space of infinite dimensions.

The security of CV QKD has been first established for
Gaussian attacks, i.e., under the assumption that the quantum
communication channel maps Gaussian states into Gaussian
states [7]. Second, it has been extended to collective attacks,

i.e., assuming that each signal passing through the quantum
channel is subject to an instance of the same noisy trans-
formation [8–10]. The most general attacks are the so-called
coherent attacks, where the noisy communication channel can
act in an unconstrained and unstructured way on the input
signals. Finally, the highest standard of security is that of
composable security, where the security of QKD is quantified
and not only assessed in a qualitative way [11]. The compos-
able quantification of security is especially important in the
finite-size scenario where a finite number of quantum signals
are exchanged, as is the case in any experimental realization
of QKD.

For CV QKD, composable security against coherent at-
tacks has been established for two kinds of protocols: The
first is based on squeezed states and homodyne detection,
whose security analysis exploits the phase-quadrature un-
certainty relations [12,13]; the second is based on coherent
states, heterodyne detection, and exploits the postselection
method [14] to prove the optimality of Gaussian attacks in
the finite-size regime [15]. In this paper we focus on the
latter approach, which applies to no-switching protocols in-
troduced by Weedbrook et al. [16]. In both cases the protocols
include an energy test to project the quantum state into a
finite-dimensional Hilbert space. The test requires to measure
part of the system. Depending on the output of the measure-
ment, one can assume that the rest of the system belongs
with high probability to a Hilbert space of finite dimensions.
This implies that part of the raw keys, i.e., the data used for
the energy test, cannot be used for key extraction. Here we
show how this limitation can be removed by applying an idea
first introduced by Leverrier [10]. The impact of this result
on practical CV QKD is not on improving the key rate but
in making the protocol more experimentally feasible. In fact,
our approach does not require Alice (the sender) and Bob
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(the receiver) to symmetrize their measured data [15]. Such
symmetrization is obtained by applying a random unitary
rotation on their raw keys. Due to the large size of the data
set (typically 108–1010 samples may be collected), the sym-
metrization is computationally demanding. We remark that
the analysis of Ref. [17], which also focused on the active
symmetrization routine, did not consider its application to the
energy test.

Parameter estimation is a subroutine of QKD whose goal is
to obtain information about the communication channel. The
standard way of performing parameter estimation requires
Alice and Bob to publicly announce part of their local raw
keys. This implies that the data used for parameter estimation
are compromised and cannot be used for key extraction, al-
though there exist ways to bypass this limitation [10]. Here
we consider parameter estimation in measurement-device-
independent (MDI) QKD and show that in this case all the
raw data can be used for both parameter estimation and secret
key extraction.

MDI QKD was introduced to avoid side-channel attacks
on the measurement apparatus [18,19]. Experimental imple-
mentations are demanding but feasible, see, for example,
Refs. [20,21]. The theory of Leverrier [15] allows us to prove
the composable security in the finite-size regime for a class
of protocols based on preparation of coherent state and het-
erodyne detection, including MDI protocols [17]. Recently,
Refs. [22,23] introduced modified CV MDI protocols that
allow Alice and Bob to use all the measured data for both
parameter estimation and key extraction. The scope of this
result was questioned by Ghorai et al. [17], who suggested that
it might not be compatible with composable security. Here
we address this criticism and show that the protocol is indeed
secure in a composable way as follows from the application
of the general method put forward in Ref. [15]. We, thus,
establish that, in CV MDI QKD, all the raw data can be
used for both key extraction and parameter estimation without
compromising the composable security of the protocol. This
is expected to have an impact in increasing the key rate in the
finite-size regime.

Although our result on parameter estimation is confined
to MDI protocols (in principle, this can be extended to one-
way protocols [22]), our findings about the energy test may
be as well applied to a wider range of CV QKD protocols.
This is suggested by Ref. [17] where it was shown that the
proof techniques of Ref. [15] apply to two-way protocols
with Gaussian displacements [24,25] as well as floodlight
QKD [26–28].

The paper proceed as follows. First we review the toolbox
of CV quantum optics in Sec. II, then we briefly review the use
of symmetry in CV QKD in Sec. III. In Sec. IV we introduce
the resource-efficient energy test where all the raw keys can be
used for both the test and the secret key extraction. In Sec. V
we introduce the CV MDI protocol in the entanglement-based
(EB) representation, and in Sec. V A we show that parame-
ter estimation can be done in a covariant way. In Sec. V B
we extend this result to the equivalent prepare and measure
(PM) representation. In Sec. V C we show that parameter
estimation can be performed without leaking information to

the adversary. Finally, in Sec. V D we show that all data can be
used for parameter estimation without compromising security.
Conclusions are presented in Sec. VI.

II. THE TOOLBOX OF CONTINUOUS-VARIABLE
QUANTUM CRYPTOGRAPHY

In CV QKD information is encoded in the phase and
quadrature of the quantum electromagnetic field [29]. The
building block of CV QKD is the bosonic mode, also called
the qumode, which is formally represented as a quantum
harmonic oscillator with annihilation and creation operators
â and â†, satisfying the canonical commutation relations
[â, â†] = 1. The phase and quadrature operators are defined
as q̂ = (â + â†)/

√
2 and p̂ = (â − â†)/

√
2i, respectively. The

Hamiltonian of the harmonic oscillator is Ĥ = (q̂2 + p̂2)/2 =
â†â + 1/2, where N̂ = â†â is the number operator. The latter
has eigenvectors {|n〉}n=0,...,∞ such that N̂ |n〉 = n|n〉, which
form a complete set

∑∞
n=0 |n〉〈n| = 1. The number states can

be obtained by repeated applications of the creation operator
on the vacuum state as |n〉 = 1√

n!
(a†)n|0〉 with N̂ |0〉 = 0.

Here we focus on QKD protocols where classical in-
formation is encoded in a qumode in a continuous way
using coherent states. A coherent state |α〉 is an eigenvec-
tor of the annihilation operator, â|α〉 = α|α〉, where α ∈ C
is a complex amplitude. Coherent states are expanded in
the number basis as |α〉 = e−|α|2/2∑∞

n=0
αn√

n!
|n〉. They form

an overcomplete set that satisfies 1
π

∫
d2α|α〉〈α| = 1, where

d2α = d Re(α)d Im(α). In CV QKD, a pair of classical ran-
dom variables qpre, ppre ∈ R are encoded in the coherent state
|α〉 with amplitude α = (qpre + ippre )/

√
2.

Heterodyne detection is formally represented as the
continuous family of positive operator-valued measure ele-
ments �β = 1

π
|β〉〈β| with β ∈ C. We have Tr(�β |α〉〈α|) =

1
π
|〈α|β〉|2 = 1

π
e−|α−β|2 . Given a quantum state ρ, the out-

put of heterodyne detection β = (qhet + iphet )/
√

2 defines
the random variables qhet, phet ∈ R. An outcome of this
measurement in the range of β ± d Re β/2 ± id Im β/2 has
probability 1

π
d2 βTr(�βρ) = 1

π
d2β〈β|ρ|β〉.

The displacement operator is a unitary operator defined
as D(γ ) = eγ â†−γ ∗â. It allows us to shift the annihilation and
creation operators by a c number, i.e., D(γ )†âD(γ ) = â + γ ,
and D(γ )†â†D(γ ) = â† + γ ∗. It follows that the displacement
operator also shifts the quadrature operators D(γ )†q̂D(γ ) =
q̂ + Re(γ )/

√
2 and D(γ )† p̂D(γ ) = p̂ + Im(γ )/

√
2. The dis-

placement operator maps coherent states into coherent
states D(γ )|α〉 = |α + γ 〉 and commutes with heterodyne
detection, i.e., Tr[�βD(γ )ρD(γ )†] = Tr[D(γ )†�βD(γ )ρ] =
Tr[�β−γ ρ]. This means that displacing and then measur-
ing is equivalent to measuring and then displacing the
measurement output.

The two-mode squeezed vacuum (TMSV) is a quantum
state of two qumodes. Its expansion in the number basis is

|�〉AA′ =
√

1

N + 1

∞∑
n=0

(
N

N + 1

)n/2

|n〉A|n〉A′ , (1)
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where the parameter N quantifies the mean photon number per
qumode. We have

A〈β|�〉AA′ =
√

1

N + 1
e−[1/(N+1)]|β|2/2

∣∣∣∣
√

N

N + 1
β∗
〉

A′
. (2)

This shows that if we measure one qumode of the TMSV
� by heterodyne detection and obtain β, then the other
qumode is prepared in the coherent-state |α〉 with am-

plitude α =
√

N
N+1 β∗. An outcome of this measurement

in the range of β ± d Re β/2 ± id Im β/2 has probability
d2β 1

π
1

N+1 e−[1/(N+1)]|β|2 = d2α 1
π

1
N e−(1/N )|α|2 .

Consider a system of 	 qumodes and the 2	 classical phase
and quadrature variables q = q1, . . . q	, p = p1, . . . p	. For
any density operator ρ, the Wigner function is defined as

W (q, p) = 1

π	

∫ ∞

−∞
dny〈q + y|ρ|q − y〉e−2ip·y, (3)

where y = y1, . . . y	, dny = dy1 · · · dy	, and |q ± y〉 are
eigenvectors of the quadrature operators, i.e., q̂ j |q ± y〉 =
(q j ± y j )|q ± y〉. By definition, a Gaussian state has a Wigner
function that is a multivariate normal distribution. Gaussian
states are, therefore, uniquely determined by the first moments
and the (symmetrically ordered) covariance matrix (CM) of
the quadrature operators.

III. SYMMETRY IN CV QKD

In general, the experimental realization of the protocol fol-
lows the PM representation where the legitimate users prepare
quantum states and send them through an insecure quantum
channel controlled by the eavesdropper (Eve). For example, in
one-way protocols Alice sends quantum signals to Bob, who
measures them, and in MDI protocols both Alice and Bob
send signals to a central relay. However, the security of the
protocol is proven in the equivalent EB representation where
a bipartite quantum state ρn

AB is distributed to Alice and Bob,
and Eve holds a purification. If the protocol is secure in the EB
representation, so it is in the PM one. For this reason, in this
section we review the security proof of Leverrier [15], which
is defined in the EB representation.

A QKD protocol typically acts on n instances of a given
physical system. CV QKD, in the EB representation, is
defined on a set of 2n qumodes. For j = 1, . . . , n, these
are represented by the creation and annihilation operators
a†

j , a j and b†
j, b j , which are associated with Alice and Bob,

respectively.
An EB QKD protocol is formally associated with a com-

pletely positive and trace-preserving (CPT) map E that takes
as input ρn

AB and outputs a shared key. The latter is repre-

sented by a classical state of the form
∑2	−1

x,y=0 p(x, y)|x〉A〈x| ⊗
|y〉B〈y|, where x, y = 0, . . . , 2	 − 1 are the possible keys ob-
tained by Alice and Bob, respectively. In reality, we expect the
keys to be only approximately secret as imperfections in the
protocol may leak information to Eve. To assess the security
of a QKD protocol we compare E with the ideal map E0 that
takes any input state and replaces it with a perfectly secret key
of 	 bits. The latter is represented by a classical-quantum state∑2	−1

x=0 2−	|x〉A〈⊗|x〉B〈x| ⊗ ρE where Eve has no information

about the key. We then define 
 := E − E0, and require that

‖
‖� � ε (4)

for some ε � 1. We recall that the diamond norm ‖ · ‖� is
defined as the worst-case trace norm over all possible input
states, including their purification,

‖
‖� := sup
ψ

‖(
 ⊗ I )ψABE‖1, (5)

where the maps 
 acts on the systems AB associated with
Alice and Bob and I is the identity map on the purifying
system E . Finally, the supremum is over all tripartite states
ψABE , and |O|1 := Tr|O| is the trace norm.

The security analysis is, thus, reduced to the task of
estimating the above diamond norm. The upper bound ε quan-
tifies the (in)security of the protocol, the smaller ε, the more
the protocol is secure. Operationally, the security parameter
ε quantifies the probability to discriminate between the actual
protocol E and the ideal one E0 [23]. Estimating the diamond
norm is a very challenging task as it requires the calculation
of the supremum over all states in a high-dimensional Hilbert
space. In the case of CV QKD this space is infinite dimen-
sional. Fortunately, the task can be dramatically simplified by
exploiting symmetry.

CV QKD protocols that are based on heterodyne detection
may be invariant under the symmetry group of passive linear
optics transformations that mix the qumodes but preserves
the separation between Alice and Bob. For any n × n unitary
matrix U , consider the linear transformation on the bosonic
operators a j → ∑n

k=1 Ujkak and b†
j → ∑n

k=1 Ujkb†
k . This map

defines a bosonic representation R of the group U (n) of n × n
unitary matrices [30],

a j → RU ajR
†
U =

n∑
k=1

Ujkak, (6)

b†
j → RU b†

jR
†
U =

n∑
k=1

Ujkb†
k . (7)

The protocol is covariant under this group of transformation
if for any unitary U there exists a CPT map KU such that


 ◦ RU = KU ◦ 
. (8)

Under this condition it is easy to show that [14]

‖
‖� = sup
ρ̄n

AB∈Fn

∥∥(
 ⊗ I )ρ̄n
ABE

∥∥
1, (9)

where Fn is the subspace of states that are invariant under
the symmetry group, i.e., RU ρ̄n

ABR†
U = ρ̄n

AB. The subspace Fn

is spanned by the SU(1, 1)-coherent states over 2n qumodes
[31]. The SU(1, 1)-coherent states have a number of important
properties, in particular: (1) they are Gaussian states and (2)
provide a decomposition of the unity.

Equation (9) cannot yet be used to compute the diamond
norm. To further simplify it, we need to prepend a suitable
energy test T to the QKD protocol E . The energy test con-
sists of measuring 2k < 2n qumodes by heterodyne detection.
According to the measurement result, the remaining 2n − 2k
qumodes are projected, up to a small probability of error εtest ,
into a finite-dimensional Hilbert space.
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Conditioned on passing the energy test, the state of the re-
maining 2n − 2k qumodes can be effectively assumed to live
in a finite-dimensional Hilbert space. This allows us to write

‖
 ◦ T ‖� � cn−k,d sup
σABE

∥∥(
 ⊗ I )σ⊗n−k
ABE

∥∥
1 + εtest, (10)

where the supremum is over Gaussian states σABE and
cn−k,d = K4/50. K ∼ (n − k)(dA + dB) bounds the effective
dimensions. In conclusion, this shows that a protocol that is
secure against Gaussian attacks is also secure against general
coherent attacks provided that the energy test is passed and
then one is willing to pay a multiplicative penalty in the
security parameter.

The protocol E is composed of several subroutines. After
the energy test T , one proceeds with the measurement M
(heterodyne detection for this class of symmetric protocols),
then the parameter estimation routine P , followed by error
correction C and privacy amplification A. We can, therefore,
write E ◦ T = A ◦ C ◦ P ◦ M ◦ T . Since the energy test and
the measurement commute, we can as well write E ◦ T =
A ◦ C ◦ P ◦ T ◦ M. Following an argument put forward by
Ghorai et al. [17], we do not need that the overall protocol
E ◦ T is covariant. In fact, it is sufficient that the covariance
property (8) holds for the energy test T and the parameter
estimation P .

IV. RESOURCE-EFFICIENT ENERGY TEST

In this section we improve on the energy test introduced
in Ref. [15] to make it resource efficient and experimentally
feasible. In Ref. [15], the energy test applies to a bipartite state
ρn

AB of 2n qumodes, where n qumodes are on Alice side, and n
on Bob’s side: the result of heterodyne detection on 2k < 2n
qumodes allows Alice and Bob to establish an upper bound
on the dimensions of the Hilbert space containing the state of
the remaining 2(n − k) qumodes. The qumodes measured for
the energy test cannot be used for key extraction, therefore,
reducing their number from 2n to 2(n − k).

First we review the energy test of Ref. [15]. Then we
modify it to make it resource efficient in such a way that all
the qumodes are used for both the energy test and the key
extraction. The energy test of Ref. [15] is defined as follows:

(1) Alice and Bob publicly agree on a random unitary
matrix of size n and apply the local transformations aj →∑n

h=1 Ujhah, b†
j → ∑n

h=1 Ujhb†
h.

(2) They measure by heterodyne detection the first 2k <

2n qumodes. The output of Alice’s measurement is α1 · · ·αn,
and the output of Bob’s measurement is β1 · · · βn.

(3) They compute the quantities Ek
A = 1

k

∑k
j=1 |α j |2 and

Ek
B = 1

k

∑k
j=1 |β j |2.

(4) If Ek
A � dA and Ek

B � dB for some dA, dB, then they
conclude that the state of the remaining 2(n − k) qumodes
lives in a Hilbert space of dimensions not larger than K =
(n − k)(d ′

A + d ′
B), where � = A, B, d ′

� = d�g(n − k, k, ε/4)
and

g(n1, n2, δ) =
1 + 2

√
ln (2/ε)

2n1
+ ln (2/ε)

n1

1 − 2
√

ln (2/ε)
2n2

. (11)

This statement holds with probability, at least, equal to 1 − ε.

We now present a modified test that allows Alice and Bob
to use all the modes for both the test and the key extraction.
We do that by applying an idea first introduced in Ref. [10] to
solve a similar problem in the context of parameter estimation.
The test is applied after all qumodes have been measured
by heterodyne detection. The resource-efficient energy test is
defined as follows:

(1) Alice and Bob measure all their local qumodes by
heterodyne detection, obtaining the output variables α1 · · · αn

and β1 · · · βn.
(2) They compute the quantities En

A = 1
n

∑n
j=1 |α j |2 and

En
B = 1

n

∑n
j=1 |β j |2.

(3) If En
A � dA and En

B � dB for some integers dA, dB, then
they conclude that the original state ρn

AB lived in a Hilbert
space of dimensions not larger than K = n(d ′

A + d ′
B) with

d ′
� = (1 + δ)d� and

δ = 1.5

√
ln (2/ε)

n/2
. (12)

As shown below, this statement holds with probability, at
least, 1 − 4ε.

We now show that the resource-efficient energy test is, in
fact, equivalent to the original energy test of Ref. [15].

Proof. First of all, we note that the quantities En
A, En

B are
invariant under the symmetry group. Therefore, we can equiv-
alently write En

A = 1
n

∑n
j=1 |α′

j |2 En
B = 1

n

∑n
j=1 |β ′

j |2, where
α′

j = ∑n
h=1 Ujhαh and β j = ∑n

h=1 U ∗
jhβh for any unitary ma-

trix U . We can then define a thought experiment where Alice
and Bob first randomize they measurement outcomes by ap-
plying a random unitary U , then apply the energy test of
Ref. [15] on the first n1 = n/2 qumodes to obtain an upper
bound on the dimensions of the remaining n2 = n/2 qumodes
(for simplicity we assume that n is even). In this case, they
would compute the quantities En1

A , En1
B . Similarly, we could

consider a dual thought experiment where they measure the
last n2 modes to bound the dimension of the first block of
n1 modes. In this case they would compute the quantities
En2

A , En2
B . The two thought experiments are linked by the

invariant relations En
A = En1

A + En2
A and En

B = En1
B + En2

B . To
draw a conclusion about the two thought experiments from the
knowledge of En

A, En
B , we can apply the following tail bound

[15]. For a random choice of the unitary U , it holds that for
any ε � 2e−n1/2,

Pr

{
E

nj
� �

[
1 + 1.5

√
ln (2/ε)

n/2

]
En

�

}
� ε (13)

for � = A, B and j = 1, 2. This means that, if En
� � d�, then

with probability, at least, 1 − ε, we also have E
nj
� � d�(1 + δ)

for a random choice of the unitary matrix U . This implies that
both thought experiments would be successful with probabil-
ity, at least, 1 − 4ε. �

In conclusion, at the price of paying an extra additive
penalty of 4ε, the resource-efficient energy test allows Alice
and Bob to: (1) use all their modes for both the energy test
and for key extraction; and (2) avoid the application of the
transformation aj → ∑n

h=1 Ujhah, b†
j → ∑n

h=1 Ujhb†
h.
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log

FIG. 1. The normalized effective dimension K/n/(dA + dB ) of
the truncated Hilbert space subject to passing the energy test, plot-
ted vs the sample size n. The three top lines are for the energy
test of Ref. [15] with [from top to bottom k = 10−3n (green line),
k = 10−2n (orange line), and k = 10−1n (blue line)]. The bottom line
(red) is for our efficient energy test that uses all data for both the test
and for key extraction. The lines are obtained by imposing that the
probability of failing the test is smaller than 10−20.

To summarize, the goal of the energy test is to estimate
an effective, finite dimension for the Hilbert space of Alice’s
and Bob’s signals. In the limit of n → ∞ (and k → ∞ for
the energy test of Ref. [15]) the effective dimension, per
symbol sent, is given as K/n = dA + dB. For finite n and k,
the estimate for this dimension is larger by a multiplicative
factor K/n/(dA + dB). For the energy test of Ref. [15], the
factor is g(n − k, k, ε/4) from Eq. (11). For our energy test
it is 1 + 1.5

√
2 ln (8/ε)/n from Eq. (12). Figure 1 compares

the ratio K/n/(dA + dB) for both approaches. The fact that
they are both of order one shows that as anticipated our ef-
ficient energy test is not substantially changing the key rate
in the finite-size regime (although a small improvement is
observed). As discussed above, the important impact of our
energy test is to make the protocol experimentally feasible.

V. CV MDI QKD

MDI QKD was introduced to avoid side-channel attacks on
the measurement apparatus [18,19]. In the PM representation,
the legitimate users Alice and Bob prepare and send quantum
states, whereas the task of measuring them is delegated to a
third untrusted party. Here we refer to the latter as the relay
and assume without loss of generality that it is fully controlled
by Eve. On the contrary, in the EB representation Alice and
Bob also need to apply some local measurements. However,
this does not expose MDI to side-channel attacks as the EB
representation is only used as a theoretical tool to prove the
security of the equivalent PM protocol. It is only the PM
protocol that is implemented experimentally.

It is useful to formally split the description of the MDI
protocol in two parts. The first part is state preparation, whose
goal is to establish a correlated quantum state ρn

AB shared
between the legitimate users. It is the preparation phase that
characterizes CV MDI QKD with respect to other one-way
and two-way CV QKD protocols. Once the quantum state
has been distributed, the users proceed with key extraction.
The map E discussed in Sec. III corresponds to the key

extraction part of the protocol, which takes state ρn
AB as in-

put. This second part of the MDI protocol comprises local
measurements, parameter estimation, error correction, and
privacy amplification. Here we consider a MDI protocol
where the measurement is heterodyne detection.

The phase of state preparation, in the EB protocol, is
as follows:

(1) Alice prepares a TMSV state ψAA′ with mean photon
number NA on her modes A and A′. Similarly, Bob prepares a
TMSV state ψBB′ with mean photon number NB on his local
modes B and B′. They retain modes A, B and send modes
A′, B′ to the relay.

(2) The relay publicly announces a complex number
z = (qZ + ipZ )/

√
2.

(3) Alice and Bob apply the phase-space displacement op-
erators D(γA), D(γB) to their local modes with displacement
amplitudes determined by z [32]

γA = az, γB = bz∗, (14)

where a and b are real-valued constants and z∗ denotes the
complex conjugate of z.

These steps are repeated n times. The state prepared in this
way is denoted as ρn

AB and is the input of the second phase of
the protocol. The phase of key extraction develops as follows:

(4) Alice and Bob measure their local modes by hetero-
dyne detection. The output is a pair of n-fold complex vectors
α = α1 · · ·αn and β = β1 · · · βn, respectively, which represent
their local raw keys.

(5) They perform the energy test, for example, the
resource-efficient energy test described in Sec. IV.

(6) They apply a random rotation on their raw keys α j →∑n
h=1 Ujhαh and β j → ∑n

h=1 U ∗
jhβh, where U is a n × n

unitary matrix.
They then select k < n elements (for example, α1, . . . , αk

and β1, . . . , βk) and share their values on a public channel.
These data allow Alice and Bob to estimate the number
of secret bits that can be distilled from what is left of the
raw keys.

This is discussed in more detail below.
(7) Alice and Bob perform error correction and privacy

amplification to distill their secret keys from the remaining
raw data of size n − k.

In order to apply the theory of Ref. [15] it is important to
verify that the energy test and parameter estimation routine are
covariant under the symmetry group. The resource-efficient
energy test is clearly covariant by construction. The same
holds for the parameter estimation routine as we now discuss
in detail. In this description of the protocol, we require active
symmetrization of the local modes, although there are ways to
avoid it [10].

A. Covariant parameter estimation

Alice and Bob share quantum state ρn
AB, they measure

it by local heterodyne detection and obtain the raw data
α = α1, . . . , αn, β = β1, . . . , βn. The fundamental question
of QKD is to determine how many secret bits they can extract
from their raw data. According to the theory of Ref. [15], to
answer this question we can without loss of generality assume
that state ρn

AB is Gaussian, symmetric, and is factorized, i.e.,
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ρn
AB = ρ⊗n

AB (provided that the QKD protocol is covariant and
the state has passed the energy test).

In other words, initial-state ρn
AB can be assumed to be the

collection of n identical copies of a two-mode Gaussian state
ρAB. We recall that a Gaussian state is uniquely determined
by the first and second moments of the quadrature operators,
denoted as q̂A, p̂A for Alice’s mode and as q̂B, p̂B for Bob’s
mode. In Appendix A we review how we can obtain the CM
of the Wigner function from one of the outputs of heterodyne

detection. Using relation (A3), the CM of the Wigner function
can be obtained from the CM of the heterodyne measurement
outputs in Eq. (A2). To simplify the notation we drop the label
het and indicate the heterodyne output variables simply as
qA, pA, qB, pB.

Since the state is symmetric, we can further assume that
the first moments E[qA],E[pA],E[qB],E[pB] vanish [33] and
that the CM has the following form [15]:

V het
EB = 1

2

⎛
⎜⎜⎜⎜⎜⎝

E
[
q2

A

]+ E
[
p2

A

]
0 E[qAqB] − E[pA pB] �

0 E
[
q2

A

]+ E
[
p2

A

]
� −E[qAqB] + E[pA pB]

E[qAqB] − E[pA pB] � E
[
q2

B

]+ E
[
p2

B

]
0

� −E[qAqB] + E[pA pB] 0 E
[
q2

B

]+ E
[
p2

B

]

⎞
⎟⎟⎟⎟⎟⎠ , (15)

where the matrix entries with the postholder � can be assumed to be zero with no loss of generality.
The security of CV QKD when the state is Gaussian and independent and identically distributed (i.i.d.) is well established

[7]. Knowing the entries of the above CM, we can bound how many secret bits can distilled from the state. As a matter of
fact, it is sufficient to know upper bounds on the diagonal entries E[q2

A] + E[p2
A], E[q2

B] + E[p2
B], and a lower bound on the

absolute value of the off-diagonal term E[qAqB] − E[pA pB]. Given the output of heterodyne detection qA j, pA j, qB j, pB j for
j = 1, . . . , k, we can estimate the following bounds:

E
[
q2

A

]+ E
[
p2

A

]
� 1

1 − t

1

k

k∑
j=1

q2
A j + p2

A j, (16)

E
[
q2

B

]+ E
[
p2

B

]
� 1

1 − t

1

k

k∑
j=1

q2
B j + p2

B j, (17)

and

|E[qAqB] − E[pA pB]| � 1

1 − t2

1

k

∣∣∣∣∣
k∑

j=1

qA jqB j − pA j pB j

∣∣∣∣∣− t

1 − t2

1

k

k∑
j=1

q2
A j + q2

B j + p2
A j + p2

B j

2
. (18)

For any t > 0, these bounds hold with probability larger than 1 − 8e−kt2/8. These estimates are obtained in Appendix B. Although
these bounds are not necessarily optimal, the important point here is that they are invariant under the symmetry-group qA j +
ipA j → ∑

h Ujh(qAh + ipAh), qB j + ipB j → ∑
h U ∗

jh(qBh + ipBh).

B. MDI in the PM representation

The equivalence of the EB and PM representations follows
from (see Sec. II for more detail): (1) If we measure by het-
erodyne detection one mode of a TMSV with N mean photon
per mode and obtain β, then the other mode is prepared in

a coherent state with amplitude α =
√

N
N+1β∗; and (2) if we

first displace a mode and then measure it by heterodyne, this is
equivalent to first measure and then displace the measurement
output. Therefore, the EB protocol described in Sec. V is
equivalent to the following PM protocol:

(a) Alice prepares coherent states |α0〉 by sampling its
complex amplitude α0 = (qpre,0

A + ippre,0
A )/

√
2 from a circu-

larly symmetric Gaussian distribution with zero mean and
variance NA. Similarly, Bob prepares coherent states with am-
plitude β0 = (qpre,0

B + ippre,0
B )/

√
2 sampling from a Gaussian

distribution with variance NB. They retain the values of the
amplitudes and send the coherent states to the relay.

(b) The relay publicly announces a complex number
z = (qZ + ipZ )/

√
2.

(c) Alice and Bob apply the following linear transforma-
tion to their local amplitude data:

α0 → α = α0 +
√

NA

NA + 1
az∗, (19)

β0 → β = β0 +
√

NB

NB + 1
bz. (20)

We put α = (qpre
A + ippre

A )/
√

2 and β = (qpre
B + ippre

B )/
√

2
from which it follows that

qpre
A = qpre,0

A + aqZ , (21)

ppre
A = ppre,0

A − apZ , (22)

qpre
B = qpre,0

B + bqZ , (23)

ppre
B = ppre,0

B + bpZ . (24)
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These steps are repeated n times. Then they proceed
as follows:

(d) They perform the resource-efficient energy test as de-
scribed in Sec. IV.

(e) They apply a rotation on their raw keys α j →∑n
h=1 U ∗

jhαh, β j → ∑n
h=1 Ujhβh, where U is a n × n random

unitary matrix.
They then select k < n elements (for example, α1, . . . , αk

and β1, . . . , βk) and share their values on a public channel.
These data allow Alice and Bob to estimate the number
of secret bits that can be distilled from what is left of the
raw keys.

(f) Alice and Bob perform error correction and privacy
amplification to distill their secret key from the remaining raw
data of size n − k.

The security of this PM protocol follows from the one of
the EB protocol. The equivalence between the two representa-
tion follows from the equivalence between the corresponding
steps a ≡ 1 and 4, b ≡ 2, c ≡ 3.

C. A closer look at parameter estimation

In the PM representation of the protocol, Alice and
Bob need to estimate the CM V MDI

PM in Eq. (A6) from
the preparation data qpre

A j , ppre
A j , qpre

B j , ppre
B j for j = 1, . . . , n.

In turn, they obtain their estimate of the CM V het
EB using

Eq. (A7). To make the notation lighter, below we drop
the label pre and simply refer to the preparation data as
qA j, pA j, qB j, pB j .

The covariant parameter estimation routine relies on the
computation of following quantities form a sample of the
raw data:

C1 = 1

k

k∑
j=1

q2
A j + q2

B j, (25)

C2 = 1

k

k∑
j=1

p2
A j + p2

B j, (26)

C3 = 1

k

∣∣∣∣∣
k∑

j=1

qA jqB j − pA j pB j

∣∣∣∣∣ . (27)

Note that C1 and C2 can be computed locally by Alice and
Bob. However, to compute C3 they need to share their local
data on a public channel. This implies that the data used for
parameter estimation are compromised and cannot be used for
secret key extraction. Here we show that this limitation can be
avoided by using the public data qZ j, pZ j from the relay.

In the PM representation of the protocol we have (putting

a′ :=
√

NA
NA+1 a, b′ :=

√
NB

NB+1 b),

C3 = 1

k

∣∣∣∣∣
k∑

j=1

qA jqB j − pA j pB j

∣∣∣∣∣ (28)

= 1

k

∣∣∣∣∣
k∑

j=1

(
q0

A j + a′qZ j
)(

q0
B j + b′qZ j

)

−(p0
A j − a′ pZ j

)(
p0

B j + b′ pZ j
)∣∣∣∣∣ (29)

= 1

k

∣∣∣∣∣
k∑

j=1

q0
A jq

0
B j − p0

A j p0
B j + 1

k

k∑
j=1

a′ (qZ jq
0
B j + pZ j p0

B j

)

+ b′ (q0
A jqZ j − p0

A j pZ j
)+ a′b′ (q2

Z j + p2
Z j

) ∣∣∣∣∣. (30)

We can then write C3 = |C3,1 + C3,2|, where

C3,1 = 1

k

k∑
j=1

q0
A jq

0
B j − p0

A j p0
B j, (31)

and

C3,2 = 1

k

k∑
j=1

a′(qZ jq
0
B j + pZ j p0

B j

)+ b′(q0
A jqZ j − p0

A j pZ j
)

+ a′b′(q2
Z j + p2

Z j

)
. (32)

Note that C3,2 can be computed locally by Alice and Bob
using only their measured data and the public data qZ j, pZ j .
Consider now the first term,

C3,1 = 1

k

k∑
j=1

q0
A jq

0
B j − p0

A j p0
B j . (33)

Note that, by construction of the PM protocol, we know
that E[q0

Aq0
B] = E[p0

A p0
B] = 0, and E[(q0

A)2] = E[(q0
A)2] =

NA, E[(q0
B)2] = E[(q0

B)2] = NB. We can then apply the tail
bounds (see Appendix B),

Pr

{
1

k

k∑
j=1

q0
A jq

0
B j − p0

A j p0
B j > t (NA + NB)

}
< 4e−kt2/8,

(34)

Pr

{
1

k

k∑
j=1

q0
A jq

0
B j − p0

A j p0
B j < −t (NA + NB)

}
< 4e−kt2/8,

(35)

which imply

Pr

{
1

k

∣∣∣∣∣
k∑

j=1

qA jqB j − pA j pB j

∣∣∣∣∣ < |C3,2| − t (NA + NB)

}

< 4e−kt2/8. (36)

Finally, by combining Eq. (36) with Eqs. (16)–(18), we
establish the following bounds on the entries of the CM:

E
[
q2

A

]+ E
[
p2

A

]
� 1

1 − t

1

k

k∑
j=1

q2
A j + p2

A j, (37)

E
[
q2

B

]+ E
[
p2

B

]
� 1

1 − t

1

k

k∑
j=1

q2
B j + p2

B j, (38)
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log

FIG. 2. Key rate (against Gaussian attacks) vs the sample
size n. The top line (blue) shows the asymptotic key rate. The second
line from the top (red) is the finite-size key rate obtained with our
resource-efficient parameter estimation. The other two lines are for
traditional parameter estimation with k = 10−3n (bottom line, green)
and k = 10−2n (second line from the bottom, orange). The plot is
obtained assuming a symmetric scenario where the channel from
Alice to the relay is the same as from Bob to the relay. Such a channel
has loss 1 dB, excess noise of 0.01 in shot-noise units, the input
photon number is 10, the error correction efficiency is 0.95, and the
security parameter is 10−20.

and

|E[qAqB] − E[pA pB]|
� 1

1 − t2
|C3,2| − t

1 − t2
(NA + NB)

− t

1 − t2

1

k

k∑
j=1

q2
A j + q2

B j + p2
A j + p2

B j

2
. (39)

These bounds hold for any t > 0 with probability larger than
1 − 12e−kt2/8.

In conclusion, we have shown that in the PM representation
of the MDI protocol, parameter estimation can be performed
locally with no need to compromise the raw keys. In particu-
lar, this implies that Alice and Bob can choose k = n and use
all the raw keys for both parameter estimation and secret key
extraction.

D. Resource-efficient CV MDI QKD

We are finally in the position of presenting a PM protocol
for CV MDI QKD where Alice and Bob can use all their raw
data for both key extraction and parameter estimation (as well
as the energy test). The state preparation phase is as for (a)–(c)
in Sec. V B. The key extraction phase is as follows:

(d) Alice and Bob apply the resource-efficient energy test
as described in Sec. IV.

(e) They perform parameter estimation as described in
Sec. V C with k = n. Note that no information about the raw
keys is revealed. They can, therefore, use all the raw data for
key extraction. Also note that the active symmetrization is not
longer needed.

(f) Finally, Alice and Bob perform error correction and
privacy amplification to distill their secret key from all the
block of raw data of size n.

As an example, Fig. 2 shows a comparison of the finite-size
key rates (against Gaussian attacks) obtained using different
approaches. The plot is obtained for the symmetric setting
where the channel from Alice is the same as the channel from
Bob. The choice of the other parameters are described in the
figure caption. To emphasize the impact of our method, the
plot is obtained by taking into account only the finite-size
effects related to parameter estimation. As expected, this nu-
merical example shows that the impact on boosting the key
rate can be relevant in the finite-size regime.

VI. CONCLUSIONS

We have analyzed the efficiency of two routines in CV
QKD: energy test and parameter estimation. We have shown
that these routines can be realized in a resource-efficient way
where all the raw data are used for key extraction, hence,
improving the expected secret key rate. Here we have fo-
cused on the no-switching protocols of Weedbrook et al.
[16] and Braunstein and Pirandola [18]. The security analysis
of switching protocols where the users choose between two
quadratures for encoding information is less developed when
it comes to general coherent attacks. However, it is reasonable
to expect that our conclusions may as well be extended to
these protocols.

The goal of the energy test is to project the infinite-
dimensional Hilbert space that characterizes CV systems into
a finite-dimensional one. Here we have used an approach
previously introduced in Ref. [10] in the context of parameter
estimation to show that all the raw data can be used for the
energy test and for key extraction. As the energy test is neces-
sary to achieve composable security against coherent attacks,
this result will allow to improve the feasibility of CV QKD. In
fact, our approach does not require active symmetrization of
the measured data, which is computationally demanding and
would make CV QKD impractical.

We have as well analyzed the routine of parameter estima-
tion in CV MDI QKD and have established the composable
security of the protocols introduced in Refs. [22,23]. These
protocols allow us to use all the raw data for both key extrac-
tion and parameter estimation (in some regimes this property
can be extended to more general protocols [22]). To show
this we have applied the following line of reasoning: (1) Our
starting point is a standard CV MDI QKD protocol, described
in the EB representation, whose composable security against
coherent attacks has been established in Refs. [15,17]; (2)
we have considered its equivalent PM protocol, which is also
secure; (3) we have shown that the parameter estimation in the
PM protocol is covariant under the relevant symmetry group
and can be implemented without revealing any information
about the raw data; (4) finally, as no raw data is revealed, it
follows that it is possible for Alice and Bob to use all their
raw keys for both parameter estimation and key extraction,
hence, allowing a higher key rate in the finite-size regime.
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APPENDIX A: COVARIANCE MATRICES

Consider state ρAB of two modes. The CM of the Wigner function is

VW = 1

2

"⎛
⎜⎜⎜⎝

q̂A − 〈q̂A〉
p̂A − 〈p̂A〉
q̂B − 〈q̂B〉
p̂B − 〈p̂B〉

⎞
⎟⎟⎟⎠ (q̂A − 〈q̂A〉, p̂A − 〈p̂A〉, q̂B − 〈q̂B〉, p̂B − 〈p̂B〉) + H.c.

#

, (A1)

where H.c. stands for the Hermitian conjugate and 〈O〉 = Tr(ÔρAB) is the quantum mechanical expectation value of the
operator Ô.

If we measure the two modes of ρAB by heterodyne detection, the outcomes of the measurements α = (qhet
A + iphet

A )/
√

2 and
β = (qhet

B + iphet
B )

√
2 define a set of four real-value random variables. The corresponding CM is

V het
EB = E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

qhet
A − E

[
qhet

A

]
phet

A − E
[
phet

A

]
qhet

B − E
[
qhet

B

]
phet

B − E
[
phet

B

]

⎞
⎟⎟⎟⎟⎠
(
qhet

A − E
[
qhet

A

]
, phet

A − E
[
phet

A

]
, qhet

B − E
[
qhet

B

]
, phet

B − E
[
phet

B

])
⎤
⎥⎥⎥⎥⎦ , (A2)

where E[O] denotes the expectation value of the random variable O. This is related to the Wigner function CM by the relation,

V het
EB = VW + I/2, (A3)

where I is the identity matrix.
Consider now a one-way PM protocol where Alice prepares coherent states of amplitude α = (qpre

A + ippre
A )/

√
2 and

sends them to Bob, and Bob measures them by heterodyne detection. The amplitude measured by Bob is denoted as
β = (qhet

B + iphet
B )/

√
2. The CM of these variables is

V one-way
PM = E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

qpre
A − E

[
qpre

A

]
ppre

A − E
[
ppre

A

]
qhet

B − E
[
qhet

B

]
phet

B − E
[
phet

B

]

⎞
⎟⎟⎟⎟⎠
(
qpre

A − E
[
qpre

A

]
, ppre

A − E
[
ppre

A

]
, qhet

B − E
[
qhet

B

]
, phet

B − E
[
phet

B

])
⎤
⎥⎥⎥⎥⎦ , (A4)

which is related to the EB heterodyne CM by the relation,

V one-way
PM =

⎛
⎜⎜⎜⎜⎜⎝

√
NA

NA+1 0 0 0

0 −
√

NA
NA+1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠V het

EB

⎛
⎜⎜⎜⎜⎜⎝

√
NA

NA+1 0 0 0

0 −
√

NA
NA+1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . (A5)

In CV MDI QKD, both Alice and Bob locally prepare coherent states with random amplitudes α = (qpre
A + ippre

A )/
√

2 and
β = (qpre

B + ippre
B )/

√
2 where the amplitudes are Gaussian with zero mean and variance NA and NB, respectively. The CM of

these variables is

V MDI
PM = E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

qpre
A − E

[
qpre

A

]
ppre

A − E
[
ppre

A

]
qpre

B − E
[
qpre

B

]
ppre

B − E
[
ppre

B

]

⎞
⎟⎟⎟⎟⎠
(
qpre

A − E
[
qpre

A

]
, ppre

A − E
[
ppre

A

]
, qhet

B − E
[
qpre

B

]
, ppre

B − E
[
ppre

B

])
⎤
⎥⎥⎥⎥⎦ , (A6)

with

V MDI
PM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
NA

NA+1 0 0 0

0 −
√

NA
NA+1 0 0

0 0
√

NB
NB+1 0

0 0 0 −
√

NB
NB+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

V het
EB

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
NA

NA+1 0 0 0

0 −
√

NA
NA+1 0 0

0 0
√

NB
NB+1 0

0 0 0 −
√

NB
NB+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)
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APPENDIX B: PARAMETER ESTIMATION FOR GAUSSIAN ATTACKS

Consider k i.i.d. Gaussian variables X1, . . . Xk , which are with zero mean and variance E[X 2]. The random variable χk =
E[X 2]−1∑k

j=1 X 2
j is distributed as χ2 variable of degree k. We have

Pr

{
1

k

k∑
j=1

X 2
j > (1 + t )E[X 2]

}
< e−kt2/8, (B1)

Pr

{
1

k

k∑
j=1

X 2
j < (1 − t )E[X 2]

}
< e−kt2/8. (B2)

Consider now another set of i.i.d. zero-mean Gaussian variables Y1, . . .Yk with variance E[Y 2]. From{
k∑

j=1

X 2
j > a

}
and

{
k∑

j=1

Y 2
j > b

}
⇒

{
k∑

j=1

X 2
j + Y 2

j > a + b

}
, (B3)

it follows that {
k∑

j=1

X 2
j + Y 2

j < a + b

}
⇒

{
k∑

j=1

X 2
j < a

}
or

{
k∑

j=1

Y 2
j < b

}
. (B4)

This, in turn, implies

Pr

{
k∑

j=1

X 2
j + Y 2

j < a + b

}
� Pr

{
k∑

j=1

X 2
j < a

}
+ Pr

{
k∑

j=1

Y 2
j < b

}
. (B5)

In particular, we obtain

Pr

{
E[X 2] + E[Y 2] >

1

1 − t

1

k

k∑
j=1

X 2
j + Y 2

j

}
< 2e−kt2/8. (B6)

Consider now the identities,

(X + Y )2 − (X − Y )2 = 4XY, (B7)

(X + Y )2 + (X − Y )2 = 2X 2 + 2Y 2, (B8)

where (X + Y ) and (X − Y ) are both Gaussian variables. We can, therefore, write

Pr

{
E[(X + Y )2] <

1

1 + t

1

k

k∑
j=1

(Xj + Yj )
2

}
< e−kt2/8, (B9)

Pr

{
E[(X − Y )2] >

1

1 − t

1

k

k∑
j=1

(Xj − Yj )
2

}
< e−kt2/8. (B10)

This implies

Pr

{
E[(X + Y )2] − E[(X − Y )2] <

1

1 + t

1

k

k∑
j=1

(Xj + Yj )
2 − 1

1 − t

1

k

k∑
j=1

(Xj − Yj )
2

}
< 2e−kt2/8, (B11)

which is equivalent to

Pr

{
E[XY ] <

1

1 − t2

1

k

k∑
j=1

XjYj − t

1 − t2

1

k

k∑
j=1

X 2
j + Y 2

j

2

}
< 2e−kt2/8. (B12)

In the same way, starting from

Pr

{
E[(X + Y )2] >

1

1 − t

1

k

k∑
j=1

(Xj + Yj )
2

}
< e−kt2/8, (B13)

Pr

{
E[(X − Y )2] <

1

1 + t

1

k

k∑
j=1

(Xj − Yj )
2

}
< e−kt2/8, (B14)
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we obtain

Pr

{
E[XY ] >

1

1 − t2

1

k

k∑
j=1

XjYj + t

1 − t2

1

k

k∑
j=1

X 2
j + Y 2

j

2

}
< 2e−kt2/8. (B15)

Finally, consider a set of four variables X, Y, W , and Z . By combining the above results we obtain

Pr

{
|E[XY ] − E[W Z]| <

1

1 − t2

1

k

∣∣∣∣∣
k∑

j=1

XjYj − WjZj

∣∣∣∣∣− t

1 − t2

1

k

k∑
j=1

X 2
j + Y 2

j + W 2
j + Z2

j

2

}
< 4e−kt2/8. (B16)

Further tail bounds

Proceeding as above, we obtain

Pr

{
k∑

j=1

(Xj + Yj )
2 − (Xj − Yj )

2 > (1 + t )kE[(X + Y )2] − (1 − t )kE[(X − Y )2]

}
< 2e−kt2/8, (B17)

which implies

Pr

{
1

k

k∑
j=1

XjYj > E[XY ] + t
E[X 2] + E[Y 2]

2

}
< 2e−kt2/8. (B18)

Similarly we obtain

Pr

{
1

k

k∑
j=1

XjYj < E[XY ] − t
E[X 2] + E[Y 2]

2

}
< 2e−kt2/8. (B19)

Finally, given four variables, X, Y, W , and Z , by combining the above results we obtain

Pr

{
1

k

k∑
j=1

XjYj − WjZj > E[XY ] − E[W Z] + t
E[X 2] + E[Y 2] + E[W 2] + E[Z2]

2

}
< 4e−kt2/8, (B20)

Pr

{
1

k

k∑
j=1

XjYj − WjZj < E[XY ] − E[W Z] − t
E[X 2] + E[Y 2] + E[W 2] + E[Z2]

2

}
< 4e−kt2/8. (B21)
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