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One qubit as a universal approximant
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A single-qubit circuit can approximate any bounded complex function stored in the degrees of freedom
defining its quantum gates. The single-qubit approximant presented in this work is operated through a series
of gates that take as their parametrization the independent variable of the target function and an additional
set of adjustable parameters. The independent variable is re-uploaded in every gate while the parameters are
optimized for each target function. The output state of this quantum circuit becomes more accurate as the
number of re-uploadings of the independent variable increases, i.e., as more layers of gates parameterized with
the independent variable are applied. In this work, we provide two proofs of this claim related to both the Fourier
series and the universal approximation theorem for neural networks, and we benchmark both methods against
their classical counterparts. We further implement a single-qubit approximant in a real superconducting qubit
device, demonstrating how the ability to describe a set of functions improves with the depth of the quantum
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circuit. This work shows the robustness of the re-uploading technique on quantum machine learning.
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I. INTRODUCTION

A quantum computer can be viewed as a machine that
receives inputs and delivers outputs through the readout of
qubits. The design of the sequence of quantum gates forming
the circuit will determine the kind of processing performed.
A fundamental question to pose is whether a quantum circuit
can deliver any possible functionality and, if so, what number
of qubits and depth are required to achieve a given accuracy.

This problem is reminiscent of a series of classical theo-
rems that establish that a given function can be reexpressed
as a linear combination of other specific functions [1-4]. In
particular, in classical machine learning the universal approx-
imation theorem (UAT) [3] proves that a neural network with a
unique intermediate hidden layer can converge to approximate
any continuous function. The accuracy of the approximation
increases with the number of neurons in the intermediate
layer. It is important to note that each of these neurons is fed
with the original data of the problem. The query complexity
of the process increases linearly with the number of neurons.
This observation is critical to find out an equivalent result in
a quantum formulation in order to support progress in quan-
tum machine learning [5-13]. Previous works have already
made relevant contributions in this area [14,15], in particular,
assessing the universal expressive power of quantum circuits.

In this paper, we present two independent proofs that
any bounded complex function can be approximated in
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a convergent way by a quantum circuit acting on one
qubit, constituting a single-qubit universal approximant. This
demonstrates the precise representation power of a single-
qubit circuit, which increases as more layers are added.
The essential element of the present construction is the re-
uploading of the input variables along the action of the
quantum gates [5]. Thus, in analogy to neural networks, query
complexity is attached to accuracy. The first way to prove this
result is to make contact with harmonic analysis. This is a
natural step, as single-qubit gates are expandable in Fourier
series that can be rearranged to fit existing theorems. The sec-
ond method is analogous to the UAT using a translation into
quantum circuits. A series of specific gates leads to an output
state that approximates functions uniformly. In both cases, the
quantum theorems inherit the applicability and characteristics
of their classical counterparts.

The practical way to approximate any function with a
quantum circuit requires finding an explicit set of parameters
to define the unitary gates. This can be accomplished in a
variational way. Compared to Fourier series, this approach
brings more power to a quantum computer in practice. The
possibility of taking angles which are free of being multiples
of a given basic frequency provides a larger representation
capability to a quantum circuit. However, this is analogous
to neural networks with weights which are not constrained to
take specific values.

We provide numerical benchmarks of these theorems com-
puted via classical simulation of quantum computers. Our
simulations show how an increasing query complexity can
improve the accuracy of the approximation of a number of test
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functions. The way a single-qubit circuit can approximate any
function in an experimental setup by using a superconducting
qubit is explicitly illustrated. Experimental results confirm the
trend of simulations up to a point where the accumulation of
errors dominates the experiment.

This procedure of storing complex functions in single-
qubit circuits acquires its importance when addressing ma-
chine learning problems. The goal of any machine learning
model is to extract and generalize the hidden features of some
training data set in order to predict the behavior of unseen
data. That is, the model must learn some unknown func-
tion from sampling data, while the structure of this function
remains covert. The proofs given in this work ensure that
this kind of model can learn any function underlying the
training data. In addition, the processing of data in machine
learning models must be performed in a linear way to avoid
the emergence of biases, as is done in this case. Essentially,
the theoretical work proposed in this work aims to play for
quantum circuits the same role that UAT plays for neural
networks.

It is worth mentioning that, even though one can store
a complex function in a single-qubit circuit, retrieving that
information from the quantum state is costly and requires a
large number of measurements. Instead, this algorithm should
be regarded as a subroutine to be included in a more complex
computation. For instance, this subroutine could play the role
of a classifier [5] or an approximant of unknown functions
[6]. These works also suggest the use of similar approaches
extended to circuits with many qubits.

This article is organized as follows. In Sec. II we intro-
duce the idea of a single-qubit approximant and present two
theorems on its universality. Section III is devoted to the nu-
merical benchmarks to test the approximation algorithms. The
experimental implementation using a superconducting qubit is
described in Sec. I'V. Results are presented in Sec. V. We leave
the conclusions for Sec. VI. More details on the results of this
work can be found in the Appendixes.

II. UNIVERSALITY OF THE
SINGLE-QUBIT APPROXIMANT

In this section, we propose an encoding of mathematical
functions as the degrees of freedom of a single-qubit state. We
also define two circuit architectures that approximate those
functions and present theorems supporting this claim.

A. Setup of the problem

The most general representation of a single-qubit quantum
state stores a single complex number. That is,

l¥) = V1 — f210) + fe?|1), (1)

with f, ¢ real numbers and f € [0, 1], ¢ € [0, 277). Our aim
is to encode a complex function within the values (f, ¢) by
defining them as f : R” — [0, 1] and ¢ : R"™ — [0, 277). To
do so, we design a circuit Uy 4(x) such that its output state
approximates the desired complex function as

(U}5"10) = fGe®. )

=
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FIG. 1. Scheme for the hybrid algorithm. The gates U (x, 6;)
define the operation performed by the quantum circuit. All 6; are
independent of each other. Using the measured output state, a loss
function £ is constructed using these measurements. A classical
optimizer looks for the set of parameters minimizing L.

Note that building an approximation to a bounded complex
function is enough to address any bounded complex function
by a simple shifting and rescaling. In addition, approximating
a complex function includes real-valued functions by either
setting ¢(x) = 0 or relating the real-valued function to the
modulus of other complex functions.

Definition 1. The kth approximating circuit is defined as

k
uly =Tlv @ o, 3)
i=1

where U*(x, ) is a fundamental gate depending on x and a set
of parameters 6. s stands for the type of single-qubit gate used
in this work.

The models chosen in our construction are made explicit
later, including the exact definition of the so-called fundamen-
tal gate. The expected behavior of this quantity Z/l](,k;)J is that
the approximation from Eq. (2) will improve as the number k
increases, that is, as the independent variable is re-uploaded
multiple times. As we shall see, the appropriate choice of
these parameters 6; enables a systematic approximation of any
functionality. Equivalently, the optimal values of 6; depend on
f(x) and ¢(x). _

In general, the set of parameters for a given gate 0; is
composed of a set of angles. The quest for the optimal set
of parameters {6;, 6y, ...,06) is driven by optimizing a par-
ticular loss function £(6; f, ¢, x). This loss function must be
designed in such a way that Eq. (2) becomes an equality as
L — 0. The optimal parameters are then

{61,0s,...,06;) = argming £(0; f, ¢, X). 4)

Therefore, the proposed quantum procedure for storing
functions within the output state of a given circuit belongs to
the class of hybrid quantum-classical variational algorithms.
Variational algorithms are quantum algorithms whose global
structure is defined, but the exact gates are not [16,17]. A
scheme of the proposed algorithm is depicted in Fig. 1.

B. Two theorems on universality

We complete the structure of the algorithm presented above
with the design of the single-qubit gates U*® mentioned above
in Definition 1. In the following, we present two sets of
single-qubit gates to construct quantum circuits that repre-
sent arbitrary complex functions. Each set is based on known
results from the theory of function approximations, namely,
Fourier series [1,2] and universal approximation theorem
[3,4], respectively. The range of applicability of these theo-
rems for quantum circuits and the conditions for universality
are thus inherited from their classical counterparts.
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1. Quantum Fourier series

Fourier series as a constructive method permit the expres-
sion of a great range of target functions defined within an
interval as the sum of a set of known functions.

Theorem 1: Fourier series [1,2,18,19]. Let z be any func-
tion z : R — C with a finite number of finite discontinuities
integrable within an interval [a, b] € R of length P. Then

N
W@ = 3 e F, )
n=—N
where
5 [ 20 ¥ ©)
= — P
=5 Pz x)e x
approximates z(x) as
lim zy(x) = z(x). @)
N—oo

Now we present an extension of the Fourier series to a
quantum circuit as explicated in Definition 1. First, we define
the Fourier gate U7 :

Definition 2. Let the fundamental Fourier gate U7 be

U (x;o,a, B, ¢, 1) =R, (o + BIR,(21)

0
X R(a — B)R:wx)R,(2¢), (8)

witho, B, ¢, A, w € R.

Intuitively, o, B, ¢, and XA are related to the coefficients
of a single Fourier step, while @ may be identified as the
corresponding frequency. The relationship between these pa-
rameters and the original Fourier coefficients is explicitly
shown in Appendix A 1.

Theorem 2: Quantum Fourier series. Let f and ¢ be any
pair of functions f : R — [0, 1] and ¢ : R — [0, 27), such
that z(x) = f(x)e’®™ is a complex function with a finite
number of finite discontinuities integrable within an interval
[a, b] € R of length P. Then there exists a set of parameters
{51, 52, R 51\/} such that

N
(U7 &, 010 = an (), ©)

i=1

with zy (x) the N-term Fourier series.

When the building blocks are the U7 (x, §;) defined in
Eq. (8), the unitary operation as defined in Eq. (3) generates
a total unitary gate that outputs an N-term Fourier series
when applied to an initial state |0). Taking |0) as the initial
state implies no loss of generality, since we can transform
|0) into any other initial state by adjusting the first U”.
The Fourier series behavior is only achieved if all {5,-} take
specific values leading to a final result that exactly matches
the Fourier coefficients. However, since this procedure relies
on quantum-classical variational methods, we look for the
optimal parameters by means of a classical optimizer. This
freedom gives room for configurations surpassing the perfor-
mance of the standard Fourier series, especially for shallow
circuits. However, the recipe to construct the Fourier series
by performing well-defined calculations is instead lost. For

details on the proof of this theorem we refer the reader to
Appendix A 1.

2. Quantum UAT

The universal approximation theorem demonstrates that
any continuous function of an m-dimensional variable can
be uniformly approximated as the sum of a specific set of
functions with adjustable parameters. The first formulation
restricted the functions to be sigmoidal functions [3]. Later
works extended the result to any nonconstant bounded contin-
uous function [4]. This theorem is directly applied to neural
networks containing one hidden layer.

Theorem 3: Universal approximation theorem [3,4,20].
Let I,, denote the m-dimensional cube [0, 1]". The space of
continuous functions on 1, is denoted C(I,,), and we use | - |
to denote the uniform norm of any function in C(J,). Let
o : R — R be any nonconstant bounded continuous function.
Given a function f € C(I,) there exists an integer N and a
function

N
G(®) = _ o (iby - X+ by), (10)

n=1

such that

IGX) = fX)] < e

for w, € R™ and b,, ,, € R for any ¢ > 0.

This theorem is an existence theorem, and thus it does not
specify how many terms from Eq. (10) are needed to achieve
an accuracy ¢. Note that the UAT can be immediately applied
to complex functions by substituting the real-valued func-
tion o (-) with some complex-valued function. In particular,
it works if o (-) — ¢/). A proof is shown in Appendix B.

We can now translate the UAT to the proposed quantum
circuit by defining the fundamental single-qubit gate.

Definition 3. Let the fundamental UAT gate U VAT be

VX € I, an

U™ (%,d, o, 9) = RyQ29)R.(2& - X + 2a),  (12)
\q;—/
]

with {@, «, ¢} € {R", R, R}.

Intuitively, @ and « are equivalent to the weights and bias
in a neural network, while ¢ plays the role of the coefficient.

Theorem 4: Quantum UAT. Let f and ¢ be any pair
of functions f : 1, — [0, 1] and ¢ : I,, — [0, 2m), such that
72(®) = f(X)e®® is a complex continuous function on I,
with [, = [0, 1]". Then there is an integer N and a set of
parameters {51, 52, R §N} such that

N
f@®EO — U™ E 00| <e  (13)

i=1

for any € > 0.

This theorem is analogous to the classical one, and one can
arrive at its proof by following the steps developed in Ref. [3].
All theorems supporting the original formulation of the UAT
also hold for the quantum version. For more details on the
demonstration of the quantum UAT, we refer the reader to
Appendix A 2.
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3. Differences between approaches

The quantum universality theorems proposed here inherit
the range of applicability, advantages, and limitations of
their classical counterparts. The Fourier approach is guar-
anteed to work for all integrable functions with a finite
number of finite discontinuities. This range of functions
includes—but is not limited to—continuous functions. The
UAT only gives support to continuous functions, which is use-
ful from a practical perspective but less robust than the Fourier
series.

The Fourier theorem holds for functions depending on
a single variable. However, the extension to multidimen-
sional spaces is complicated and requires a parameter space
whose size increases exponentially with the number of
dimensions [2]. However, in the UAT case the use of multi-
variable X arises naturally by adjusting the dimension of the
weights.

III. NUMERICAL EXPERIMENTS

In this section, we numerically explore how the theo-
rems explained in Sec. II perform in practice. We present
two kinds of benchmarks, for real and complex functions,
respectively. These benchmarks collect results using both
U7 and UYAT gates. Benchmarks are performed using
simulations that include no decoherence but do contain sam-
pling uncertainty. We present simulations with up to six
layers.

The aim of this benchmark is to compare the results of
quantum and classical methods. The classical Fourier repre-
sentation can be obtained by following Theorem 1. In the UAT
case, we follow the description in Theorem 3, with o (-) being
a cosine for real functions and ¢/’ for complex functions.
The parameters are found by employing specific classical
optimization methods. For the quantum UAT case we take
H|0) = |+) as the initial state.

All simulations are performed using the framework QIBO
[21]. The code computing the numerical experiments as well
as the final results can be found on GITHUB [22].

A. Z benchmark for real functions

For the first benchmark we consider a single-variable,
real-valued function —1 < f(x) < 1 related to the observable
(Z) ~ f(x). The quantum state we want to represent is then

1 5 1=
W(ﬂ>z=ﬁ#l0>+e’¢ %Il), (14)

where ¢ is a phase that in general may be x dependent, but it
is assumed constant at this stage. The x 2 function that drives
the optimization is then

— f(x))?, (15)

1 M
=57 2 (Z@))
j=1

where M is the total number of samples of x.

The Z benchmark is first tested against four functions of
interest:

ReLU(x) = max(0, x), (16)
tanh(ax) for a =25, a7
step(x) = x/|x|, 0 if x=0, (18)
poly(x) = [3x*(1 —x*). (19)

All functions are conveniently rescaled to fit the limits —1 <
f(x) < 1. In all cases, x € [—1, 1]. The ReLU(-) and tanh(-)
functions are chosen given the central role they play in the
field of machine learning. step(-) presents a discontinuity,
which implies a challenge in the approximation. poly(-) is
chosen as it contains wavy features arising from nontrigono-
metric functions.

Next, we test our approach against four functions of two
variables in order to check how the quality of the approxima-
tions evolves as more dimensions are added to the problem.
These are known two-dimensional (2D) functions named
Adjiman, Brent, Himmelblau, and Threehump [23]. These
functions are chosen as representatives of a variety of dif-
ficulties the algorithm needs to overcome. In the 2D case,
the functions are conveniently rescaled to fit the limits —1 <
f(x) < land (x,y) € [-5, 5]%. A definition of these functions
can be found in Appendix C.

In this benchmark, both the UAT and the Fourier quantum
and classical methods are considered for the 1D functions.
However, 2D functions are only tested for UAT methods since
the theorems from Sec. II do not support multidimensional
Fourier series.

B. X-Y benchmark for complex functions

In order to test the performance of the presented algorithm
for fitting complex functions, we propose a tomographylike
benchmark. Since complex functions have real and imaginary
parts, one needs to measure at least two observables in the
qubit space. In this case, we chose the observables to be (X)
and (Y') for the real and imaginary parts, that is, (X) + i(Y) ~
f(x)e’¥™_ The quantum state that permits this identification is

1 1—
W@y =) V=T sz(’“)u»

e —2 I o

It is then possible to construct a x> function as

L Fx)e 2. (21)

Ma

X (x)) + (Y (x)) —
j=1

For the X-Y benchmark we test the algorithm against all
possible combinations of real and imaginary parts of the func-
tions defined in Egs. (16)—(19), conveniently renormalized to
ensure that (X)2 + (Y)? < 1.
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C. Optimization techniques

An optimization process is required to find the optimal
gate parameters. For the classical methods, we use standard
optimization techniques [24]. Since the number of parameters
we deal with in this problem is relatively low compared to
the parameter space obtained, for instance, in deep learning,
the BFGS and L-BFGS algorithms [25,26] as implemented in
SCIPY [27] are used. These algorithms belong to the class of
gradient-based optimizers.

For quantum methods, optimization presents more prob-
lems that are yet to be solved. In particular, the landscape of
the loss function in the parameter space remains unknown,
and thus it is hard to infer what kind of classical optimizers
perform well for each particular problem. For this reason we
look for the best-fit parameters using the aforementionedL-
BFGS algorithm and the genetic option CMA [28,29]. Genetic
algorithms explore vast regions of the parameter space and
do not depend on gradients. However, they usually require
more function evaluations to converge to the minimum. In this
case it is not possible to guarantee that the solution found by
any optimization algorithm is the global minimum of our loss
function.

IV. EXPERIMENTAL IMPLEMENTATION
OF THE APPROXIMATION THEOREMS

We implement the single-qubit universal approximant in a
superconducting qubit circuit cooled to the base temperature
of a dilution refrigerator (20 mK). The qubit is a 3D trans-
mon geometry [30] located inside an aluminum 3D cavity.
The cavity bare frequency, w, = 27 x7.89 GHz, is greatly
detuned from the qubit frequency, w, =27 x4.81 GHz.
Hence, there is a qubit state-dependent dispersive shift on
the cavity resonance, 2|x| = 2w x1.5 MHz. The qubit an-
harmonicity is « = —2m x324 MHz and the qubit relaxation
and spin-echo decay times are, respectively, 73 = 15.6 us
and Thgcho = 12.0 ws. These time scales exceed the operation
times needed to implement the algorithm up to six layers by
2 orders of magnitude. Additional information on the experi-
mental methods can be found in Appendix D.

In order to implement the gate sequences defined in the pre-
vious section we follow the correspondence between logical
and physical gates as shown in Fig. 10(c) in Appendix D. The
phase of each pulse is selected at the pulse generator to modify
the rotation axis, producing either X or Y rotations as required.
The Zrotations are, in turn, virtual [31]. The microwave pulses
incorporate a DRAG correction [32,33] which leads to an
error per gate € = (.01 found with randomized benchmarking
[34]. Randomized benchmarking measures errors in Clifford
gates and not arbitrary angle rotations, which are instead used
in this experiment, yet offers a reasonable estimate of the
overall fidelity of our gates. The gate error observed is prob-
ably limited due to a nonideal filtering of the measurement
lines in the refrigerator. In order to achieve better qubit state
readout visibility and shorter operation times, a reset protocol
is applied prior to the main sequence [35].

V. RESULTS

In all results presented in this section we provide three
different final values. First, we use the Fourier and the

UAT classical methods to approximate a target function. The
Fourier method is obtained following the constructive recipe
of Theorem 1. The UAT is applied using a single-hidden-layer
neural network. Second, we approximate the same function
using the quantum procedures defined in this work, simulating
the wave function evolution with classical methods. In both
cases, we retain the best outcome obtained with different
initial conditions used in the optimization step. Finally, we use
the parameters obtained using the simulation of the quantum
procedure to execute that circuit in the actual superconducting
quantum device. A specific set of x values for the ReLU
function from Eq. (16) can be found in Appendix D. The
theoretical optimal parameters may be, in principle, different
than the experimental ones. Hence, an optimization performed
directly on the experimental parameters could improve the
final results [36].

We show in Fig. 2 the resulting fit for all four single-
variable real-valued functions from Eqs. (16)—(19). In this
case the Z benchmark with five layers is considered. A clas-
sical approximation (blue), a quantum exact simulation (red),
and its experimental implementation (green) are depicted. All
methods follow the overall shape of the target function. Clas-
sical Fourier approximations return less accurate predictions
of the value of f(x) due to the periodic nature of the model.
The quantum Fourier and both the classical and the quantum
UAT models return better results for all values of x. This be-
havior is observed in all benchmarks. The experimental results
retain the qualitative properties of the exact models, although
a loss in performance is visible. In addition, an analysis of
experimental uncertainties is also depicted in the UAT ReL.U
plot in Fig. 2.

Figure 3 depicts the approximations obtained for the Him-
melblau (x, y) function comparing the target function and all
the methods considered. Figure 5 summarizes the values of x>
for all 2D functions taken into account in this work.

All the different executions capture the overall shape of
the function, but some differences exist in the different plots.
Classical simulations return values for Z < —1, Z > 1 and,
thus, lead to three minima in this case. On the other hand, the
quantum simulation cannot clearly distinguish those minima.
The experimental execution presents sharp contours because
of the inherent noise and sampling uncertainty.

Figure 4 shows a summary of the values of x? for the
classical and their analogous quantum simulated models and
their experimental validation. In the case of classical and
simulated quantum models a general trend towards better
approximations —implying lower values of y’>—is observed
with an increasing numbers of layers.

The simulated Fourier model performs better than its clas-
sical counterpart. This is due to the fact that a classical
Fourier series does not contain tunable parameters, while its
quantum version does. However, the result from the classical
Fourier series constitutes a lower bound for any approxima-
tion method based on optimization since at least the quality of
the Fourier series is guaranteed.

In the UAT case in Fig. 4, no approach returns better
results. The classical algorithm performs better in the poly(x)
case, but the results with the simulated quantum method im-
prove the classical ones in the tanh(5x) case. Both models
present similar trends as the number of layers increases.
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tanh(5x) step(x)

poly(x) ReLU(x)

2 as

Fourier

Classical
Simulation
Experiment
— Target

UAT

1.0 -1.0 -0.5 0.5 1.0

-1.0

-0.5 0.0

X

0.5

FIG. 2. Fittings for four real-valued functions using the Z benchmark with five layers. Blue triangles represent classical models, namely,
Fourier and UAT, while red circles represent its quantum counterparts computed using a classical simulator. Green squares show the
experimental execution of the optimized quantum model using a superconducting qubit. The target function is plotted in black for comparison.
The analysis for experimental errors is plotted for the ReLU function and the UAT model.

Despite the fact that the Fourier model contains more pa-
rameters than the UAT model, the latter performs better as
shown in Fig. 4. Therefore, the UAT method seems more
appropriate for the functions used here.

The experimental realization of the quantum approx-
imation models suffers from circuit noise and sampling
uncertainties and, therefore, degrades the quantity x2. This is
more prominent as more layers are added to the model. As a
direct consequence, the approximation of the quantum model
to the target function loses accuracy. The inherent sampling
uncertainty sets a lower bound in the value of x? obtained
through experiments.

In general, Fig. 4 supports the claim that every layer grants
the model more flexibility and, thus, enhances the capability

of fitting the target function. This flexibility is given by the
number of re-uploadings of the independent variable and not
by the amount of parameters. In addition, having too many
parameters likely hinders the optimization procedure.

The values of x? in Fig. 5 measure the accuracy of the
approximations. As before, we see that a larger number of
layers provides better approximations of the target function.
In agreement with the 1D Z benchmark, the scaling is similar
for both quantum and classical methods.

A complex function in the X-Y benchmark is depicted
in Fig. 6. In this case, the X measurement leads to
tanh(5x), while the imaginary part contains ReLU(x). All
the observations made for the Z benchmark hold in this
case.

Himmelblau(x, y)

Classical

1.0

-0.5

-1.0

Simulation

o

FIG. 3. Fittings for the 2D function Himmelblau properly normalized using the Z benchmark for five layers. The blue plot, classical,
represents the classical UAT model, while the red plot, simulation, represents its quantum counterpart simulated. The green plot, experiment, is
the experimental execution of the optimized quantum model. The target function is shown in black, target. In all drawings, the lines corresponds

to the same levels on the Z axis.
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Figure 7 shows values of x? for all possible combinations
of real and imaginary parts using the functions described in

VI. CONCLUSIONS

. . . . We have shown that a single-qubit circuit has enough flex-
Egs. (16 )_(19.) » being the real and imaginary parts. In this ibility to encode any complex function z(x) in the degrees
case, itis p0551b1.e to see a common advantage for the quantum of freedom of each quantum gate. This universal represen-
models. In partlcular, the. fupctlons ! anh(3x) and ReLng) tation is achieved by acting with a quantum circuit on a
work better in any combination. This reflects the behavior single-qubit gate that depends on input variables as well
observed in Fig. 4, where these functions present a better

performance than the other functions considered.

f(x) = tanh(5x)

o

o

Layers
--A-- Classical Fourier --#-- Classical UAT
A~ Simulation Fourier - Simulation UAT

—&- Experiment Fourier —%- Experiment UAT

FIG. 4. Values of x? for the Z benchmark in all four test
functions using classical computation (blue scatter, dashed lines),
classical simulation of the quantum algorithm (red scatter, dotted
lines), and experimental implementation with a superconducting
qubit (green scatter, dash-dotted lines). Fourier models are depicted
by triangles, while UAT models are represented by crosses.

Himmelblau(x, y)

T :
Brent(x' y)
1071 { %
*\’::::::::"*
N R S
N>< \s\ p S— L SR *
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g
%
Threehump(x, y)
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07N
1072
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_____ g
1073 % ........ T
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1074 :
Adjiman(x, y)
®...
\\:'\';"“' .......
*\\ """" &
L 107 I :t‘
) ~--7.?:%
A,x:._‘ ________ %
1 2 ’ 4 5 6
LayerS

-#-- Classical UAT
- Simulation UAT
—#-- Experiment UAT

FIG. 5. Values of yx? for the Z benchmark in all four test 2D
functions using classical computation (blue scatter, dashed lines),
classical simulation of the quantum algorithm (red scatter, dotted
lines), and experimental implementation with a superconducting

qubit (green scatter, dash-dotted lines). Only UAT models are
considered.
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Real part = tanh(5x)

Imag part = ReLU(x)

0.751
0.507
0.251
0.004
—0.251

Fourier
fix)

—0.501
—0.75-

A Classical
® Simulation

B Experiment
= Target

0.751
0.504
0.251
0.004

UAT
f(x)

—0.251
—0.501
—0.75-

-1.0 -0.5 0.0 0.5 1.0

X

-1.0

-0.5 0.0 0.5 1.0
X

FIG. 6. Fittings for the complex function f(x) = tanh(5x) 4 iReLU(x) properly normalized using the X-Y benchmark for five layers. Blue
triangles represent a classical model, while red circles represent its quantum counterparts computed using a classical simulator. Green squares
show the experimental execution of the optimized quantum model using a superconducting qubit. The target function is plotted in black for

comparison.

as additional parameters that are fixed by machine learning
techniques.

This result guarantees that a single-qubit circuit, as defined
in this work, is able to store two different and independent
real functions. These functions are not restricted to be single
variable, as there exists no limitation to the dimensionality
of its independent variable. Our present results provide the
highest degree of compression of data in a single-qubit state,
since there are no more degrees of freedom available in a
qubit.

The proof for universality was shown following two differ-
ent approaches, leading to two sets of single-qubit gates. In the
first method, we found a link between quantum circuits and
Fourier series. We have defined a quantum gate tuned by five
parameters such that the row of N gates applied to an initial
state provides a final state where an N-term Fourier series
is encoded. For the second method, a single-qubit quantum
gate is applied multiple times to yield a final state whose form
is compatible with the universal approximation theorem. The
input state does not compromise the validity of the approx-
imation theorems but it affects the parameters defining the
circuit.

We also provide numerical evidence of the flexibility and
approximation capabilities of these quantum circuits. The
benchmarks have been obtained using simulations and clas-

sical minimizers to find optimal parameters for a set of test
functions. We have included as benchmarks 1D and 2D real
functions and 1D complex functions. The final results have
also been compared to their classical counterparts. In all cases,
it is possible to see an equivalent scaling for both classi-
cal and quantum methods. This ensures numerically that the
quantum procedure is comparable to the standard classical
ones.

Experimental results implemented using a superconduct-
ing transmon qubit confirm the same trend obtained with
the classical simulations. The finite qubit coherence does
not seem to impact the results significantly in the gate sets
applied.

It is known that no single-qubit algorithm can confer a
quantum advantage since it is efficiently simulable by clas-
sical computers. The approach presented here can instead be
included as a subtask of a larger routine. Achieving a quantum
advantage requires extending the approach to multiqubit cir-
cuits. For instance, one can implement the gate set defined
in this work to apply to several different qubits and then
add entangling gates (see [5,6]). Whether this extension to
multiqubit circuits is more flexible than the approach of this
work remains unclear. Thus, the present work can serve as
a starting point for studying the representation capability of
quantum systems beyond one qubit (see also [14]).
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Y =tanh(5x) Y = step(x)

Y = poly(x)

Y = RelLU(x)

tanh(5x)

X=

step(x)

X=

poly(x)

X=

ReLU(x)

X=

Layers Layers

--A-- Classical Fourier ---
o

A+ Simulation Fourier
—&-- Experiment Fourier

Classical UAT
Simulation UAT
—#-- Experiment UAT

Layers Layers

FIG. 7. Values of x2 for the X-Y benchmark in all possible combinations for real and imaginary parts of the four test functions from
Eqgs. (16) to (19) using classical computation (blue scatter, dashed lines), classical simulation of the quantum algorithm (red scatter, dotted
lines), and experimental implementation with a superconducting qubit (green scatter, dash-dotted lines). Fourier models are depicted by

triangles, while UAT models are represented by crosses.
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APPENDIX A: PROOF OF UNIVERSALITY THEOREMS

We prove here the results claimed in Theorems 2 and 4.

1. Demonstration for the quantum Fourier series

The quantum circuit proposed in Theorem 2 fulfills the
requirement that every new gate plays the role of a new step
in the original Fourier series. The proof is based on an induc-
tive procedure and can then be decomposed into two steps.
First, we show that the first gate of the circuit is equivalent
to the zeroth constant Fourier term. Next, we show that if
there are N gates in a row forming an N-term Fourier series,
then adding a new gate provides an (N + 1)-term Fourier
series.
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Let the fundamental gate U F(x, é) defined in Eq. (8) be

UT(x:0) =U7 (x; 0, , B, 9, 1) = Re(a + BIRy(21)R.(ar — BIR.(20x)R,(2¢0)

iwx

— sin A sin gpefe

sin A cos pe P el 1 cos A sin pe @ e ¥

_ ( cos A cos pe'“e

It is possible to recast the above choice of fundamental gate
using the following redefinition of parameters:

a, = cos A cos pe', (A2)
a_ = —sin A sin <pe’ﬂ, (A3)
b, = —cos A sin ge™®, (A4)
b_ = —sinAcos goeiﬂ. (AS)

A more compact representation of the fundamental gate fol-
lows.
Lemma 1. The fundamental gate can be expressed as

U7 (0,0, B, ¢,%)
<a+eiwx +Cl,eiiwx

_b*_eth _ bieﬂwx

b+eiwx + b,eiiwx
aieiwx + aieiwx>’ (A6)

as can be verified by simple substitution from Definition 2.

Note that this expression corresponds to a unitary matrix,
due to the relations involved in the definition of the coeffi-
cients ay and by. Note also that a unitary matrix has three
degrees of freedom, which are here fixed by five parame-
ters. An intuition behind the role of these parameters is that
a, B, ¢, X are related to the coefficients of one Fourier step,
that is, a1, by, while w can be identified with the correspond-
ing frequency.

A total circuit can be constructed by multiplying k& fun-
damental gates to obtain Z/{;kéf as in Definition 1. Starting
with this composite gate, we can now prove the main Fourier
approximation theorem.

Theorem 5. There exists a series of k single-qubit gates
forming a kth approximant circuit that delivers a unitary oper-
ation where all its coefficients are written as Fourier series.

Proof. The proof of this constructive theorem consists in
making contact with harmonic analysis and proceeds by in-
duction.

(1) The first circuit consists only of one fundamental gate,
chosen with frequency w = 0, that is,

A B
UF — ( 0 o)_
0 —B; Ap

This, indeed, corresponds to the first constant term in the
Fourier series.

(AT)

J

(AD)

— cos A sin ge®e™® — sin A cos pe'f e~i@x
— sin A sin pe e’ 4 cos A cos pe e iY |

(

(i1) We now assume that the Nth approximant circuit takes
the form

N N i, N i,
[o7=( ZpvAe  Zo=wBe g
i _ ZN B*e‘iﬂ”x ZN A*e_iQ”" ’

i=0 n=—N “n n=—N"*"n

where the frequencies are (€2, = ). The result of adding a
new fundamental gate corresponds to

N+1 N+1 T iChx N+1 B iSx
1_[ U]: _ < anfol Ane Z)‘L:*N*l B”e )
i = N+1 Bk —iC,x N+1 A ,—iSx |’
i=0 - Zn:—N—l Bne Zn:—N—l Ane
(A9)

where we need to fix the new coefficients €2, and frequencies
in terms of the old ones €2, and the new single gate frequency
w added to the circuit. It is easy to see that the addition of a
gate changes the frequency in one unit, that is, Q = Q, + .
Then the general structure of the series can be adapted to a

Fourier expansion by choosing

T
Q,=QCn+ 1)5. (A10)
After fixing the values that the frequencies must take, it is
straightforward to rearrange terms in the matrix and reach

Ay = Apa_ — Bb_, (Al1)

Agy = Agpa- — BL,b_ +Asp-1ar — B, _1\b+, (Al2)

Arwiy = Asyay — Biyby, (A13)

By = Boa_ + Alb_, (Al4)

B:l:n = Bi,a_ +A;nb, + Bi(n,l)cu +A;(,171)b+, (A15)

Bi(N-H) = A;Na+ +A§:Nb+ (A16)

This provides the explicit connection between approximant
circuits and Fourier expansions for the coefficients of the
global unitary matrix. |

The above constructive theorem is sufficient to prove that
the output probability of a series of approximant circuits can
reproduce any functionality.

2. Demonstration for the quantum UAT

An alternative manner to design a single-qubit universal
approximant is related to the equivalent universal approxima-
tion theorem broadly used in neural networks [3]. The idea is
to start from a different fundamental gate.

Let the fundamental gate UYAT (%; é) defined in Eq. (12) be explicitly

N > o COS [4
U (16, o, ) = R.(2(@ - X + )R, (29) = ( e

i(@-X+a) QG i(&-X+a)
sin(g)e ) (A17)

sin(g)e cos(p)e (@F+e)
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A total circuit can be constructed by multiplying k funda-
mental gates to obtain I/ ().UAT a5 in Definition 1. We can now
prove the quantum UAT using this fundamental gate.

Theorem 6. There exists a series of k single-qubit gates
forming a kth approximant circuit that delivers a unitary oper-
ation where all its coefficients are written as an approximation
as defined by Theorem 3, UAT.

Proof. Let us take the UYAT defined in Eq. (A17).

R.(2& - X + 20)R,(2¢)

< COS((p )ei(LT)-)'c-Fot)

_ Sil‘l((p )ei(ﬁ)ic-b-a)
Sin(go)e—i(ﬁ)a?-ka) .

COS((p)e—i(E)-)'c-Hx)

By direct inspection it is straightforward to check that every
entry in this matrix can be understood as one term of fy in
Eq. (10). From this definition we can infer the recursive rule
that defines all steps. If

N
Ay = (O[TTur"0), ALS)
n=1
N
n=1
then the updating rule is
Ans1 =Ap cos(@y eV Telont
—By sin(gy1)e ™ Telv1, (A20)
Byy1 = Ay sin(py+1 )e_iCT)NHJ?eaNH
+ By cos(@y41)e” OVt (A2])

Having this updating rule in mind, it is possible to write

oN-1

By = Zcm((pla

m=0

’(pN)ei(Sm(al ~~~~~ aN)eiﬁim(d)] ----- E)N)v?’ (A22)

where the inner dependencies of ¢,, are products of sines and
cosines of ¢,, and those of §,, and w),, are linear combinations
of o, and w,.

Let us proceed now as in the proof of the UAT in Ref. [3].
Let us take S as the set of functions of the form By (X) and
Cc€(1,) as the set of continuous complex-valued functions in
I, defined as in Theorem 3. We assume that S C c€ (1) and
S = C€(I,). We can now apply Theorem 7, known as the
Hahn-Banach theorem. This theorem allows us to state that
there exists a linear functional L acting on CC(1,) such that

LS)=L(S)=0, L#0. (A23)

Note that this theorem is applicable, as there are no restrictions
in working only with real numbers.

We recall now Theorem 8, known as the Riesz representa-
tion theorem. We can write the functional L as

L(h) = f h(x)d ju(x) (A24)
I
for u € M(1,) nonnull and V i € C€(1,). In particular,
L(h) =Ay(X)du(x) =0, (A25)

and thus

/ A I (A26)
1,

This is the usual Fourier transform of wn. We can conclude
by recalling Theorem 9, the Lebesgue bounded convergence
theorem: if the 77 (i) = 0, then u = 0, and we encounter a
contradiction with the only assumption we made.

The measure of all half-planes being 0 implies that u = 0.
Let us fix w, and for a bounded measurable function & we
define the linear functional

F(h) = f h(w - X)d p(x), (A27)
III

which is bounded on L*°(R) since w is a finite signed mea-

sure. Let 4 be an indicator of the half-planes h(u) =1 if

u > —b and h(u) = 0 otherwise; then

F(h) = /1 h(w - X)dp(x) = w(Mip) + w(Hip,p) = 0.

(A28)
By linearity, F'(h) = 0 for any simple function, such as the
sum of indicator functions of intervales [37].
In particular, for the bounded measurable functions s(u) =
sin(w - X) and ¢(u) = cos(w - X) we can write

F(c+is)= / expiw - Xdu(x) = 0.
I

n

(A29)

The Fourier transform of this F is null, thus u = 0. |

For the sake of completeness, we now cover the three
theorems required for the proof.

Theorem 7: Hahn-Banach [38,39]. Set K = R or C. LetV
be a K-vector space with aseminorm p: V — R.If ¢ : U —
K is a K-linear functional on a K-linear subspace U C V such
that

lp)| < px) Vx e U, (A30)

then there exists a linear extension ¢ : V — K of ¢ to the
whole space V such that

Y(x)=g¢x)Vx e U, (A31)

[V (x)] < p(x) Vx € V.

Theorem 8: Riesz representation [40]. Let X be a locally
compact Hausdorff space. For any positive linear functional v
on C(X), there exists a uniruq regular Borel measure © such
that

(A32)

VieCX): ¥(f)= /Xf(X)dM(x)- (A33)

Theorem 9: Lebesgue bounded convergence [41]. Let {f,}
be a sequence of complex-valued measurable functions in a
measure space (S, X, u). Suppose that {f,,} converges point-
wise to a function f and is dominated by some integrable
function g(x) in the sense

[fr ()] < g(x), /Igldu < 00; (A34)
S

then

lim [ fodu = / fdpu. (A35)
n—oo S S
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3. Link to the output of quantum circuits

The last sections were devoted to proving that specific
series of circuits return functionalities able to represent a wide
range of functions. In this last step we relate previous results
to the output of quantum circuits.

Theorem 10. The computational basis output of a single-
qubit quantum circuit can provide a convergent approximation
to any desired function.

Proof. The output of a kth approximant circuit can be cast
as an approximation expansion of an arbitrary function. It is
sufficient to initialize a register in the |0) state and measure
the output in the computational basis. It follows that

N
(1 Tur10) = zn ),

i=0

(A36)

where zy (x) can take different forms.
If the fundamental gate is U7, then the output is the trun-
cated Fourier series

N
@) = ) B, (A37)

n=—N

where B,, are free complex coefficients. This result holds for
single-variable functions.

If the fundamental gate is UYAT, then the output is a func-
tion
2N—]
v (X) = Zcm(ﬁl’l e )@@ I (D1 BN )X
m=0

(A38)

according to Eq. (A22). This result holds for single- and
multivariable functions.

According to Theorems 5 and 6, both expressions can
approximate any desired function. |

APPENDIX B: UAT FOR COMPLEX FUNCTIONS

In this Appendix we show that the standard formulation of
the UAT supports the approximation of the complex function
using €' as the activation function. Let us follow the approx-
imations according to the UAT of the function

2(X) = a(X) + ib(X), (BI)
using trigonometric functions as o (-),

N
alx) = Zai cos(W; - X +a;j), (B2)
j=1

N
b(x) =) Bisin(¥; - ¥ + b;). (B3)
j=1

Then

N N
2(x) = Zai cos(w; - X +aj) + iZ,Bi sin(T; - X + b;),
j=1 j=1

(B4)

and this equation can be rearranged as
N

2(x) = Z %(ei(wfﬂa,) 4 i@y
j=1

+ %(ei(ﬁj-fH—bj) _ e—i(f)i-f-'rbj))’ (BS)

which encourages the UAT formulation for complex functions
as an analog to Eq. (10):

N
G(E) =) ynee™*. (B6)
n=1

APPENDIX C: TWO-DIMENSIONAL FUNCTIONS
FOR BENCHMARK

The definitions used for the 2D functions [23] that
serve for benchmarking our proposed algorithms are
defined as

Himmelblau(x, y) = (x> +y — 11)?> 4+ (x +y* = 7)%, (C1)

2 2
Brent(x, y) = (g) + (%’) + e (GG (C2)

2x\? 2\ 1 /2x\°
Threeh ) =2 —] —1.05( = - —
rechump(x, y) (5> <5>+6(5>

BEE)

Adjiman(x, y) = cos(x) sin(y) — (4

X
41
where a normalization to —1 < f(x,y) < 1 is applied after
this definition. A graphical representation of these functions
is depicted in Fig. 8.

Himmelblau Brent

0

Adjiman

FIG. 8. Graphical representation of two-dimensional functions
utilized for benchmarking. A regularization is applied to obtain Z
values between —1 and 1 for the given domain.
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reset pulse Y Y/ YISN)

o N I . t

o,

reset pulse

—

readout pulse

FIG. 9. Complete pulse sequence. First, the reset protocol is
performed, which corresponds to two pulses at the cavity and the
qubit frequencies, respectively. Note that the qubit pulse is of a
considerably lower amplitude than the cavity pulse. Also, both pulses
have a longer duration than the qubit rotation sequence (timings not
to scale). The “Y” pulses are shown to have different amplitudes to
determine each rotation angle. Finally, the readout corresponds to a
pulse at the cavity frequency which is later read out by a digitizing
card.

APPENDIX D: EXPERIMENTAL METHODS

The experiment was realized in a dilution refrigerator with
a base temperature of approximately 20 mK. The qubit rota-
tion pulses were defined by an arbitrary waveform generator
and then upconverted with a microwave signal generator to
the gigahertz frequency range before being sent to the qubit-
cavity system. The signal was low-pass filtered and attenuated

500 /—_
—~ 400 A
>
2
< 300
200 - T1=15.6
/
[ ]
T T
0 20 40 60
400 7 ‘\ e Experiment
- = Fit
— 1
2 350 h ¥
Z %
> ~ Toe=12.0 us
300 s
T T T T
0 20 40 60
t (us)
Zo Yo 74 Vi Zy Yy

1TTTHEIE
e

A o

FIG. 10. (a) T} measurement with an exponential fit. (b) Spin-
echo measurement, Tz, with an exponential fit. (c) Sequence
performed in the experiment. Blue boxes represent actual pulses.
Logical Y and Z rotations are explicitly shown below the blue
boxes [31]. Note that Z pulses do not correspond to any microwave
pulse; instead subsequent pulses change rotation axis, indicated by a

prime, Y.

by a total of 50 dB before reaching the aluminum cavity. The
input port of the cavity was undercoupled while the output
port was overcoupled in order to maximize the readout signal
amplitude. The outgoing signal was amplified by a cryo-
genic low-noise amplifier and a second amplification stage at
room temperature. The downconversion was performed with
the same microwave generator as used in the upconversion
of the measurement pulse, guaranteeing phase coherence in
the downconversion process. The signal was read out in a
digitizer, with an FPGA that demodulated and averaged the
results before sending the data to the main measurement
computer.

Figure 9 shows the total pulse sequence, which includes the
preparation and measurement pulses in addition to the pulse
sequence shown in the text. The Y rotations are performed
through microwave pulses at the qubit frequency while the Z
rotations, as already stated, are phase changes in subsequent
pulses (see also Fig. 10). An example of the rotation angles
for the ReLU(x) function in the four-layer case is shown in
Table 1. The readout consists of a cavity tone at the frequency
of the cavity for the qubit in the |0) state. High or low
transmission corresponds to the qubit being in the ground
or excited state, assuming that the system does not escape
from the computational basis. Each data point requires around
50000 measurements in order to average out the amplifier
noise. A reset protocol that drives the qubit into the ground
state is implemented prior to each individual sequence. This
has two benefits. The first one allows us to start with a qubit
state nearly polarized into the ground state. The second benefit
is a reduction in the overall duration of the experiment, since
the waiting time between individual measurements is not lim-
ited by the qubit relaxation time.

3.2
\ e DRAG
304 1% —— DRAG fit
‘l’ \ e No DRAG
\ \ — = No DRAG fit
2.8 1 1 S\
LN
—~ 2.6 4 () \..
2 1 L
g ) ",..
> 2.4 \ €
\ o
A “N
2.2 - A e
} .\ o e
° ) ...... "‘nk"..
2.0 A > . . woo
\.___ - o
S .o.u.:o? £ wo.”'...u?
1.8 =
T T T T T T T
0 50 100 150 200 250 300

# of Cliffords

FIG. 11. Randomized benchmarking of the DRAG-corrected
pulses. Circles correspond to experimental data, while dashed lines
are the fit lines. The upper, blue line represents the corrected pulses
(DRAG), while the lower, red line shows the Gaussian pulses (no
DRAG). The fit corresponds to the expression Ap" + B, where A and
B have dimensions of voltage, n is the number of Clifford gates, and
p is the fidelity per gate. ¢ = 1 — p is the error per gate.
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TABLE I. Optimal parameters and angles obtained for ReLU(x) and four layers. Above are the 12 parameters that define the rotational

angles obtained through simulations. Below are the corresponding angles
not x dependent, hence they are equal for all three x values.

of the eight rotations for three values of x. Note that Y rotations are

Optimal parameter
Pi D2 p3 P4 Ds D6 p7 P3 P9 P1o Pu P12
—2.501 1.685 1.757 2.105 3.822 —1.788 —1.507 —4.640 0.430 1.875 5.038 —1.906
Rotational angle®
Z Y, Z Y, Z Ys Z Y,
(o1 + p2x) (p3) (pa + psx) 029) (p7 + psx) (p3) (P10 + puix) (P12)
x=-0.5
2.939 1.757 0.194 4.495 0.813 0.430 5.639 4377
x=0
3.782 1.757 2.105 4.495 4.776 0.430 1.875 4377
x=1
5.467 1.757 5.927 4.495 0.136 0.430 0.630 4.377

*Angles between 0 and 2.

Both qubit and cavity pulses are generated at 70 MHz
and then upconverted to the gigahertz range. The qubit pulses
are Gaussian pulses with a total duration of 21 ns. A proper
DRAG correction is performed with a resulting error per gate

of e = 0.01 as shown in Fig. 11. The cavity pulse has a total
length of around 2 us. The reset protocol consists of a pulse
driving the qubit and a pulse driving the cavity mode, with a
total duration of around 2 us.
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