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The binary paint shop problem (BPSP) is an APX-hard optimization problem of the automotive industry. In
this work, we show how to use the quantum approximate optimization algorithm (QAOA) to find solutions of the
BPSP. We demonstrate that QAOA with constant depth is able to beat all known heuristics for the binary paint
shop problem on average in the infinite size limit n → ∞. We complete our studies by running first experiments
of small-sized instances on a trapped-ion quantum computer through Amazon Braket.

DOI: 10.1103/PhysRevA.104.012403

I. INTRODUCTION

Achievements in fabrication and control of two-level
systems led to the first quantum computers with tens of
qubits [1–4] and recently culminated in the demonstration
of a quantum computer solving a computational task that is
intractable for classical computers, also known as quantum
supremacy [5]. This milestone raises expectations that quan-
tum computing some day will accelerate research, speed up
simulations in chemistry, and improve optimization processes
in many branches of industry. Quantum algorithms with a
proven scaling advantage over classical algorithms, such as
Grover’s [6] or Shor’s [7] algorithm, require fault-tolerant
quantum computers. However, the devices that will become
available in the next 5–10 years will only have a limited
number of qubits and will not feature error-correction. It is
unclear if such noisy intermediate-scale quantum (NISQ) de-
vices can be useful in solving real-world problems faster than
classical computers or if larger error-corrected devices will be
needed. To answer this question, it is especially important to
develop quantum algorithms that are tailor-made for the char-
acteristics of quantum processing units (QPU). A promising
class of NISQ algorithms is the class of variational quantum
algorithms, which are parametrized Ansätze optimized with
classical learning loops. There exist various ideas on how to
tailor the Ansatz for different tasks, such as the variational
auantum eigensolver (VQE) for chemistry applications [8], or
quantum neural networks (QNN) for machine learning [9,10].
The QAOA is a variational algorithm designed to solve clas-
sical optimization problems [11] and was applied to problems
such as Max-Cut [11] or Max-3-Lin-2 [12]. Furthermore,
there exist first insights on QAOAs performance [13–16],
first experimental realizations on different quantum proces-
sors [17–19], and several proposals on how to further improve
QAOA [20–26]. For example, in [26] it was shown that for
some problem classes with certain topological characteris-
tics, it is possible to find good parameters for QAOA with
classical methods efficiently. Moreover, there exist results

showing that it is classically hard to sample from the QAOA
output [27] and that QAOA possesses a Grover-type speed-
up [28]. However, performance bounds are only known for
very short circuits [11] or classically easy instances [21].
Establishing scaling comparisons, beyond low depth circuits,
between QAOA and classical methods for application relevant
optimization problems is the next important step to find useful
NISQ applications of QAOA.

In this present contribution, we take a step in this direction
using the example of a combinatorial optimization problem
from the automotive industry, i.e., the binary paint shop prob-
lem (BPSP). We show that the problem can be encoded into a
spin glass in a constraint-free way and requires only a linear
number of qubits for increasing problem size. As such, it
is a perfect fit for QAOA on NISQ devices. We show that
the problem has a fixed degree and coupling strength, which
allows us to use the method developed in [26], which bypasses
the NP-hard training procedure [29]. We present numerical
results and run first small-scale experiments on a trapped
ion quantum computer. We are numerically able to prove a
minimal depth for QAOA to beat classical heuristics in the
small to medium system-size limit (up to 100 cars) as well as
for the infinite-size limit. With this we show that a constant
time quantum algorithm can beat a polynomial time classical
algorithm.

This paper is structured as follows. In Sec. II we review
the quantum approximate optimization algorithm (QAOA). In
Sec. III we review the binary paint shop problem, classical
greedy algorithms to solve it, and we discuss the mapping of
the problem onto an Ising Hamiltonian. In Sec. IV we show
results of QAOA applied to the BPSP, and in Sec. IV we
conclude.

II. REVIEW OF QAOA

In this section, we review the quantum approximate op-
timization algorithm (QAOA) [11], a variational quantum
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algorithm designed to solve combinatorial optimization prob-
lems.

To solve a combinatorial optimization problem with
QAOA, the first step is to reformulate it as a spin-glass prob-
lem. For our purposes, the spin glass can be represented as
a problem graph G = (V, E ) with nodes v ∈ V representing
spins si and edges e ∈ E representing the terms of the sum of
the energy of the spin glass EP = ∑

(i, j)∈E Ji, j sis j that needs
to be minimized. We note that finding the optimal solution of
a spin glass is NP-hard [30], thus there exist mappings with
at most polynomial overhead from all NP problems to such
a spin system, some of them shown in [31]. We search for
low-energy configurations of the spin glass with a variational
Ansatz. In QAOA, this is done by minimizing the expecta-
tion value of the problem Hamiltonian HP with respect to a
parametrized Ansatz state |�({βl , γl})〉,

min
{βl ,γl }

〈�({βl , γl})|HP|�({βl , γl})〉. (1)

Therefore, we translate the spin system to its quantum version,

HP = 1

2

∑
(i, j)∈E

Ji jσ
(i)
z σ ( j)

z , (2)

where each classical spin variable i is replaced by a qubit
i with the Pauli-Z operator σ (i)

z . The Ansatz state in QAOA
is inspired by quantum annealing techniques and is gener-
ated by the repeated application of the mixing and problem
unitary, UM(βl ) = e−iβl HM and UP(γl ) = e−iγl HP , on the su-
perposition state of all computational basis states, |+〉⊗n =⊗n

i 1/
√

2(|0〉i + |1〉i ). The generators of these unitaries are
given by the mixing Hamiltonian, HM = ∑

i σ
(i)
x , and the

problem Hamiltonian, see Eq. (2). The full Ansatz state,

|�({βl , γl})〉QAOA =
p∏
l

UX(βl )UP(γl )|+〉⊗n, (3)

includes p repetition of those unitaries, where each repetition
is called a QAOA level. To find the optimal variational pa-
rameters {β∗

l , γ ∗
l }p

l=1, a quantum computer is used to estimate
the expectation value of the problem Hamiltonian, while an
outer learning loop on a classical computer updates the pa-
rameters to minimize the expectation value. Recent work has
shown how to speed up the classical learning loop [20] or
alternatively using entirely classical methods to find optimal
parameters for certain problem classes [26]. Having found
the optimal parameters, one then samples from the final state
|�({β∗

l , γ ∗
l })〉 in the computational basis, which yields solu-

tions to the optimization problem.

III. THE BINARY PAINT SHOP PROBLEM

Assume an automotive paint shop and a random but fixed
sequence of n cars. The task is to paint the cars in the order
given by the sequence. Each individual car needs to be painted
with two colors, once per color, in a to-be-determined color
order. In other words, each car appears twice at random,
uncorrelated positions in the sequence, and we are free to
choose the color to paint the car first. A specific choice of
first colors for every car is called a coloring. The objective of
the optimization problem is to find a coloring that minimizes

FIG. 1. (a) A binary paint shop instance with n = 3 cars
{c1, c2, c3}. (b) A valid but suboptimal coloring with �C = 3 color
changes. (c) An optimal coloring that only requires �C = 2 color
changes to paint the sequence.

the number of color changes between adjacent cars in the
sequence. This combinatorial optimization problem is called
the binary paint shop problem (BPSP) [32–34]. In Fig. 1, we
show a binary paint shop instance together with a suboptimal
solution and the optimal solution. A formal definition of the
binary paint shop problem is given in Definition III.I.

Definition III.I (Binary paint shop problem). Let � be the
set of n cars {c1, . . . , cn}. An instance of the binary paint shop
problem is given by a sequence (w1, . . . ,w2n) with wi ∈ �,
where each car ci appears exactly twice. We are given two
colors C = {1, 2}. A coloring is a sequence f = f1, . . . , f2n

with fi ∈ C and fi 
= f j if wi = w j for i 
= j. The objective
is to minimize the number of color changes, �C = ∑

i | fi −
fi+1|.

The binary paint shop problem belongs to the class of
NP-hard optimization problems, thus there is no polynomial-
time algorithm that finds the optimal solution for all problem
instances. For many optimization problems in practice, rather
than spending exponential time to find the optimal solution,
fast approximate algorithms are used. However, the binary
paint shop problem is proven to be APX-hard [33], i.e., it is as
difficult to approximate as every problem in APX. Addition-
ally, if the unique games conjecture (UGC) [35] holds, it is
even not in APX, and thus there would not be a constant factor
approximation algorithm for any α [34]. A constant factor ap-
proximation algorithm would be a polynomial-time algorithm
that returns an approximate solution with at most αOPT color
changes, where OPT is the optimal number of color changes.
This is a key difference from previous problem classes to
which QAOA has been applied, such as Max-Cut, where
constant factor approximation algorithms are known [36].

Several greedy algorithms exist for the binary paint shop
problem, which provide solutions with color changes linear in
the number of cars n on average [32,33]. The greedy algorithm
introduced in [32] starts at the first car w1 of the sequence with
one of both colors, goes through the sequence, and changes
colors when necessary, i.e., only if the same car would be
painted twice with the same color; see Fig. 2 for a pseudo
code of this algorithm. For n → ∞ cars, this greedy algorithm
finds a solution with an average number of color changes
EG(�C ) = n/2 [37]. In Appendix A, we review two other
greedy algorithms, the red first algorithm and the recursive
greedy algorithm, yielding ERF(�C ) = 2n/3 and ERG(�C ) =
2n/5 color changes on average, respectively [37]. Numerical
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FIG. 2. Pseudo code of the greedy algorithm to solve a binary
paint shop instance.

results, however, suggest that the average number of opti-
mal color changes is sublinear in the number of cars n [38].
Moreover, for some instances, the greedy algorithms only find
solutions far from the optimal solution [37]. For example, for
the instance shown in Fig. 1(a), the greedy algorithm finds the
solution given in (b) rather than the optimal solution shown
in (c).

More general versions of the binary paint shop problem
can be found in practice. Typically the color set is augmented
to contain more than two colors, and identical cars appear
more than twice per word. These conditions correspond to the
real-world application of painting thousands of car bodies per
day, with numerous colors. Even restricting the color set to
two colors has real-world relevance: before painting the final
color of the body, each car is first painted with an undercoat
called a filler coat. The filler colors are restricted to white and
black, depending on the final car body color, and optimizing
the number of color switches within the filler queue yields
production cost savings. Given that the generalized paint shop
problem is NP-hard in both the number of cars and colors [33],
and that the binary color set is already industrially relevant, we
restrict the color set to two colors in this study.

A. Reformulating the BPSP as a spin glass

In this section, we explain how to map the binary paint
shop problem to a problem Hamiltonian as in Eq. (2).

We start by assigning a single qubit i to each car ci in the
sequence. The eigenstates of the σz-operator of each qubit
indicate in which color each car is painted first. The second
color choice for each car in the sequence is then unambigu-
ously determined. To penalize color changes in the coloring,
we use the coupling strengths Ji j between the qubits. We start
at the first car w1 in the sequence and step through the se-
quence adding couplings between the qubits representing the
car wk and its next neighbor wk+1 in the sequence. If both cars
ci and c j , represented by wk and wk+1, respectively, appear

FIG. 3. Pseudo code for mapping a binary paint shop instance
with n cars to an Ising Hamiltonian with n qubits.

both for the first or second time, a ferromagnetic coupling,
Ji j = −1, is added. This ensures that consecutive cars favor
being painted with the same color. If either car has already
appeared in the sequence while the other has not, we instead
add an antiferromagnetic coupling, Ji j = 1. We know that a
solution with �C color changes is separated by an energy
�E = 1 from a solution with �C + 1 color changes. We show
the pseudo code of this mapping in Fig. 3. We note that the
encoding of the problem does not include any constraints,
thus all computational states embody valid solutions to the
problem. Moreover, the encoding only requires n qubits for
n cars, making it a better fit for NISQ devices than typical
scheduling problems (like the traveling salesman problem)
where the number of qubits required grows quadratically with
the system size [31]. From the BPSP construction, we also
know that a solution with �C color changes is separated by an
energy �E = 1 from a solution with �C + 1 color changes.

1. Properties of the Ising Hamiltonian

In [26] it was shown how to calculate close-to-optimal
QAOA parameters using a classical computer {β tree

i , γ tree
i } for

various levels p, and problem classes represented by graphs
with a fixed degree and uniform coupling strengths, Ji j =
const. For the NISQ era, where typically p is small, this
method circumvents optimizing the variational parameters
{βi, γi} of the QAOA Ansatz state for each instance inde-
pendently, and thus reduces the total QPU time used. In this
section, we show that the binary paint shop instances represent
graphs of fixed and average degree 4 and coupling strengths
Ji j = ±1 (both for N → ∞). As this method originally was
proposed for the case Ji j = J only, we prove in Appendix C
that the method also works if |Ji j | = const. In the following,
we argue that the BPSP is a perfect fit for parameters calcu-
lated using this method.

a. Average degree. In the construction of the problem
Hamiltonian, cf. Sec. III A, we add an interaction between two
qubits if the corresponding cars are adjacent. As each car only
appears twice, each car has at most four distinct neighbors.
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It follows that the nodes in the graph G representing the spin
system also have a maximal degree of 4. The degree is only
smaller than 4 for the node representing the first or the last car
in the sequence, or if the car is adjacent to the same car twice.
In Fig. 7(a), we show that the average degree of the graph is
converging to 4 from below and becomes effectively 4-regular
when n → ∞.

b. Coupling strengths Ji j . From the construction of the Ising
Hamiltonian, we also know that the interaction values Ji j are
integers and given by {−2,−1, 1}. In Appendix B, we show
that the distribution of interaction values P(Ji j ) converges
to a distribution with P(Ji j = −1) = 2

3 and P(Ji j = 1) = 1
3 ,

when n → ∞. This means that the probability of a ferro-
magnetic coupling is twice as big as for an antiferromagnetic
coupling, and that coupling strengths |Ji j | = 2 are suppressed
in the infinite-size limit. We note, however, that the coupling
strengths Ji j are not independent from each other.

IV. SOLVING THE BINARY PAINT SHOP PROBLEM
WITH QAOA

In the following sections, we apply QAOA to the binary
paint shop problem. For all simulations and experiments, we
use the parameters {β tree

i , γ tree
i } found with the method from

Ref. [26], shown in Table II.

A. Numerical results

In this section, we numerically analyze the performance
of QAOA on 100 randomly generated binary paint shop in-
stances of sizes from n = 5 to 100 cars in increments of five
cars [39].

For up to n = 20 cars, we calculate the QAOA output
state, Eq. (3), for p ∈ {1, 2, 3, 4, 5} levels of QAOA, and we
determine the energy expectation value Eq. (1) together with
the expected number of color changes �C . For larger systems,
the calculation of the QAOA output state is out of reach using
a standard desktop computer.

However, since we are only interested in the energy ex-
pectation value and not in the output state, we use a proxy to
calculate the expectation value for small values of p. First,
we rewrite Eq. (1) as a sum over all expectation values of
two-point correlation functions,

〈HP〉 =
∑
i, j

1

2

〈
σ (i)

z σ ( j)
z

〉
. (4)

As pointed out in [11,26], the individual expectation values
〈σ (i)

z σ
( j)
z 〉 do not necessarily depend on the states of all qubits,

but only on a subset, which can be used to reduce the compu-
tational cost to calculate them. Some of the gates defined in
U QAOA = ∏p

i UX(βi )UP(γi ) commute with the operator prod-
uct σ (i)

z σ
( j)
z , and since the gates are unitary we can completely

skip them in the definition of the correlation function,

〈
σ (i)

z σ ( j)
z

〉
= 〈+supp(RCCi, j )|U QAOA†

RCCi, j
σ (i)

z σ ( j)
z U QAOA

RCCi, j
|+supp(RCCi, j )〉 ,

(5)

FIG. 4. Numerical results for the binary paint shop problem.
The classical greedy algorithm is compared to QAOA with different
levels p. Each data point is averaged over 100 randomly generated
instances.

where RCCi, j is the set of gates not commuting with σ (i)
z σ

( j)
z

called the reverse causal cone of the correlation function,
supp(RCCi, j ) is the support of the reverse causal cone, i.e.,
the minimal set of qubits on which the reverse causal cone
acts, and |+supp(RCCi, j )〉 = ⊗

l∈supp(RCCi, j ) 1/
√

2(|0〉l + |1〉l ) is
the superposition state of all computational basis states of
the qubits in the reverse causal cone. The support of the
reverse causal cone can be constructed in an iterative pro-
cedure [11,26]: for each layer in the QAOA circuit, we add
all new neighbors in the problem graph of the support of
the reverse causal cone of a QAOA circuit with one level
less starting with the two qubits that define the correlation
function. Therefore, the number of qubits affecting the expec-
tation value depends on the number of QAOA levels p and
the topology of the problem. The binary paint shop instances
can be represented as graphs with a bounded degree of 4, thus
the reverse causal cone includes up to 3p+1 − 1 qubits. For
p = {1, 2} this results in system sizes that can be simulated
using a standard desktop computer, independent of the actual
size of the instance. After calculating the individual correla-
tion functions independently, we find the QAOA expectation
value by using Eq. (4).

In Fig. 4, we show the expected color changes from the
QAOA output averaged over all instances together with the
average result of the greedy algorithm, see Fig. 2, and ex-
act solutions for up to n = 20 cars. Low-depth QAOA with
p = {1, 2} performs worse than the polynomial-time greedy
algorithm, while for p = 3 levels the performance gap nearly
vanishes. For p = {4, 5}, QAOA outperforms the greedy algo-
rithm.

B. Beating the greedy algorithms for large instances

The greedy algorithms presented in Sec. III provide solu-
tions with color changes growing linearly with the number of
cars on average in polynomial time. Thus, they provide a good
performance benchmark for QAOA. In Sec. IV A, numerical
simulations revealed that QAOA with fixed level p is able
to beat the greedy algorithm on average. In this section, we
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strengthen this result with numerical insights in the infinite
size limit, n → ∞.

To understand the performance of the greedy algorithm, it
is instructive to translate the action of the greedy algorithm
presented in Fig. 2 into the spin glass picture. For the sake of
clarity of presentation, we assume that all 2n couplings have
magnitude |J| = 1, which is true in the infinite size limit. The
greedy algorithm starts with assigning a random configuration
to the spin representing the first car of the sequence. It then
successively visits the spins representing the next car in the se-
quence. If it visits a car for the first time, it fixes the state of its
spin such that the coupling between the car and its predecessor
is fulfilled, i.e., the same state for ferromagnetic coupling and
the opposite state for antiferromagnetic coupling.

The greedy algorithm is guaranteed to satisfy a coupling
every time it approaches a spin representing a car that has not
been visited yet. This happens n − 1 times. The remaining
2n − n + 1 connections in the full graph are, however, not
taken into account. On average, the energy of these unseen
connections is equal to zero. In total, for n → ∞, the greedy
algorithm generates a solution with an average energy of
EG/n = −1, which results in solutions with color changes
growing according to EG(�C ) = n/2.

In comparison, in the limit of n → ∞, the reverse causal
cones of the two-point correlation functions after p levels of
QAOA only include qubits in graphs that resemble trees of
degree 4 and coupling strengths J = ±1 (see Appendix B).
Thus, for systems of infinite size, the expectation value of each
two-local operator is the same on average and given by the
expectation value calculated on a tree.

To calculate the expectation value with a state-vector sim-
ulation, we would have to include 3p+1 − 1 qubits, which is
difficult to calculate classically even for shallow versions of
QAOA. In [26], the authors developed a method that substan-
tially increases the simulation capabilities using the small tree
width of the involved tensor networks [40]. To calculate the
two-point correlation functions on tree subgraph support, this
method only scales polynomially in the number of qubits, but
exponentially in the number of QAOA blocks. This allows
us to calculate the expectation value up to p = 7 levels of
QAOA, including 6560 qubits. With that we find average
energies and color changes given in Table I. We note that the
tensor network calculation also requires the optimization of
the QAOA parameters. As the optimization might have found
a local optimum rather than the global optimum, the values in
Table I for QAOA represent lower bounds on the performance.
If one could find a better set of parameters, the performance
of the algorithm could even be improved.

We recognize that the performance of QAOA with p = 3
levels is close to the performance of the greedy algorithm,
while for p = 4 there is a clear performance gap in favor of
QAOA. While these arguments strictly hold for the limit of
n → ∞, we have shown that the results on smaller systems
(see Fig. 4) agree with these results. When comparing the
performance to two other heuristics, namely the red-first algo-
rithm and the recursive greedy algorithm (see Appendix A),
we see that QAOA outperforms the red-first algorithm on
average with p = 2 levels, and for p = 7 QAOA also beats the
recursive greedy algorithm on average. In Fig. 5, we show the
data plotted against the number of QAOA blocks p together

TABLE I. Average performance in terms color changes of QAOA
with different levels p in comparison to greedy algorithms and
random guessing in the limit n → ∞. Ordered by the average
performance.

Method E(�C/n)

Random guessing 1.000
p = 1 0.675
Red-first algorithm 0.666
p = 2 0.568
p = 3 0.503
Greedy algorithm, see Fig. 2 0.500
p = 4 0.462
p = 5 0.432
p = 6 0.411
Recursive greedy algorithm 0.400
p = 7 0.393

with a fit highlighting the improvement in performance when
increasing p.

To determine the run time of the quantum algorithm on
a state-of-the-art quantum processing unit, we recall that the
binary paint shop problem can be represented as a graph
of maximal degree 4 (see Sec. III A 1). On a fully con-
nected quantum computer, the corresponding QAOA circuit
with a fixed value of p thus only requires constant depth,
making the QAOA for the BPSP a constant-time algorithm.
This is in contrast with classical algorithms, which are
polynomial-time algorithms. On quantum hardware with lim-
ited topology, e.g., for superconducting qubit devices with
planar connectivity graphs, one could use methods such as
the LHZ-encoding [41], which require a quadratic overhead
in qubits, however one could still have constant computing
time.

C. Experimental results

In this section, we show the results from QAOA circuits of
binary paint shop instances with p = 1 executed on a trapped-

FIG. 5. The data from Table I shown in a log-log plot together
with a fit to the function f (p) = 10b pa. The fit parameters are a =
(−0.279 ± 0.005) and b = (−0.168 ± 0.003) with a coefficient of
determination of R2 = 0.999 [44].
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ion quantum computer, the IonQ device [42], provided by
Amazon Braket [43]. This device is composed of 11 fully
connected qubits with average single- and two-qubit fidelities
of 99.5% and 97.5%, respectively [42]. Like most available
quantum hardware, trapped ion quantum computers only al-
low the application of gates from a restricted native gate set
predetermined by the physical realization of the processor.
To execute an arbitrary gate, compilation of the desired gate
into available gates is required. For trapped ions, a generic
native gate set consists of a parametrized two-qubit rotation,
RXX(α) = exp[−iασ (i)

x σ
( j)
x /2] on qubits i and j, and a single

qubit rotation, R,

R(θ, φ) =
(

cos (θ/2) −ie−iφ sin (θ/2)
−ieiφ sin (θ/2) cos (θ/2)

)
, (6)

which includes RX(θ ) = exp[−iθ/2σ (i)
x ] = R(θ, 0) and

RY(θ ) = exp[−iθ/2σ (i)
y ] = R(θ, π/2) [45]. These gates form

a universal set of gates, i.e., all other gates can be synthesized
with these gates.

The QAOA circuit, defined in Eq. (3), includes the
parametrized two-qubit rotation RZZ(γ ) = exp[−iγ σ (i)

z σ
( j)
z ]

on qubits i and j, parametrized single qubit RX(β ) rota-
tions, and Hadamard gates. While the local RX(β ) is readily
available on the hardware and can be executed without any
overhead, the Hadamard gate and the two-qubit RZZ(γ ) rota-
tion require compilation, which will in turn increase the circuit
depth.

To make the circuit as short as possible, we rotate the
circuit by inserting Hadamard gates. For the sake of clarity,
we introduce the unitary UZZ = UP, which highlights that the
problem unitary is a set of RZZ gates. Accordingly, UXX is
the unitary in which all RZZ in UZZ were replaced by RXX

gates. The same pattern applies for the definition of the mixing
unitary UX, i.e., UY denotes a unitary where all RX gates are
replaced by RY gates. The new circuit,

|�〉p=1
QAOA = UX(β )UZZ(γ ) |+〉

= UX(β )H†HUZZ(γ )H |0〉
= UX(β )HUXX(γ ) |0〉
= UX(β − π )UY(π/2)UXX(γ ) |0〉 , (7)

then only contains gates from the native gate set and thus
needs no further compilation. For a higher p-value, the trans-
formation is analogous and shown in Appendix D.

On IonQ devices, all gates are executed in sequence [46].
Thus, this representation of a QAOA circuit of a binary paint
shop instance with n nodes and m edges can be carried out
with circuit depth d = m + 2n, and it requires 2n single-qubit
gates and m two-qubit gates. As the binary paint shop in-
stances are bounded degree graphs with maximal degree 4, cf.
Sec. III A 1, the circuit depth d scales linearly with the system
size n, O(d ) ∼ n.

We execute the QAOA circuit with p = 1 for N = 20 ran-
domly drawn binary paint shop instances from n = 2 to 11
cars [39]. For each instance, we take M = 105 samples and
calculate the average number of color changes, 〈�QPU

C 〉. For
comparison, we take data from an ideal (noiseless) simulation
and random guessing. To compare the experimental output
with the ideal simulation and random guessing, we calculate

FIG. 6. Performance of the QAOA experiments using an IonQ
QPU (green) in comparison to a simulation with noise (blue), cf.
Appendix E, with δC = {0, 1} corresponding to random guessing
and an ideal (noiseless) simulation, respectively, as a function of the
number of cars. Results are presented at each system size for N = 20
randomly drawn instances, averaged over M = 105 measurements.
In this box plot, the black line shows to the median, the green boxes
the interquartile range (IQR), the whiskers 1.5 times the IQR, and the
diamonds are outliers.

the deviation in performance as

δC =
〈
�

QPU
C

〉 − 〈
�sim

C

〉
〈
�random

C

〉 − 〈
�sim

C

〉 , (8)

where 〈�sim
C 〉, 〈�QPU

C 〉, and 〈�random
C 〉 denote the expected

instancewise color change obtained from the simulation, the
QPU, and random guessing, respectively. A value of δC = 0
implies that the QPU found results as good as the ideal sim-
ulation did, while δC = 1 means that the QPU output mimics
random guessing.

In Fig. 6, we plot the distribution of δC over all N in-
stances for increasing system size. As is clearly visible, for
the smallest system size (n = 2) the results are close to an
ideal simulation, while for the largest studied instances (n =
11), the output is almost random. Similar to previous QAOA
experiments [17–19], the present results highlight the strong
influence of noise on the performance of the quantum algo-
rithm. Moreover, in the same figure, we show the quantity
δC where we replaced the QPU results with those obtained
from a simulation with noise. In this simulation, the noise
was tuned such that we find agreement with the reported
single- and two-qubit fidelities in [42]. For more details on the
noise model used, we refer to Appendix E. As is visible, the
simulation with noise cannot fully explain the experimental
data. This could be due to several reasons:

(i) On IonQ all gates are carried out strictly succes-
sively [46], which leads to long idle times of the qubits. This
is not taken into account by errors of single- and two-qubit
gates.

(ii) The fidelities reported in [42] were obtained for isolated
one- and two-qubit gates.

This outcome highlights that single- and two-qubit fideli-
ties are not sufficient to fully characterize the hardware’s
performance.
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V. CONCLUSION AND OUTLOOK

In this work, we applied QAOA to the binary paint shop
problem, a computational problem from the automotive in-
dustry. We have shown numerical simulations together with
experimental data obtained from a trapped ion quantum com-
puter. Moreover, we were able to provide a comparison
between the performance of QAOA and classical heuristics
in the infinite-size limit for noiseless quantum computation.

The experimental results of this paper highlight the de-
terioration of the quantum algorithm’s performance when
increasing the problem size. To push forward to industry-
relevant binary paint shop instances with hundreds of cars,
either noise mitigation techniques or adaptations of QAOA
must be developed to make this application on NISQ devices
superior to random guessing. In this direction, the recur-
sive adaption of QAOA introduced in [47] or the encoding
of QAOA into a lattice gauge model [41] might provide
improvements. Moreover, it would be interesting to inves-
tigate whether classical local algorithms [23] are able to
outperform the results shown herein and to improve the clas-
sical performance bounds.

Furthermore, providing an answer on the question of
whether QAOA is a constant factor approximation algorithm
could open up new room for quantum advantage.

This work has impact far beyond the restricted use case
of the binary paint shop. In the way the binary paint shop
problem is formulated, we can already see that it is more
general: every resequencing problem with a cost function that
only depends on the relative orientation of variables that are
adjacent in the sequence is similar to the binary paint shop
problem. Even a generalization to next-to-adjacent orientation
is straightforward. These kinds of resequencing problems are
prevalent in many production facilities. For example, consider
the optimization problem of cars being assembled by workers:
cars with sunroofs are more difficult to assemble and should
not be adjacent in a sequence so that the workers can keep
up with the constant speed of the conveyor belt. Furthermore,
since we use a generic quantum algorithm, QAOA, we are
confident that the observed runtime and solution quality en-
hancements will prevail as long as we do not change the
general problem characteristics: a regular problem graph with
interaction strengths of magnitude 1. These strict require-
ments can also be relaxed considerably, as shown in [26]. We
relegate the search for interesting use-cases within this group
to future work.
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APPENDIX A: CLASSICAL HEURISTICS

1. Red-first heuristic

The red-first heuristic is a greedy algorithm for the binary
paint shop problem in which all first occurrences of each

car have the same color. This heuristic has a proven average
performance for n → ∞ of

lim
n→∞ ERF(�C ) = 2n

3
. (A1)

After mapping the binary paint shop problem to an Ising
Hamiltonian, the action of the red-first heuristic on the se-
quence representing a BPSP instance is equivalent to setting
all spins in the spin system to the same value. The average
energy for n → ∞ is given by

lim
n→∞ ERF(E ) = 1

2

∑
Ji jsis j = 1

2

∑
Ji j = −n

3
, (A2)

where we used the results from Appendix B on the average
degree and coupling strengths of the graph.

2. Recursive greedy heuristic

The recursive greedy heuristic starts by iteratively deleting
both occurrences of the last car of the sequence until the
sequence has length 2 and only one car. Subsequently, the
sequence of length 2 is painted optimally. After that, the
occurrences of the last deleted car are added back to the
sequence. While keeping the already painted cars fixed, the
new car is painted optimally. This is repeated until the whole
sequence is painted.

From the spin-system perspective, this corresponds to the
procedure of deleting all spins except a single spin and adding
back spin by spin while setting each state to the best possible
energetic configuration.

This heuristic has a proven average performance for n →
∞ of

lim
n→∞ ERG(�C ) = 2n

5
. (A3)

As single color change yields an increase of energy by 1,
we use the results on the red-first heuristic to determine the
average energy to

lim
n→∞ ERG(E ) = −3n

5
. (A4)

3. Random guessing

As a baseline for comparison, we show here the perfor-
mance of random guessing. For n → ∞,

lim
n→∞ Erandom(E ) =

∑
si,s j=−1,1

∑
i, j

Ji jsis j

=
∑
i, j

(1/2Ji j − 1/2Ji j ) = 0, (A5)

and thus

lim
n→∞ Erandom(�C ) = n. (A6)

APPENDIX B: CHARACTERISTICS OF THE SPIN SYSTEM

In this Appendix, we discuss the distribution of coupling
strengths Ji j and the average degree of the Ising model result-
ing from the mapping given in Fig. 3.
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(a) (b)

(c)

FIG. 7. This plot provides numerical insight into the properties of the graph representation of the binary paint shop problems for increasing
system size n. For all plots, we fit the data to a function of the form f (n) = 10anb + c. (a) The probability to draw an edge with coupling
strength J = {−2}. Fit parameters are (b = −1.028 ± 0.048, c = 0.000 ± 0.000). (b) The deviation of the average degree deg of random
binary paint shop instances from degree 4. Fit parameters are (b = −0.991 ± 0.019, c = 0.000 ± 0.000). (c) The probability to draw a QAOA
subgraph that is not a tree for p = 1, 2, 3 levels of QAOA. Fit parameters are (b = −1.006 ± 0.006, c = 9×10−6 ± 3×10−5) for p = 1,
(b = −0.980 ± 0.005, c = −0.002 ± 0.000) for p = 2, and (b = −0.732 ± 0.029, c = −0.046 ± 0.010) for p = 3. For the fit of p = 3,
only the last six data points were used. All data points were averaged over 1000 randomly drawn instances for each system size.

1. Coupling strengths

We show here that the probability of finding a ferromag-
netic interaction (J = −1) in the spin glass representation of
the binary paint shop is twice as big as the probability of
finding an antiferromagnetic coupling (J = 1) when n → ∞,
while the probability of finding a coupling of J = −2 is con-
verging to zero.

If we draw a random pair of cars (wi,wi+1) of the se-
quence, the probability that we find the same car ci twice is
given by Psamecar = 1/(2n − 1). A similar argument can be
made for the probability that a single car ci has the same
neighbor c j twice. As couplings of J = −2 are only generated
when a car has the same neighbor twice, this already means
that Pi j (−2) = 0 when n → ∞. This is in agreement with the
numerics shown in Fig. 7(a).

Thus, when looking at n → ∞, we now exclude the cases
of the previous paragraph and look at the probabilities Pi j (+1)
and Pi j (−1). By construction, a ferromagnetic coupling is
generated whenever two cars in the sequence are neighbors
and both occur for the first time or both have already occurred.
If we draw a random pair of the sequence, the probability that
this pair generates a ferromagnetic coupling is given by

P(J = −1) = 1

2n − 1

∑
〈i j〉

[Pi j (00) + Pi j (11)], (B1)

where Pi j (00) is the probability that both cars at positions
i and j in the sequence occur the first time, and Pi j (11) is
the probability that both cars appear for the second time.
For position i in the sequence, the probability that the car
already appeared before is given by (i − 1)/2n. With this, we
reformulate Eq. (B1) as

P(J = −1)

= 1

2n − 1

2n−1∑
i=1

[(
1 − i − 1

2n − 1

)(
1 − (i + 1) − 1

2n − 1

)

+ i − 1

2n − 1

(i + 1) − 1

2n − 1

]

= 1 − 6n + 8n2

6n(2n − 1)
. (B2)

For n → ∞, we find P(J = −1) = 2/3, i.e., the probability
of finding a ferromagnetic interaction strength is 2/3. The
probability of finding an antiferromagnetic coupling, P(J =
+1), can be calculated in a similar way by calculating the
probability that one of two consecutive cars in the sequence
was already seen while the other did not occur yet. This can
be written as

P(J = +1) = 1

2n − 1

∑
〈i j〉

[Pi j (01) + Pi j (10)] (B3)
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= 1

2n − 1

2n−1∑
i=1

[(
i − 1

2n − 1

)(
1 − (i + 1) − 1

2n − 1

)

+ i − 1

2n − 1

(
1 − (i + 1) − 1

2n − 1

)]

= 4n2 − 1

6n(2n − 1)
, (B4)

which for n → ∞ gives Pi j (J = +1) = 1/3. Thus, the spin-
system formulation of the binary paint shop problems has
(for n → ∞) integer ferromagnetic or antiferromagnetic cou-
plings with probabilities 2/3 and 1/3, respectively.

2. Average degree

As the probability that a car is next to the same car twice in
the sequence is vanishing when n → ∞, each car representing
a spin in the spin system has four connections in the infinite-
size limit. This intuition is supported by Fig. 7(b), where we
show the deviation from an average degree of 4 for 1000
randomly drawn binary paint shop instances while increasing
the system size.

3. Number of tree subgraphs

The expectation value of QAOA is given by the sum of the
expectation values of two-point correlation functions σ (i)

z σ
( j)
z ;

see Eq. (4). As was discussed in Sec. IV, each expectation
value can be calculated over the reverse causal cone of the cor-
responding edge (i, j) in the graph. In Fig. 7(c) we show the
probability 1 − Ptree, with Ptree the probability that a randomly
drawn subgraph resembles a tree of degree 4 for p = 1, 2, and
3. The numerical experiment together with the fits suggest that
the probability to draw subgraphs that are not trees is zero in
the infinite-size limit (n → ∞).

APPENDIX C: EXTENSION OF TREE-QAOA

In this Appendix, we prove that the optimal QAOA pa-
rameters on a tree-graph with coupling strength J = +1 are

equivalent to the optimal QAOA parameters on a tree-graph
with coupling strengths J = ±1. As a starting point, we as-
sume that we have an Ising model defined on a tree,

Htree =
∑

(i, j)∈E

Ji jσiσ j, (C1)

with the edge set E defining the tree graph. To prove the
assumption, we show that the optimal parameters of tree-
QAOA stay the same when replacing the coupling strengths
Ji j = 1 with any Ji j = ±1. We assume that there exists a
transformation

UTHJ=1
tree U †

T = HJ=±1
tree , (C2)

with UT = ⊗k
j Xj defining a k-local spin flip operation on

a subset of k qubits. Inserting this transformation into the
expectation value of the QAOA circuit, Eq. (1), yields

〈+| · · · eiγpHJ±1
tree UX(±ZiZ j )U

†
Xe−iγpHJ±1

tree · · · |+〉
= 〈+| · · · eiγpUTHJ=1

tree U †
T UX(±ZiZ j )U

†
Xe−iγpUTHJ=1

tree U †
T · · · |+〉

= 〈+| · · ·UTeiγpHJ=1
tree U †

TUX(±ZiZ j )UXUTe−iγpHJ=1
tree U †

T · · · |+〉
= 〈+| · · · eiγpHJ=1

tree U †
TUX(±ZiZ j )U

†
XUTe−iγpHJ=1

tree · · · |+〉
= 〈+| · · · eiγpHJ=1

tree UXU †
T (±ZiZ j )UTU †

Xe−iγpHJ=1
tree · · · |+〉

= 〈+| · · · eiγpHJ=1
tree UX(ZiZ j )U

†
Xe−iγpHJ=1

tree · · · |+〉 . (C3)

This shows that, if a transformation Eq. (C2) exists, then the
expectation value of the tree-QAOA with couplings strengths
Ji j = ±1 is equivalent to the initial case with Ji j = 1 and
the variational parameters are the same. On trees, where no
frustration is present, it is always possible to find such a
transformation.

APPENDIX D: CIRCUIT OPTIMIZATION FOR TRAPPED ION QUANTUM COMPUTERS

In Eq. (7), we showed how to transform the QAOA with a p = 1 circuit such that only native gates are used. In this
Appendix, we show how this can be done for an arbitrary number of QAOA levels p. By inserting Hadamard gates, the circuit
transforms to

|�〉p
QAOA = UX(βp)UZZ(γp) · · ·UX(β2)UZZ(γ2)UX(β1)UZZ(γ1) |+〉

= UX(βp)HHUZZ(γp)HH · · · HHUX(β2)HHUZZ(γ2)HHUX(β1)HHUZZ(γ1)H |0〉
= UX(βp)HUXX(γp) · · ·UZ(β2)UXX(γ2)UZ(β1)UXX(γ1) |0〉
= UX(βp − π )UY(π/2)UXX(γp) · · ·UZ(β2)UXX(γ2)UZ(β1)UXX(γ1) |0〉 , (D1)

including only native gates.

APPENDIX E: NOISE MODEL

In this Appendix, we introduce the noise model used in
the noisy simulation shown in Fig. 6. After each application
of a gate on a set of qubits, we subsequently apply a local

depolarizing channel,

E (ρ) : ρ →
∑

i

KiρK†
i , (E1)
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with the Kraus operators

K1 =
√

1 − η1, K2 =
√

η

3
σx, K3 =

√
η

3
σy,

K4 =
√

η

3
σz, (E2)

on all qubits that participated in the gate. Thus, for a single-
qubit gate on qubit i, we apply a single local depolarizing
channel on qubit i. For a two-qubit gate on qubits i, j, we
apply two local depolarizing channels on qubits i, j. As two-

qubit gates are more error-prone than one-qubit gates, we
assign different error rates to single- and two-qubit gates,
η1Q and η2Q, respectively. On IonQ, the average single- and
two-qubit fidelities are reported to be 99.5% and 97.5%, re-
spectively [42]. To adjust the error rate of the single-qubit
gate, η1Q, we follow the experimental procedure from [42] and
simulate random benchmarking and measure the fidelity. We
tune the error rate η1Q such that we find a fidelity of 99.5%,
resulting in η1Q = 0.0029. Similarly, to find an appropriate
value for η2Q, we simulate partial state tomography on the Bell
state and tune η2Q resulting in η2Q = 0.0168.
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