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QED cascades in a strong electromagnetic field of optical range and arbitrary configuration are considered.
A general expression for short-time dependence of the key electron quantum dynamical parameter is derived,
allowing one to generalize the effective threshold condition of QED cascade onset. The generalized theory is
applied to self-sustained cascades in a single focused laser pulse. According to numerical simulations, if a GeV
electron bunch is used as a seed, an ordinary cascade can be converted into a self-sustained one. As an application,
it would be also possible to produce this way bright collimated photon beams with up to GeV photon energies.
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I. INTRODUCTION

Recent advances in developing high-power lasers (see, e.g.,
the recent review [1]) offer impressive prospects for bring-
ing the experimental studies of laser-matter interaction to a
new level [2]. It was recently reported that laser intensity
of 1023 W/cm2 was exceeded at the CoReLS facility [3],
and the new multi-petawatt-class facilities under construction
(Vulcan2020 [4], PEARL 10 [5,6], Apollon 10PW [7], ELI
Beamlines [8,9], ELI-NP [10,11], SULF [12], SEL [13], etc.)
are promising in probing intensities � 1023−24 W/cm2 in the
nearest future. Furthermore, far-reaching exawatt-class facil-
ities, such as ELI Fourth Pillar [14] and/or XCELS [6,15],
aiming at intensities �1026 W/cm2, are also being planned.
One of the main possible applications would be study of a
variety of QED phenomena that have been never observed
previously [2,16–20].

Self-sustained [or A(valanche)-type] QED cascades, the
primary topic of this paper, are examples of such phenom-
ena. They are long chains of successive nonlinear Compton
scatterings (hard photon emission) and Breit-Wheeler (pair
photoproduction) processes. After repartitioning through
these processes, the energy of secondary particles is each
time reimbursed due to their ongoing acceleration by laser
fields. This results in the rapid development of an avalanche
of up to macroscopic multiplicity, with the energy source pro-
vided and hence the parameters determined by the field, rather
than by seed particles (a kind of losing memory of initial
conditions).

The onset of self-sustained cascades in interactions
of extremely high-intensity laser pulses with matter was
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predicted theoretically [21–23], initially by implying a partic-
ular setup with a seed electron placed into a common focus
of counterpropagating laser pulses. Variations of that setup
combining two or more laser pulses were studied by numeri-
cal simulations in a number of subsequent papers (see, e.g.,
Refs. [24–32]). As a rule, the simulations were initialized
starting with a rest seed electron at the focus, thus leaving
aside a nontrivial problem of injecting charged particles into
a strong-field region [33,34]. Further simulations, however,
demonstrated generation of cascades in more realistic settings,
e.g., by irradiating dilute gas or electron cloud [35–38], near-
critical-density plasma [39,40], or dense solid [41–46] targets.
Note that in the latter case it was enough to irradiate a target
from one side, since due to reflection a counterpropagating
wave was formed by itself.

Another conceivable option is using a multi-GeV electron
bunch as a target [47–54]. The idea was first implemented
in the Stanford Linear Acclerator Center (SLAC) E-144 ex-
periment [55–57], where 46.6-GeV electron bunches collided
with laser pulses focused to intensity ∼1018 W/cm2. How-
ever, due to the low intensity of the laser pulse, production
of only a few pairs (rather than of a cascade chain) could be
detected. The two upcoming experiments E-320 at SLAC [58]
and LUXE at the Deutsches Elektronen-Synchrotron (DESY)
[59,60] will advance the SLAC E-144 setup by bringing the
laser field intensity up to the level of ∼1020 W/cm2.

We call a cascade S(hower)-type if e+e− pairs and hard
photons are produced at the expense of kinetic energy of
the initial and secondary particles. Such a cascade eventually
saturates as soon as the energy of secondary particles drops
to a threshold value. Note that after the saturation of the
S-type cascade an A-type cascade can set in (the so-called
“cascade collapse and revival” effect). According to simu-
lations [49,50], cascade “revival” requires laser intensity of
1023–1024 W/cm2 and certain tweaking of the electron bunch
parameters.
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As reported by now, most of simulations of cascade pro-
duction assumed variations of a particular setup with two
or more incoming laser pulses. This was partially because
of the intuitive expectations supported by numerical simula-
tions that the effective threshold intensity for cascade onset in
such a scheme is lower, thus setting up the problem closer
to the existing experimental capabilities. However, a more
technical reason was the existence of a simple qualitative
theory [23,25,61]. It was essentially based on replacing the
actual (generally rather complicated and in reality unknown)
field configuration in a laser focus by a “uniformly rotating
electric field.” The existence of such a pivotal theory greatly
simplified code benchmarking and interpretation of the simu-
lation results. Though some attempts have been already made
[28,29,31] towards generalization, they still essentially relied
on the assumption that the magnetic field vanishes at the
electric field maximum, thus ruling out the important case of
a single focused laser pulse in vacuum.

Our goal below is to derive a qualitative criterion of an
A-type cascade onset for initially nonresting seed particles
in an arbitrary field configuration. Our present approach is
completely based on a formal short-time expansion of electron
motion in an arbitrary field of ultrarelativistic intensity, thus an
appeal to oversimplified field models is no longer required. In
particular, we show explicitly that any slowly varying electro-
magnetic (EM) field of electric type and sufficient magnitude
is capable of A-type cascade production.

We apply our theory to the case of cascade production by
a single focused laser pulse. This problem is related to the
possible fundamental limitations on the intensity attainable
with high-power lasers [23]. Recall that all the existent pro-
posals for increasing laser intensity rely in that or another
way on employing tight focusing. However, it is known [62]
that a focused field is always of electric (E > H) type in
certain spatial regions; hence, at sufficiently high intensity
it will unavoidably create pairs from vacuum. The sponta-
neously produced pairs should in turn seed massive A-type
QED cascades capable of depletion of the laser field, as it was
explicitly demonstrated for a setup with two counterpropagat-
ing laser pulses in Refs. [26,63], thus imposing limitations on
the attainable laser intensity. Obviously, an upper bound on
the attainable intensity corresponds to the worst case of the
maximal possible threshold for cascade production, that is, of
a single focused pulse.

Here we study analytically and numerically the depen-
dence of the effective threshold intensity upon the degree of
focusing. It is shown that even though (as anticipated) for
moderate focusing the threshold intensity for A-type cascade
production by a single focused pulse is typically several orders
higher than for two, not to mention more, colliding pulses, it
nevertheless still remains lower than the threshold for sponta-
neous pair production, thus promoting the latter as an upper
bound for the attainable laser intensity in vacuum.

We also study cascades arising in a head-on collision of
a GeV electron beam with a focused laser pulse. Quantum
radiation [64] in such a scenario and S-type cascades for either
near-presently available or higher intensity without account
for focusing (plane wave case) have been discussed previously
[47,48]. However, according to our simulations, by appro-
priate tuning of the parameters, the effect of “collapse and

revival” (i.e., S-type to A-type cascade conversion) can take
place as well.

A by-product of setting up cascades with a single laser
pulse is production of collimated γ rays with specific prop-
erties. Cascades produced by irradiating solid targets with
high-intensity laser pulses are known to effectively convert
laser energy into hard γ quanta [65–71]. An A-type cascade
arising at interaction of a GeV electron beam with a focused
laser pulse of intensity I ∼ 1026 W/cm2 should also serve
as a bright source of collimated (emitted towards the laser
pulse propagation direction) GeV photons. But, unlike the
previously considered schemes, here collimation is achieved
automatically and the parameters of the resulting γ pulses are
controlled exclusively by the driving laser pulse.

The paper is organized as follows. In Sec. II A we introduce
the notations and give an overview of the general approxima-
tions in use. In Sec. II B we consider classical motion of a
seed electron in an arbitrary EM field with a goal of deriving
a short-time dependence for its energy and dynamical quan-
tum parameter. Based on these results, we derive and discuss
general criteria for a self-sustained cascade onset in Sec. II C.
In Sec. III A we study an electron-seeded cascade in a single
focused laser pulse by applying both the developed theory and
numerical simulations. In Sec. III B we present simulations
demonstrating that such a cascade indeed develops in a head-
on collision of a GeV electron beam with a single laser pulse.
Furthermore, we discuss the angular and energy distributions
of the γ quanta produced throughout the collision. A summary
of our results and the concluding remarks are presented in
Sec. IV. Appendix A illustrates general arguments of Sec. II B
with an example of electron dynamics in a uniformly rotating
electric field. Finally, Appendix B contains technical details
of our derivations for a single focused laser pulse.

II. GENERAL THEORY OF A-TYPE CASCADES

A. Basic assumptions

A QED cascade is a chain of the successive first-order QED
processes, the nonlinear Compton scattering (hard photon
emission) and the multiphoton Breit-Wheeler process (pair
photoproduction). The laser field is characterized by an in-
variant dimensionless parameter1 a0 = e

√−AμAμ/m, where
Aμ is the 4-potential and e and m denote the magnitude of the
electron charge and its mass, respectively. We assume the field
is of (near-)optical frequency and ultrarelativistic intensity
(a0 � 1). Under such conditions the field can be considered
as slowly varying over the characteristic formation scales of
QED processes. This allows us to apply the locally constant
field approximation (LCFA) [23,50,72,73] by using the prob-
ability rates of the QED processes in a constant crossed field
[74–76]. They are determined by the dimensionless dynamical
quantum parameter [72]

χe,γ = e

m3

√
(p0E + p × H )2 − (p · E )2 (1)

of the involved particle, where p is its momentum and E and
H are the electric and magnetic fields at the particle position.

1We use units h̄ = c = 1.
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Strictly speaking, it is known that the LCFA is valid if
a0 � max(1, χ1/3) and, additionally, for emission of not
too soft photons (namely, only those with χγ � χ2

e /a3
0)

[18,72,77–83]. We assume that these conditions are fulfilled
and we are interested only in emission of photons with χγ �1.

The total probability rates Wrad and Wcr for hard photon
emission and pair photoproduction, respectively, exhibit an
especially simple form in the asymptotic cases [72,73]:

Wrad ≈ αm2

εe
×

{
1.44 χe, χe � 1,

1.46 χ2/3
e , χe � 1,

(2a)

Wcr ≈ αm2

εγ

×
{

0.23 χγ e−8/3χγ , χγ � 1,

0.48 χ2/3
γ , χγ � 1,

(2b)

where εe,γ and χe,γ are respectively the energy and the dynam-
ical quantum parameter (1) of an incoming electron (positron)
or photon, and α is the fine-structure constant. In particular,
pair photoproduction by soft photons is exponentially sup-
pressed, and this is the reason not to focus on their emission
carefully.

At the same time, we assume that E , H � ES , where ES =
m2/e = 1.32×1016 V/cm is the QED critical field [84,85]
and that the majority of particles in a cascade are most of
the time ultrarelativistic. Then a semiclassical approach is
valid, which treats the charged particles and hard photons as
pointlike and propagating along the classical trajectories in
between the events of photon emission or pair photoproduc-
tion. The QED processes mentioned above are included by
using a Monte Carlo event generator implementing the known
probability rates as described in detail in Refs. [50,73]. We
emphasize that the particle trajectories are determined by the
Lorentz equations, with no need to correct them by adding
a classical radiation friction force, which is already included
as a quantum radiation recoil at the level of the Monte Carlo
event generator (see the Appendix in Ref. [73]).

B. Short-time dependence χ(t ) in generic field

A key distinctive feature of an A-type cascade is the ongo-
ing reimbursement of the energy and the dynamical quantum
parameter (1) of the participating charged particles due to
their acceleration in the field. Let us study it in a general set-
ting. Suppose an electron is placed into a strong-field region.
Within a semiclassical approach its trajectory is governed by
the equations of motion

d pμ(τ )

dτ
= e

m
Fμ

ν (x(τ ))pν (τ ), (3a)

dxμ(τ )

dτ
= pμ(τ )

m
, (3b)

supplemented (without a loss of generality) with the initial
conditions at τ = 0:

xμ(0) = 0, pμ(0) = pμ
0 ≡ {ε0, p0}, (4)

where τ is the proper time, xμ = {t, x} and pμ = {ε, p} are
the 4-vectors of particle position and momentum, and Fμν is
the EM field tensor. Having a solution to these equations, it is
enough to substitute it directly into Eq. (1) to obtain χ (t ). But,
obviously, this cannot be done explicitly for an arbitrary field
configuration. However, two aspects simplify the task: (i) we

assume the field varies slowly; and (ii) we assume the field
is of ultrarelativistic intensity (a0 � 1), and thus it shortly
makes charged particles ultrarelativistic.

In view of assumption (i) above, let us write Fμν ≡
Fμν (ωx) and expand the particle trajectory in powers of the
field carrier frequency ω:

p(τ ) = p(1) + p(2) + · · · , p(i) = O(ωi−1), (5a)

x(τ ) = x(1) + x(2) + · · · , x(i) = O(ωi−1), (5b)

where p(i) and x(i) are the functions of τ . In what follows, we
see that the actual (small) expansion parameter is ωt , where
t = x0 is the laboratory frame time. In order to fulfill the initial
conditions [see Eq. (4)], we impose them termwise as follows:

p(1)(0) = p0, p(i>1)(0) = 0, x(i)(0) = 0.

Accordingly, the field expands as

Fμν (ωx)|x=0 = F (0)
μν + F (1)

μν + F (2)
μν + · · · , (5c)

where

F (0)
μν = Fμν (0) = O(1),

F (1)
μν = Fμν,σ (0)x(1) σ = O(ω), (6)

F (2)
μν = 1

2 Fμν,σρ (0)x(1) σ x(1) ρ + Fμν,σ (0)x(2) σ = O(ω2), . . .

By squaring expansion (5a) and collecting the terms of the
same order in the on-shell condition p2 = m2, we arrive at the
constraints

(p(1) )2 = m2, (7a)

p(1) p(2) = 0, (7b)

(p(2) )2 + 2p(1) p(3) = 0, (7c)

. . .

Next, by substituting expansions (5b) and (5c), Eqs. (3a)
can be solved successively up to a desired order. Let us find a
solution to the least order contributing nontrivially to Eq. (1).
Matching the terms of the order O(ω), we obtain

d p(1)

dτ
− e

m
F (0) p(1) = 0. (8)

This is the equation of motion of a charged particle in a con-
stant field. For brevity, here and below we present equations in
a matrix form using the abbreviations p ≡ pμ and F ≡ Fμ

ν .
The solution for Eq. (8) can be written in a matrix form

(see, e.g., Ref. [86]):

p(1)(τ ) = eeF (0)τ/m p0 =
4∑

q=1

eeλqτ/mCq fq, (9)

where λq and fq are the eigenvalues and eigenvectors of the
matrix F (0) defined by the equation F (0) fq = λq fq. Its four
solutions

λq = {ε,−ε, iη,−iη} (10)

are expressed through the field invariants ε, η =√√
F2 + G2 ± F , where F = (E2 − B2)/2 and G = E · B

[87]. The constants Cq are to be determined to provide
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∑
q Cq fq = p0 according to the initial condition. For a field

of electric type (F > 0) we have also ε > 0; hence, on a
time scale τ � m/eε (when the initially resting particle
becomes ultrarelativistic, or, more generally, the energy and
momentum acquired from the field exceed the initial ones) the
major contribution in Eq. (9) comes from the term with q = 1
(as the rest terms are exponentially suppressed as compared
to that one), so that Eq. (9) simplifies to

p(1)(τ ) ≈ eeετ/mC1 f1, τ � m

eε
. (11a)

Then, by integrating Eq. (3b), we further obtain

x(1)(τ ) ≈ 1

eε
eeετ/mC1 f1, τ � m

eε
. (11b)

Assuming2 normalization f 0
1 = 1, by expressing Eqs. (11a)

and (11b) in terms of the laboratory time t = x0 ≈ (x0)(1),
we have x(1)(t ) ≈ f 1t and p(1)(t ) ≈ eεt f1. In particular, the
electron energy on this timescale grows as

ε(t ) ≡ p0(t ) ≈ eεt . (12)

At this stage the tentative conditions of validity of the approx-
imation under development can be summarized by a double
constraint:

C1

eε
� t � π

ω
. (13)

It is consistent in strong fields a0 � 1 and defines explicitly
the timescale of interest in this section. At this timescale the
electrons are ultrarelativistic; still the field varies slowly.

Balancing the terms of the next few orders of the expan-
sions (5b) and (5c) in Eq. (3a), we obtain the following for the
O(ω2) terms:

d p(2)

dτ
− e

m
F (0) p(2) = e

m
F (1) p(1), (14a)

and for the O(ω3) terms, we obtain

d p(3)

dτ
− e

m
F (0) p(3) = e

m

(
F (1) p(2) + F (2) p(1)

)
. (14b)

It is clear from Eqs. (6), (11a), and (11b) that the right-
hand side in Eq. (14a) is proportional to x(1)

μ p(1)
ν ∝ e2eετ/m.

Hence p(2) should be asymptotically (for τ � m/eε) also
∝ e2eετ/m ∝ t2, in particular implying that

d p(2)

dτ
≈ 2eε

m
p(2). (15)

Thus the solution to Eq. (14a) can be written as

p(2) ≈ 1

2ε − F (0)
F (1) p(1), (16)

2This is possible for any field of electric type, since due to an-
tisymmetry of F (0) we have Re (λ) · f ∗

μ f μ = 0; hence, for any real
nonzero λ = ε > 0 we have | f 0| = | f | �= 0 (or else f μ ≡ 0 was not
an eigenvector). Note that with such a normalization all the constants
Cq acquire the dimension of mass. Note also that with the adopted
normalization f μ (unlike x(1)μ = f μ

1 t , see below) does not transform
as a 4-vector under Lorentz transformations.

where division by a matrix means a product with its inverse.
Note that with Eq. (16) we can verify Eq. (7b) directly by not-
ing that p(1) is proportional to the eigenvector f1 of F (0) and
recognizing that p(1)F (1) p(1) = 0 since F (1) is antisymmetric.
Strictly speaking, according to Eqs. (3b) and (5b), t is also
subject to second- and higher-order corrections. However, we
are interested in the leading-order nontrivial contribution to
χ (t ) and therefore neglect all such corrections.

The third-order correction p(3) is derived from Eq. (14b) in
the same manner by noticing that in ultrarelativistic approx-
imation p(3) ∝ e3eετ/m ∝ t3. But, as we demonstrate below,
dealing with its explicit expression can be avoided by applying
Eq. (7c) instead. This way an arbitrary-order correction is
estimated as

x(i) = 1

ω
O((ωt )i ), p(i) = ma0O((ωt )i ), (17)

hence the successive terms of the expansion (5b) and (5a)
indeed descend at short times (13).

Now let us turn to calculation of the dependence χe(t ) for
the time range (13). For that it is more convenient to re-express
χ2

e in the form

χ2
e = − 1

m4

(
d pμ

dτ

)2

, (18)

manifesting χe as electron proper acceleration expressed in
Compton units. Using the expansion (5a) and taking into
account that, due to Eqs. (17) and (13), it is enough to track
only the leading nontrivial contributions, we obtain

χ2
e ≈ − 1

m4

(
d p(1)

dτ

)2

− 2

m4

d p(1)

dτ

d p(2)

dτ

− 1

m4

[(
d p(2)

dτ

)2

+ 2
d p(1)

dτ

d p(3)

dτ

]
. (19)

The first (lowest-order) term on the right-hand side obviously
represents χ2

e (0). It formally looks like O(t2) but due to
cancellations is actually O(1). The second [formally O(t3)-
order] term vanishes in our ultrarelativistic approximation3

due to Eqs. (11a), (15), and (7b). Finally, by noticing that
the matrix F (0) is antisymmetric, d p(1)/dτ ≈ (eε/m)p(1), and
d p(3)/dτ ≈ (3eε/m)p(3), and by applying Eqs. (15) and (7c),
the last [O(t4) order] term in the right-hand side of Eq. (19)
can be cast to

−e2ε2

m6
(p(2) )2 = e2ε2

m6
p(1)F (1) 1

4ε2 − (F (0) )2 F (1) p(1).

Hence, our final expression for time dependence of the
parameter (1) in an arbitrary field takes the form

χ2
e (t ) ≈ χ2

e (0) +
(

e2ε2ωeff

m3

)2

t4, (20)

3Strictly speaking, by this argument only the leading O(t3)-
order terms should cancel; we come back to this below and in
Appendix A.
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where

ω2
efft

4 = x(1)
μ Fμ

ν,σ x(1)σ

×
(

1

4ε2 − (F (0) )2

)ν

λ

Fλ
κ,ρx(1)ρx(1)κ, (21)

and x(1)μ = f μ
1 t . Note that with account to Eq. (21) the result-

ing Eq. (20) is manifestly Lorentz invariant.
Formulas (12) and (20) establish the general short-term

behavior of the electron energy and the dynamical quantum
parameter χe(t ) in an arbitrary field and represent one of the
main results of the paper. We apply them below to develop a
qualitative theory of an A-type cascade onset in an arbitrary
EM field.

Let us conclude the section with a few brief remarks. In ef-
fect, on the timescale (13) the particle energy given in Eq. (12)
is independent of the initial condition, but χe(t ) depends on
χe(0) in general [see Eq. (20)]. If the term χ2

e (0) is ignored,
then the expression (20) is simplified further:

χe(t ) ≈ e2ε2ωeff

m3
t2. (22)

In particular, for an initially resting seed electron character-
ized by χe(0) = E/ES � 1 [see Eq. (1)], one can easily verify
that Eqs. (12) and (22) generalize the previously considered
cases of a uniformly rotating electric field [23,73] (where
the effective frequency is ωeff = ω/2), linearly and circularly
polarized standing waves [28],4 and multiple colliding beams
with magnetic field vanishing at the center of the focus [29].

However, it follows from Eq. (20) that the transition to
Eq. (22) is only possible for

t � m

eε

√
mχe(0)

ωeff
. (23)

Obviously, Eq. (23) at the same time estimates the timescale
on which the dynamical quantum parameter substantially ex-
ceeds its initial value. For a0 � 1 the new restriction (23)
is stronger than the left inequality in Eq. (13), meaning that
Eq. (22) can never be valid on the whole range (13). This
is an important refinement over the previous works. On the
other hand, by a crude estimate ε � E , ωeff � ω, and χe(0) �
(E/ES )(p0⊥/m), the condition (23) is consistent with the right
inequality in Eq. (13) if the component of the initial momen-
tum transverse to the field obeys

p0⊥ � ma0. (24)

This naturally means that the initial transverse momentum
is so small that the transverse electron motion is governed
by the field. To illustrate these considerations, we study the
evolution of χ (t ) explicitly for a nonresting seed electron in a
uniformly rotating electric field in Appendix A. In particular,
it is demonstrated there that even though our derivation based
on ultrarelativistic approximation can reproduce only the lead-
ing contributions in Eq. (20), the subleading ones are indeed
negligible under imposing the additional condition Eq. (23).

4Due to a misprint in Ref. [28], we reproduce Eq. (A16) therein
only apart from the superfluous numerical factor 2.

Moreover, despite the possible actual presence of such ad-
ditional subdominant terms, our Eq. (20) that misses them
nevertheless works fine even in the initial range, Eq. (13), by
correctly interpolating between the initial condition and the
behavior, Eq. (22), on longer time specified in Eq. (23).

According to Eq. (20), the dynamical quantum parameter
of an initially slow particle in an arbitrary nonuniform EM
field grows with t on a timescale (13), unless the field invariant
ε is either strictly zero or anomalously small. This exceptional
situation takes place either for the fields of magnetic type
(F < 0, G = 0) or for a field close to a plane wave (for which
F = G = 0). In the former case there is always a reference
frame in which the electric field locally vanishes and the
particle is orbiting around the direction of the magnetic field.
Obviously, in such a case there is no net acceleration at all.
The latter case (or more precisely the paradigmatic case of a
weakly focused field) is analyzed in Appendix B. However,
for a generic (e.g., tightly focused) field both field invariants
are, in general, substantially nonzero in certain regions; hence,
slow particles are ultimately accelerated there by the field.

C. Threshold condition for A-type cascade onset in generic field

Self-sustained (A-type) cascades are seeded by slow
[χe(0) � 1] electrons, with the required amount of energy
provided entirely due to their ongoing acceleration in the
field. In order to launch such a cascade, in the course of
acceleration the dynamical quantum parameter of the elec-
tron should attain values �1, since otherwise (as long as
χe � 1) the emitted photons are so soft (χγ ∼ χ2

e � χe) that,
according to Eq. (2b), their pair photoproduction capability
is exponentially suppressed. When such a slow seed electron
gets accelerated by a generic field of electric type (E > H),
its dynamical quantum parameter χe(t ) is growing on the
timescale (13) according to Eq. (20).

The time spent on average until the event of hard photon
emission is estimated by5 tfree � 1/Wrad. The probability rate
Wrad(t ) increases along with the electron dynamical quantum
parameter χe(t ) in the course of acceleration. Hence, by pick-
ing up the asymptotic in Eq. (2a) corresponding to χe � 1
(we assume that it is lingered over till χe � 1) and substituting
Eq. (12), we obtain an estimate,

χe(tfree ) � μ3/2, (25)

where, for brevity, we have introduced the dimensionless field
strength parameter μ = ε/αES . Assuming χe(tfree ) � χe(0)
[equivalently, if tfree matches the condition (23)], one can
express tfree explicitly using Eq. (22):

tfree � 1

κμ1/4ωeff
. (26)

Here we introduced the numerical coefficient κ =√
α2m/ωeff . For a field carrier frequency in the optical

range (assuming ωeff ∼ ω � 1 eV), we have κ � 5.
According to Eq. (25), the emitted photons are capable of

pair photoproduction [χe(tfree ) � 1, as implied by Eq. (2b)] if

5More precisely by
∫ tfree

0 Wrad (t ) dt � 1, which is the same up to a
numerical factor of �1.
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μ � 1 or

ε � αES. (27)

After emitting a hard photon the electron slows down, as both
its energy and dynamical quantum parameter are partially
transferred to the photon. In the regime μ � 1 (χe � 1) their
relative loss is of the order of unity. Then we can think of the
process as coming back to the initial state and repeating on and
on until the electron escapes from the strong-field region. As
for the emitted photon, it is created with χγ ∼ χe and εγ ∼ εe;
hence, it produces a pair during about the same time tfree.6

For the reasons outlined above, we promote Eq. (27) as
a criterion for self-sustainability of a cascade. It naturally
generalizes the criterion E � αES [23] by (i) replacing the
field strength E in a laboratory frame by the electric field
invariant ε, thus taking into account the effect of the magnetic
field, and (ii) replacing the assumption of Ref. [23] of an
initially resting seed electron by a weaker one, χe(0) � 1. It
is noteworthy that the component of the electron momentum
transverse to the field (no matter before or after hard photon
emission) can be estimated as pe⊥ � (m/α)

√
μ and satisfies

the condition Eq. (24). This confirms the consistency of our
approximations.

In order to better explain the meaning of replacing in a
generic situation the electric field strength E with the electric
field invariant ε, let us recall that the field invariants ε and η

represent nothing but the electric and magnetic field strengths
in a special reference frame where they are parallel (it can
be thought of as a local “proper frame” of the field, as the
Poynting vector vanishes). In this frame our criterion (27)
literally coincides with E � αES suggested previously [23].
Still, the setup in the proper frame differs from the case of
an initially slow seed electron in a uniformly rotating electric
field in that (i) the electron, being initially slow in the labora-
tory frame, now moves transversely to the fields; and (ii) the
magnetic field of strength η parallel to the electric field is now
present. However, with regard to (i), the Lorentz-invariant
condition χe(tfree ) � χe(0) ensures that this transverse initial
momentum is insubstantial in the sense of Eq. (24). As for
(ii), since the electron moves deviating only slightly from the
common direction of the fields, the resulting Lorentz force is
negligible.

In principle, in order to ensure a substantial cascade mul-
tiplicity, one needs to require in addition to Eq. (27) also
tfree � tesc, where tesc is the time of escape of the particles
from the strong-field region. However, it is not easy to give a
reasonable estimate of the escape time tesc in general, since the
cascade structure and long-time behavior are rather intricate,
with possible additional complications imposed by radiative
trapping [33,34]. On the other hand, since anyway tesc � π/ω,
the right inequality in Eq. (13) is more restrictive. It is note-
worthy that, in Ref. [23], it was assumed that for a laser
field focused to a diffractive limit tesc � λ/2 = π/ω. In that
context, the condition tfree � tesc appeared to be weaker than
Eq. (27). As we will see further, this may not always be the
case in general.

6In this qualitative discussion, we neglect the overall numerical
factors in the asymptotics of Eqs. (2a) and (2b).

Finally, note that the cascade onset threshold clearly de-
pends on its precise definition. For the reasons discussed in
Ref. [88], the criterion (27) might overestimate the actual
thresholds observed in particular numerical simulations. Not
necessarily precise, Eq. (27) is useful as a universal and trans-
parent guiding mark for a wide class of external field models.

III. CASCADES IN A SINGLE FOCUSED LASER PULSE

A. Onset of a self-sustained cascade

To illustrate general considerations, consider an A-type
cascade onset in a single focused laser pulse. Let us derive the
corresponding threshold condition explicitly in terms of the
field parameters. To describe the laser field, we use a model
of a monochromatic focused circularly e-polarized Gaussian
beam proposed in Refs. [62,89]. It is parametrized by the
peak EM field strength at the focus E0, the angular aperture
�, which is assumed to be small � � 1, and the frequency
ω. The focal spot radius and the Rayleigh length of the laser
beam are given by R = 1/ω� and L = R/�, respectively. The
diffraction limit is reached for � ∼ 0.3. We assume the laser
beam propagates along the z axis and that the focal center
coincides with the origin r = 0. The expressions for the EM
field are given in Appendix B, see Eqs. (B2) and (B3).

Suppose a seed electron is placed in the focal region of
the laser beam.7 For the sake of simplicity, we assume that
the electron is initially located precisely at the center of the
focus with χe(0) � 1 [e.g., χe(0) = E0/ES � 1 if the elec-
tron is initially at rest]. In the vicinity of this point, the EM
field under consideration is of electric type [see Eq. (B6)];
therefore, the electron is accelerated. On the timescale (13) its
energy and the parameter χe can be approximated by Eqs. (12)
and (22), respectively. By expanding the field near the initial
position r = 0 of the electron, we obtain ε ≈ 2

√
2�E0 and

ωeff = 17
√

2�3ω (see Appendix B for details). This yields
the approximate expressions

ε(t ) ≈ 2
√

2�eE0t, (28)

χe(t ) ≈ 8�5
κ̃

(
E0

αES

)2

(ωt )2, (29)

which are valid on the timescale√
χe(0)

κ̃μ�3/2
� ωt � π (30)

[recall that the left inequality in Eq. (13) needs to be su-
perseded with a stronger one, Eq. (23)]. Here μ = ε/αES ≈
2
√

2�E0/αES , and the constant κ̃ = (17
√

2α2m/ω)1/2 � 25
for ω = 1 eV. Note that the inequality between the outermost
terms in Eq. (30) restricts the laser beam angular aperture from
below:

� � a−1/5
0 (31)

(from now on we switch to notation a0 = eE0/mω).
A test of our approximate expressions (28) and (29) against

the numerical simulation of the electron motion in the laser

7The discussion of injecting seed particles into the focus is post-
poned to Sec. III B.
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FIG. 1. Time dependence of the energy ε and the parameter χe

of an electron in a laser beam given in Eqs. (B2) and (B3): the
approximate expressions given in Eqs. (28) and (29) (dashed line)
vs simulation (orange solid line). The green solid and dot-dashed
vertical lines indicate the endpoints of the interval of validity of our
approximation [see Eq. (30)]. The electron is initially at rest at the
center of the focus (r = 0); the laser beam parameters are ω = 1 eV,
E0 = 0.1ES (a0 ≈ 5×104), and � = 0.1.

field is displayed in Fig. 1. Clearly, they are in good agreement
inside the interval of validity (30).

Next, we estimate the mean free path time tfree of the elec-
tron with respect to photon emission. According to Eq. (26),
we obtain

ωtfree � 1

κ̃μ1/4�3/2
. (32)

Provided that the criterion μ � 1 is satisfied [see Eq. (27)],
which in this case reads

E0

ES
� α

2
√

2�
, (33)

there is a substantial probability that the emitted photon is
hard (as discussed in Sec. II C). Note that, unlike for the
uniform rotating electric field (cf. [23]), this condition incor-
porates both the field strength E0 and the angular aperture �.
In the plane wave limit � → 0 the threshold value naturally
tends to infinity.

The mean free path time tfree should match the approx-
imation validity conditions given in Eq. (30). This yields
additional constraints on the field parameters. The inequality
in the left-hand side simply means that χe(tfree) = μ3/2 �
χe(0) [see Eqs. (20) and (23)]. For an initially slow electron
this condition follows automatically from Eq. (33). As for
the inequality in the right-hand side of Eq. (30), by plugging
Eq. (32) we arrive at

E0

ES
� α

2
√

2π4
κ̃

4�7
. (34)

Note that it is stronger than Eq. (33) for weak focusing � <

(π2
κ̃)−1/3 (� � 0.05 for ω = 1 eV).

Let us also estimate the time tesc needed for the electron to
escape from the strong-field region. As already mentioned, it

is hard to follow the long-time cascade dynamics, which is, in
general, rather intricate; at best we can estimate tesc from be-
low. Recall that over a short time the electron position evolves
as xμ(1) = f μ

1 t [see Eq. (11b)]. In the case under consideration
f1⊥/ f1z ∼ �, where f1⊥ and f1z ∼ 1 are the transverse and
longitudinal components of the eigenvector f μ

1 [see Eq. (B8)].
Therefore, by assuming | f1⊥|tesc ∼ R, we obtain an estimate:
tesc � R/� = 1/ω�2 = L. As tesc � π/ω, the consecutive
processes of acceleration and hard photon emission can repeat
multiple times before the particles can escape the focal region.
Thus, promoting Eqs. (33) and (34) as the criteria of an A-type
cascade onset in the field of a single focused laser beam looks
reasonable.

To test the above conclusions, we performed a numerical
simulation using the Monte Carlo code described in Ref. [50].
We consider basically the same laser field model as in the
discussion above, only modified by including a Gaussian-
shaped temporal envelope the same way as in Ref. [89]. We set
the field frequency as ω = 1 eV and the laser pulse duration
as τL = 10 fs, and we varied the peak field strength E0 and
the angular aperture � through the simulation runs. In each
simulation, a single seed electron was placed at rest at the
center of the focus at the moment when the temporal envelope
achieved maximum (i.e., the electron experiences the peak
field strength). The results were averaged over an ensemble
of 103 identical initial particles for each parameter setting. All
simulations were carried out with the values of the parameters
close to the expected cascade onset threshold. During the
whole simulation time we operated at low particle densities;
therefore, it was legitimate to neglect all the plasma and laser
absorption effects, as discussed, e.g., in Refs. [26,31,65].

The cascade onset threshold was not sharp and was prac-
tically defined akin to Ref. [29]. Namely, we deem a cascade
has taken place if at least one e−e+ pair per single initial e−
is created on average during a half-period π/ω of the laser
field. For given values of �, we run a series of simulations
with variable laser peak field strength E0 and analyze the
simulation data set to identify the corresponding threshold
value Eth.

The results are presented in Fig. 2. One can see that the
simulation results for the threshold field parameters are in
reasonable agreement with the criteria given in Eqs. (33) and
(34). Furthermore, for stronger focusing (higher values of �)
the dependence Eth(�) is well described by Eq. (33), while
for weaker focusing (lower values of �) it tends to the line
corresponding to Eq. (34). As already mentioned, a precise
threshold value depends on the adopted duration for electron
doubling. For example, by running simulations for � = 0.1
over half-duration of the laser pulse instead of half-period, on
average a pair is created per electron by the end of a simula-
tion for Eth,τL/2 ≈ 0.03ES instead of Eth,π/ω ≈ 0.07ES . While
quantitative agreement is peculiar to our particular definition
of the threshold value (in a sense just justifying its reason-
ability), the agreement of the simulation data distribution with
the slopes of the lines corresponding to Eqs. (33) and (34) is
more important and demonstrates the qualitative rationality of
our analysis and of the proposed criteria in general.

Note that according to the simulations, for E0 = ES (the
corresponding intensity IS ∼ 1029 W/cm2) an A-type cascade
is initiated if � � 0.05. On the other hand, one needs a

012221-7



MIRONOV, GELFER, AND FEDOTOV PHYSICAL REVIEW A 104, 012221 (2021)

FIG. 2. Numerically calculated threshold field strength Eth, re-
quired to initiate an A-type cascade with a seed electron, initially
at rest at r = 0, in dependence on the laser beam angular aperture �

(solid line with circles). The threshold is defined by that a single e−e+

pair is created per initial e− on average during the laser half-period
π/ω. Inside the green area the criteria given in Eq. (33) (bounded by
the dashed line) and Eq. (34) (bounded by the solid line) are fulfilled
simultaneously.

substantially lower laser intensity to initiate such a cascade
with a stronger focused pulse; e.g., for � = 0.15 one needs
I = E2

0 /4π ∼ 1026 W/cm2. This means that it is possible to
control the multiplicity of a cascade by varying �. In partic-
ular, decreasing � suppresses the cascade multiplicity, thus
allowing higher field strength to be attained without facing a
depletion of the laser pulse (cf. Refs. [23,26,31,36]).

B. Collision with GeV electrons

In reality, seed particles can be delivered to the laser focus
by colliding a laser pulse head-on with a bunch of high-energy
electrons. If their energy is high enough, then an S-type cas-
cade develops on impact [47,48,51–54]. Suppose a photon
emitted at a midstage produces a slow electron or positron
at the central region of the focus. We call a particle “slow” if
its motion is driven essentially by the laser field. If the laser
field parameters satisfy Eqs. (33) and (34), then such a slow
particle can further seed an A-type cascade. Such a cascade
transformation was studied previously in a different setup with
two counterpropagating laser pulses (see Refs. [49,50,90]).

Here we report the results of Monte Carlo simulations
of the cascade dynamics in a single focused laser pulse, as-
suming that the cascade is seeded by a counterpropagating
GeV electron. Initially, the laser pulse and the electron are
set on the z axis and propagate in opposite directions. The
laser pulse is maximally focused at t = 0 with the focal spot
centered at the origin. The initial location of the electron
is such as to reach the same point at t = 0 in the absence
of the laser pulse. In each simulation we start with a single
electron of energy ε0 = 2 GeV (a close value for ε0 was used
in Ref. [49]). The field model, frequency, and duration of the
pulse are the same as those in Sec. III A (ω = 1 eV, τL = 10
fs). Other laser pulse parameters are tweaked to be close to
the threshold value of an A-type cascade onset [see Eqs. (33)

(a)

(b)

FIG. 3. The time dependence of the number Ne−e+ of pairs
(a) and the pair creation rate dNe−e+/dt (b) for different values of
the peak laser field strength E0 (the corresponding values of a0 =
eE0/mω: 4.1×103, 6.1×103, and 8.2×103; and of the intensities
I = E 2

0 /4π [W/cm2]: 3.0×1025, 6.7×1025, and 1.2×1026).

and (34) and Fig. 2]. In particular, we assume that � = 0.1
and E0 ∼ 10−2ES (a0 ≈ 5×103). The results of simulations
are presented in Figs. 3–7.

The cascade profiles for three such values of E0 are dis-
played in Fig. 3. For the lowest value E0 = 0.8×10−2ES , one
can see a sharp peak in the pair production rate dNe−e+/dt .
The peak forms when electron is passing a front wing of the
pulse. However, for higher values of E0 this peak is followed
by a long hump, so that the cascade evolution can be naturally
divided into two stages. Note that, whereas the number of
pairs Ne−e+ created during the first stage is about the same
for all the values of E0, at the second stage Ne−e+ grows
substantially with E0. This feature (see Ref. [90]) suggests to
associate the first peak of the production rate with an S-type

(a)

(b)

FIG. 4. Values of the parameter χ (a) and energy ε (b), averaged
over electrons in the cascade versus time for E0 = 1.6×10−2ES (the
corresponding a0 = 8.2×103 and I = 1.2×1026 W/cm2).
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FIG. 5. Evolution of the electron density: (a) d2Ne−/dtdz (in log scale) [contours indicate the amplitude of the electric field E (z, t )/E0,
and the dashed line indicates the center of the laser pulse (zoomed at the inset)]; (b) d2Ne−/dtdx (in a.u.); (c) d2Ne−/dtdy (in a.u.). Here
E0 = 1.6×10−2ES (a0 = 8.2×103, I = 1.2×1026 W/cm2).

cascade and the follow-up hump with an A-type cascade.
We substantiate this assertion further below by an in-depth
analysis of the cascade dynamics.

The evolution of the average energy 〈ε〉, the dynamical
quantum parameter 〈χ〉, and the spatial distribution of the
electrons is presented in Figs. 4 and 5. The S-type cascade
sets in at t ≈ −0.4τL , when the initial electron approaches
the strong-field region [see Fig. 5(a)] and 〈χ〉 grows up to
the values �1 (see Fig. 4). Later, as secondary particles are
produced, 〈ε〉 and 〈χ〉 rapidly drop until their values become
insufficient to support the cascade, which thus collapses at
t ≈ 0. Eventually the particles get driven and turned around
by the field. This can be seen from Fig. 5, where at t ≈ 0
the electron spatial distribution broadens in the transverse
direction. Furthermore, some secondary electrons reach the
central area of the focus. In effect, such electrons become slow
and can seed an A-type cascade.

After the S-type cascade collapses, if the laser field strength
is sufficient, it restores 〈ε〉 and 〈χ〉 of the slow electrons (see
Fig. 4) and the pair production rate starts growing again (see
Fig. 3). This indicates the development of an A-type cascade.
It saturates when, due to laser pulse diffraction, the EM field
strength becomes insufficient to support it further.

The distribution of particles seeding the A-type cascade
[see Fig. 5(a) at t ≈ 0] differs from the idealized case con-

sidered in Sec. III A. Namely, the number of such particles
is large and they are distributed nonuniformly in the focal
region. After the A-type cascade sets in, most of the particles
are produced in the central region of the focus [see Fig. 5(a)
at t � τL]. This means that the onset of the A-type cascade
is determined mainly by a small fraction of particles located
near the optical axis (at t ≈ 0). Therefore, Eqs. (33) and (34)
give a reasonable order-of-magnitude estimate for the A-type
cascade onset threshold even in a more realistic scenario con-
sidered here.

As the A-type cascade develops, the generated e−e+γ -
plasma cushion copropagates the laser pulse [see Fig. 5(a)].
Therefore the suggested setup could be applied for generat-
ing short collimated dense bunches of high-energy electrons,
positrons, and/or photons. The density, the energy spectrum,
and the divergence angle of these bunches could be controlled
by tweaking the setup parameters.

Let us discuss the properties of a generated photon bunch.
In Fig. 6 we present the distribution of photons at the moment
(t = 4.2τL) corresponding to the A-type cascade damping.
The size of a photon bunch is approximately 4λ and 2λ in
the transverse and longitudinal direction, respectively, where
λ is the laser pulse wavelength.

Naturally, the form of the photon distribution is determined
by the dynamics of the radiating electrons and positrons. They

FIG. 6. Distribution of photons along the selected axes plotted on top of the electric field amplitude (in gradations of gray, in a.u.) at time
t = 4.2τL: along the horizontal axis dNγ /dz (a) and dNγ /dx (b) (labeled on the right); along the vertical axis dNγ /dx (a) and dNγ /dy (b)
(in a.u.); the orange tones illustrate the distributions d2Nγ /dzdx (a) and d2Nγ /dxdy (b) (color online, in a.u., lighter color corresponds to
higher value). (c) The angular distribution of photons d2Nγ / sin θdθdϕ (in a.u.), where θ is the polar angle between the photon momentum k
and the z axis. ϕ is the azimuthal angle between k and the x axis. All the distributions are normalized to the number of initial electrons. Here
E0 = 1.6×10−2ES (a0 = 8.2×103, I = 1.2×1026 W/cm2).
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(a)

(b)

FIG. 7. Energy spectra N−1
γ

dNγ

dε
(a) and mean energy 〈εγ 〉 (b) of

the emitted photons at t = 4.2τL for different values of E0.

acquire transverse momentum from the field [see Fig. 5] as
the laser pulse diverges, and also because they are pushed out
of the region with a stronger electric field. This results in an
angular spread of the photon distribution [see Fig. 6(c)] and
explains why photons are partially concentrated in the electric
field minima in Fig. 6(a). The annular structures in Figs. 6(b)
and 6(c) arise due to circular polarization of the field and
resemble photon distributions produced by an interaction of
a circularly polarized laser pulse of ultrahigh intensity with a
foil (see Ref. [67]).

We present examples of photon energy spectra in Fig. 7.
As we raise the peak laser field strength, they become wider
and the mean photon energy increases. This is peculiar to an
A-type cascade (see Ref. [90]). Note that the maximal values
of energy showing up in the spectra exceed the energy of
the initial electron (ε0 = 2 GeV). As the considered photons
result from the A-type cascade, the width of the spectrum
depends on the parameters of the field rather than on ε0. The
latter in general affects the multiplicity of the cascade.

IV. SUMMARY AND CONCLUSIONS

We have reconsidered a key distinctive feature of self-
sustained (A-type) QED cascades, the process of ongoing
restoration of a particle’s energy and the dynamical quantum
parameter after a hard photon emission. Namely, by solving
the classical equation of motion in terms of short-time expan-
sion combined with ultrarelativistic approximation, we have
identified the general short-term behavior of the energy and
dynamical quantum parameter of an initially slow particle in
an arbitrary electromagnetic field of electric type and estab-
lished its validity conditions.

Based on these results, we have generalized the previously
proposed criteria for the onset of self-sustained (A-type) QED

cascades to an arbitrary electromagnetic field of electric type.
The refined criteria are formulated in a local and Lorentz-
invariant form (in terms of field invariants), reproduce the
results discussed previously, and quantify the required initial
slowness of seed particles.

As an illustrative practical application, we have performed
an in-depth analysis of an A-type cascade onset in a single
focused laser pulse. A systematic consideration of this fun-
damentally important and obviously most directly realizable
setup was needed. For this case we tested our refined general
criteria against numerical simulations, first assuming a slow
seed particle residing initially at the focal center. As the pre-
dicted dependence of the cascade onset threshold on focusing
degree was found in a rather reasonable agreement with simu-
lation results, this confirmed the qualitative rationality of our
general approach and the results.

Next we considered a more realistic scenario, in which
a cascade was seeded by a colliding head-on bunch of
high-energy electrons. Initially the impact triggers an S-type
cascade, but it was possible to tweak the setup parameters so
that, after the particles lose their energy on emission and the
initial S-type cascade fades out, they get driven by the laser
pulse and an A-type one further sets in. The net multiplicity
of a so-initiated A-type cascade is controlled by both the
laser intensity I and the energy ε0 of electrons in the bunch.
In our simulations, an A-type cascade developed with the
setup parameters ε0 = 2 GeV and I � 5×1025 W/cm2, when
a 200-PW laser pulse of optical frequency was focused to the
diffraction limit (� = 0.3).

In this sort of setup, the resulting A-type cascade creates
a cushion of relativistic e−e+-plasma inside the pulse and
naturally acts as a converter of soft laser radiation into the
high-energy photons. They are emitted in short bunches of
duration comparable to the laser field period. Also, in contrast
to the multibeam setups, where radiation is emitted in various
directions, here the emission is concentrated in a narrow for-
ward cone; hence, the secondary cascade can serve as a bright
source of directed high-energy γ quanta with tunable energy
spectrum, luminosity, and spatial divergence.

The finding of this paper can be important for design-
ing experiments at new laser facilities aimed at studying
the strong-field QED phenomena, in particular, generat-
ing high-density relativistic e−e+ plasmas and high-energy
photons.
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APPENDIX A: ELECTRON IN A UNIFORMLY
ROTATING ELECTRIC FIELD

Let us illustrate the general arguments of Sec. II B by a
simple explicit example. For a uniformly rotating electric field

E(t ) = {E0 cos(ωt ), E0 sin(ωt ), 0}, H = 0, (A1)

the solution for Eq. (3a) with the initial condition p0 =
{0, py, 0} without any approximations takes the form

p(t ) = {ma0 sin ωt, py + ma0(1 − cos ωt ), 0}, (A2)

where a0 = eE0/mω. Hence, by substituting Eq. (A2) and
p0 ≡ ε(t ) =

√
p2(t ) + m2 into Eq. (1) and its further expan-

sion in powers of ωt , we obtain

χ2
e (t ) =e2E2

0 ε2
⊥

m6
− e4E4

0

m6

py

ma0

(
1 + py

ma0

)
t2

+ e4E4
0 ω2

12m6

[
3 + 7

py

ma0
+ 4

(
py

ma0

)2]
t4 + O(t6),

(A3)

with an abbreviation ε⊥ =
√

p2
y + m2. Under the condition

py � ma0 [cf. Eq. (24) and the discussion preceding its pre-
sentation] the terms containing the small ratio py/ma0 can be
neglected. Then the only remaining term of order t4 is identi-
cal to the one given in Eq. (20) and can be obtained by exactly

that prescription. Furthermore, as long as t �
√

ε⊥/eE0ω, it
indeed exceeds both terms of orders O(1) and O(t2), com-
pare to the condition (23) and its derivation. In this explicit
example one can also easily verify that the higher-order terms
indeed remain smaller as long as t � 1/ω.

APPENDIX B: ELECTRON IN A SINGLE
FOCUSED LASER PULSE

Let us specify the time dependence of the energy [Eq. (12)]
and the parameter χ [Eq. (22)] for an electron in a single
laser beam. For definiteness assume that at t = 0 the elec-
tron is located at the focal center r = 0 with momentum
p = 0.

We employ a model of a focused laser beam suggested
in Ref. [89]. The EM field is formed by a superpo-
sition of plane waves, the resulting vector potential is
given by

A(r, t ) =
∫

|k′−k|<ω�

d3k′A(k′)ei(k′r−ωt ), (B1)

where the wave vectors k′ (|k′| = ω) fill a cone with an
opening angle � around the carrier wave vector k. The field
strengths of a circularly e-polarized beam propagating along
the z axis reads

Ee = iE0e−iϕ{F1(ex ± iey) − F2e±2iφ (ex ∓ iey)}, (B2)

He = ±E0e−iϕ

{(
1 − i�2 ∂

∂Z

)
[F1(ex ± iey) + F2e±2iφ (ex ∓ iey)] + 2i�e±iφ ∂F1

∂R ez

}
. (B3)

Here we use the notations

ϕ = ω(t − z), R = ρ/R, Z = z/L,

ρ =
√

x2 + y2, cos φ = x/ρ, sin φ = y/ρ,

� ≡ 1/ωR = λ/2πR, L ≡ R/�. (B4)

As implied in Eq. (B1), the model was initially formulated
with a steplike aperture having support on a cone |k′ − k| <

ω�. However, assuming small opening angles of � � 1, it
is more convenient to replace it with a Gaussian one A(k′) ∝
exp(−k′2/ω2�2) and extend the limits of integration to the
whole k′-space. Then the functions F1,2 in Eqs. (B2) and (B3)
can be expressed explicitly as

F1 = (1 + 2iZ )−2

(
1 − R2

1 + 2iZ

)
exp

(
− R2

1 + 2iZ

)
,

F2 = −R2(1 + 2iZ )−3 exp

(
− R2

1 + 2iZ

)
. (B5)

The EM tensor Fμ
ν (x) is worked out straightforwardly. In

what follows, we only need the values of Fμ
ν and its deriva-

tive at xμ = 0. The explicit expression for F (0)μ
ν = Fμ

ν (0) is

given by

F (0)μ
ν = E0

⎛
⎜⎜⎜⎝

0 0 −1 0

0 0 0 0

−1 0 0 1 − 4�2

0 0 −1 + 4�2

⎞
⎟⎟⎟⎠. (B6)

According to Sec. II B, in order to obtain the first-order
corrections p(1) and x(1) to the solution of the equations of
motion, we first need to solve the eigenvalue problem F (0) fi =
λi fi (i = 1, 2, 3, 4). The eigenvalues of the matrix (B6) are
given by

λi = 2
√

2E0�
√

1 − 2�2{1, −1, 0, 0} (B7)

and the corresponding eigenvectors are given by

f μ
1 = (1, 0, −2

√
2�

√
1 − 2�2, 1 − 4�2),

f μ
2 = (1, 0, 2

√
2�

√
1 − 2�2, 1 − 4�2),

f μ
3 = (0, 1, 0, 0),

f μ
3 = (

1 − 4�2, 0, 0, 1
)
, (B8)

respectively. Note that the eigenvectors f μ
1,2 are normalized so

that f 0
1,2 = 1 (see Sec. II B). To construct a general solution

p(1) we also need to identify the constants Ci from the initial
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conditions. By plugging Eq. (B8) into Eq. (9) at τ = 0, we
obtain

Ci = m

16�2(1 − 2�2)
{1, 1, 0, 2(1 − 4�2)}. (B9)

Now let us stick to our approximation. As ε = λ1, we
immediately obtain the energy of the electron ε(t ) ≈ eεt [see
Eq. (28)]. To find the dependence χ (t ), according to Eq. (22),

we need to work out explicitly the expression

ε2ωeff = ε2
√

f1μFμ
ν,σ f σ

1 (J−1)ν λFλ
κ,ρ f ρ

1 f κ1 , (B10)

where J = 4ε2 − F (0)2. The main building block is the com-
bination Fμ

ν,σ (0) f σ
1 , which reads

Fμ
ν,σ (0) f σ

1 = 8E0ω�2

⎛
⎜⎜⎜⎝

0 1 − 2�2 0 0

1 − 2�2 0 −2
√

2�
√

1 − 2�2 −1 + 7�2 − 12�4

0 2
√

2�
√

1 − 2�2 0 0

0 1 − 7�2 + 12�4 0 0

⎞
⎟⎟⎟⎠. (B11)

The full expression for the inverse of J is rather cumbersome, but for � � 1 with the same accuracy as above, it can be simplified
to

(J−1)μν = 1

768E2
0 �4

⎛
⎜⎜⎜⎝

1 + 28�2 + 60�4 0 0 −1 + 4�4

0 24�2 + 48�4 0 0

0 0 32�2 + 64�4 0

1 − 4�4 0 0 −1 + 28�2 + 52�4

⎞
⎟⎟⎟⎠ + O(�2). (B12)

After substitution of f1, Eq. (B11), and Eq. (B12) into Eq. (B10), up to the leading order in � we obtain

ε2ωeff = 136
√

2E2
0 ω�5 + O(�5), (B13)

thus finally arriving at Eq. (29).
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