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Quantum walks are counterparts of classical random walks. They spread faster, which can be exploited in
information processing tasks, and constitute a versatile simulation platform for many quantum systems. Yet,
some of their properties can be emulated with classical light. This raises a question: which aspects of the model
are truly nonclassical? We address it by carrying out a photonic experiment based on a pre- and post-selection
paradox. The paradox implies that if somebody could choose to ask either if the particle is at position x = 0
at even time steps or at position x = d (d > 1) at odd time steps, the answer would be positive, no matter
the question asked. Therefore, the particle seems to undergo long distance oscillations despite the fact that the
model allows it to jump one position at a time. We translate this paradox into a Bell-like inequality and then into
a contextuality witness. Finally, we experimentally verify this witness up to eight standard deviations.
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I. INTRODUCTION

We study the nonclassicality of a discrete-time quantum
walk (DTQW) [1,2], a quantum counterpart of the quintessen-
tial random walk, in which the walker and the driving coin
are quantum systems capable of becoming superposed and
interfering. The interference is responsible for a behavior that
strikingly differs from the classical random diffusion. DTQWs
spread ballistically faster and their spatial probability distribu-
tion is far from Gaussian.

Despite the fact that DTQWs can simulate various quantum
systems and their ballistic spreading properties are used in
a number of information processing algorithms [3–6], it is
possible to emulate their behavior with classical light [7–10].
More precisely, if instead of a particle, such as a photon, one
used a classical coherent light beam in a DTQW experiment,
the beam’s amplitude would mimic the walker’s probability
amplitude. Does this mean that there is nothing nonclassical
about DTQWs? The only difference between the two scenar-
ios seems to lie in the measurement. In the case of the classical
light, one performs a single experiment that yields an intensity
distribution at all positions. In the quantum case, one performs
many experiments, each resulting in a single click at a random
position, and only later one evaluates a probability distribution
that matches the classical intensity pattern. Although the two
methods of obtaining the probability distribution seem equiv-
alent, it is known that single-partite nonclassical properties
resulting from clicks become classically explainable if one
performs collective intensity measurements on more than one
indistinguishable particle [11]. Therefore, in order to expose
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any nonclassicality in DTQWs, one should focus on single-
particle clicks and examine if some of their properties lack a
classical description.

The lack of a classical description means that measure-
ments on a system cannot be described by a particular type
of hidden variable (HV). HVs provide a classical probabilistic
description of measurements [12] under some physically mo-
tivated assumptions. The most common physically motivated
assumptions are locality [13] (a measurement in one location
does not affect a measurement in some other, spatially sep-
arated location), noncontextuality [14] (an outcome of one
measurement does not depend on which other compatible
measurement is performed together with it), and so-called
macrorealism [15] (a measurement at time t0 does not influ-
ence the outcome of a measurement at some later time t1).

In [16], it was experimentally confirmed that DTQWs do
not meet the macrorealism assumption. Here, we experimen-
tally show that DTQWs do not meet the noncontextuality
assumption under an assumption that some measurement out-
comes are exclusive. We do this by designing a Bell-like
inequality [13] and then transforming it into a contextuality
witness. Next, we verify this witness with experimentally
obtained measurement data. The inequality and the witness
are based on a recent logical pre- and post-selection (LPPS)
paradox designed by some of the authors [17]. Notice that
LPPS paradoxes were shown to be proofs of contextuality
[18,19], and hence if some system admits such a paradox, it is
nonclassical in the sense that it is contextual [14].

II. MODEL AND RESULTS

A. Discrete-time quantum walks model

We consider a DTQW on a one-dimensional (1D) lattice.
The system’s state is given by |x〉 ⊗ |c〉, where x ∈ Z is the
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position of the walker and c = ± represents two states of the
coin. A single step is described by an operator U = S(1 ⊗ C),
where S is the conditional translation,

S|x〉 ⊗ |±〉 = |x ± 1〉 ⊗ |±〉, (1)

and C is the coin-toss operation that we choose to be C =
NOT , i.e., C|±〉 = |∓〉.

The above evolution is periodic and the period is just two
steps. It can be rewritten as

U = S+ + S−, (2)

where S+ = ∑
x |x + 1〉〈x| ⊗ |+〉〈−| and S− = S†

+. A state
|x〉 ⊗ |±〉 after the first step becomes |x ∓ 1〉 ⊗ |∓〉, but after
the second step, it returns to |x〉 ⊗ |±〉. Due to reasons that
will be explained in a moment, we are interested in an initial
state that is a particular superposition of position and coin
states. We are going to initialize the system (pre-select it) in
the state

|pre(0)〉 = 1√
5

[|0〉 ⊗ |−〉 + (|2〉 + |4〉) ⊗ (|−〉 + |+〉)].

(3)

After the first step, the system’s state is

|pre(1)〉 = 1√
5

[(|1〉 + |3〉) ⊗ (|−〉 + |+〉) + |5〉 ⊗ |+〉],

(4)

and after the second step, it is

|pre(2)〉 = |pre(0)〉. (5)

Once the two steps are implemented, we are going to mea-
sure if the system is in the state (post-select it),

|post(2)〉 = 1√
5

[|0〉 ⊗ |−〉 + (|2〉 + |4〉) ⊗ (|−〉 − |+〉)].

(6)

The probability of post-selection is

|〈post(t )|pre(t )〉|2 = 1
25 . (7)

Finally, notice that the post-selected state can, in principle, be
evolved backwards in time,

|post(1)〉 = 1√
5

[(|1〉 + |3〉) ⊗ (|+〉 − |−〉) + |5〉 ⊗ |+〉],
(8)

|post(0)〉 = |post(2)〉. (9)

B. Pre- and post-selection paradox

Pre- and post-selection can lead to paradoxes [20], such
as the three-box one [21]. In our case, the paradox originates
from the following counterfactual reasoning [17]. Imagine
that at time t = 0, the system was pre-selected in the state
|pre(0)〉, and at time t = 2, it was post-selected in the state
|post(2)〉. Now we ask: what if between pre-selection and
post-selection somebody looked for the walker at a certain
location? Interestingly, for some locations, the answers are
deterministic, yet counterintuitive (hence the name logical

FIG. 1. A graph representing the Clifton’s proof of contextuality.
The vertices represent measurable events and the edges represent
the exclusivity relation between the events. The events are assigned
the logical values YES (orange) and NO (gray). In a NCHV theory,
the logical values are assigned to all events, i.e., all vertices need
to be colored either orange or gray. The graph structure implies the
paradox (see explanation in the main text). (a) The eight Clifton’s
events. (b) The events in our quantum walk scenario.

pre- and post-selection paradox [22,23]). In particular, if at
time t = 0 (or t = 2) one asked if the walker is at position
x = 0, the answer would have to be YES. This is because if the
answer was NO, the state |pre(0)〉 (|pre(2)〉) would collapse
onto

|pre0̄〉 = 1
2 (|2〉 + |4〉) ⊗ (|−〉 + |+〉). (10)

The collapsed state cannot be later measured as |post(2)〉,
since 〈pre0̄|post(2)〉 = 0. Therefore, the answer would have
to be YES due to the post-selection assumption. Similarly, if
at time t = 1 one asked if the walker is at position x = 5, the
answer would have to be YES too. If the answer were NO, the
state |pre(1)〉 would collapse onto

|pre5̄〉 = 1
2 (|1〉 + |3〉) ⊗ (|−〉 + |+〉), (11)

which is orthogonal to |post(1)〉. We conclude that at t = 0
and t = 2, the walker was at x = 0, and at t = 1, it was at
x = 5. This is paradoxical since the model allows the walker
to jump only to neighboring positions.

C. Contextuality

The above is a LPPS paradox since the probabilities of
counterfactual events are either zero or one. Such para-
doxes were shown to be equivalent to proofs of contextuality
[18,19]. Below we base on the work of Leifer and Spekkens
[22] and relate the quantum walk LPPS paradox to the
Clifton’s proof of contextuality [24]. The Clifton’s proof can
be formulated with the help of a graph—see Fig. 1. The ver-
tices in the graph correspond to measurable events, whereas
the edges denote the exclusivity relation between them. This
means that if one event happens, any other event connected
to it by an edge cannot happen. The noncontextual hidden
variable (NCHV) theory assigns the logical values YES and
NO to all vertices (orange and gray color, respectively). This
assignment represents an NCHV preparation of a system. The
act of measurement in such a theory merely reveals the preas-
signed values. The value YES means that the corresponding
event will be observed (when measured), whereas NO means
that it will not.

Let us first consider a general scenario of eight events
[Fig. 1(a)], e = 1, 2, . . . , 8. We assume that the system is
preselected in a state corresponding to the event 1 and
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post-selected in a state corresponding to the event 8. This
means that within a NCHV theory, the vertices 1 and 8 are
assigned the logical values YES. However, such assignment
implies that the events 2 and 5 (exclusive to 1) and events 3
and 6 (exclusive to 8) must be assigned NO. Finally, consider
two mutually exclusive events, 4 and 7, such that 4 is com-
plementary to 2 OR 3 and 7 is complementary to 5 OR 6.
This means that if 2 and 3 are assigned NO, then 4 must be
assigned YES. Similarly, if 5 and 6 are assigned NO, then 7
must be assigned YES. We obtained a contradiction since, due
to exclusivity, 4 and 7 cannot both be assigned YES. Hence,
the system cannot be described by a NCHV theory.

As shown by Clifton, it is possible to find a quantum
system for which there exists a set of eight events whose
exclusivity relations match the ones represented in the above
graph. The event i corresponds to a projector �i. If two events
i and j are exclusive, the corresponding projectors are orthog-
onal, �i� j = 0. This means that such quantum system does
not admit a NCHV description.

Now we return to our quantum walk scenario. In particular,
we are going to show that there are eight events in our system
corresponding to the Clifton’s events—see Fig. 1(b). Clearly,
the events 1 and 8 correspond to projectors

�pre = |pre(0)〉〈pre(0)| = |pre(2)〉〈pre(2)| (12)

and

�post = |post(0)〉〈post(0)| = |post(2)〉〈post(2)|. (13)

The two exclusive events 4 and 7 correspond to quantum walk
events in which at time t = 0, 2, the particle is at x = 0, and
in which at time t = 1, the particle is at x = 5, respectively. In
Fig. 1(b), these events are denoted as 0 and 5. They correspond
to projectors

�0 = |0〉〈0| ⊗ 1c (14)

and

�5 = U |5〉〈5| ⊗ 1cU
†, (15)

where 1c is the identity operator on the coin space and U is
the unitary operator generating a single step of the evolution.
The operator U is included in the projector �5 due to the
fact that this measurement is done at time t = 1, i.e., after
one step of the evolution. Note that U 2 = 1, and hence the
evolution operator does not need to be included in projectors
corresponding to measurements done at t = 2.

We are left with four Clifton’s events: 2, 3, 5, and 6. The
event 2, which we label post0̄, corresponds to a situation
in which at time t = 0, 2, the particle’s coin state is |c−〉 ≡

1√
2
(|−〉 − |+〉) and its position is not x = 0. The associated

projector is

�post0̄
= (1x − |0〉〈0|) ⊗ |c−〉〈c−|, (16)

where 1x is the identity operator in the position space. Note
that this projector is orthogonal to both �pre and �0. In addi-
tion, since we consider a particular post-selection, effectively,

�post0̄
= |post0̄〉〈post0̄|, (17)

where

|post0̄〉 = 1
2 (|2〉 + |4〉) ⊗ (|−〉 − |+〉). (18)

Similarly, the event 5, which we label post5̄, corresponds to
a situation in which at time t = 1, the particle’s coin state is
|c−〉 and its position is not x = 5. The associated projector is

�post5̄
= U (1x − |5〉〈5|) ⊗ |c−〉〈c−|U †. (19)

It is orthogonal to both �pre and �5. Moreover, as before, due
to post-selection, effectively,

�post5̄
= U |post5̄〉〈post5̄|U †, (20)

where

U |post5̄〉 = U 1
2 (|1〉 + |3〉) ⊗ (|+〉 − |−〉). (21)

Next, the event 3, labeled pre0̄, corresponds to a situation
in which at time t = 0, 2, the particle’s coin state is |c+〉 ≡

1√
2
(|−〉 + |+〉) and its position is not x = 0. The associated

projector,

�pre0̄
= (1x − |0〉〈0|) ⊗ |c+〉〈c+|, (22)

is orthogonal to �post0̄
, �0, and �post. This time, the pre-

selection implies that effectively,

�pre0̄
= |pre0̄〉〈pre0̄|, (23)

where |pre0̄〉 is given in Eq. (10). Finally, the event 6, labeled
pre5̄, corresponds to a situation in which at time t = 1, the
particle’s coin state is |c+〉 and its position is not x = 5. The
associated projector,

�pre5̄
= U (1x − |5〉〈5|) ⊗ |c+〉〈c+|U †, (24)

is orthogonal to �post5̄
, �5, and �post. Once more, the pre-

selection implies that effectively,

�pre5̄
= U |pre5̄〉〈pre5̄|U †, (25)

where |pre5̄〉 is given in Eq. (11).
The above set of projectors, under the pre- and post-

selection assumption, constitute a proof of contextuality in
our quantum walk model. In the next section, we are going
to transform it into an experimentally testable inequality.

D. Experimentally testable witness

The above proof of contextuality is a mathematical state-
ment. It is not an experimentally realizable test. To make it
testable in a laboratory, we transform it into an inequality that
sets some noncontextual hidden variables (NCHVs) bound on
a function of measurable data. If the inequality is violated, the
tested system is confirmed to be contextual.

We first reduce the Clifton’s proof to the Wright–
Klyachko-Can-Binicioglu-Shumovsky (Wright-KCBS) sce-
nario [25,26]. The system is prepared in the state |pre(0)〉,
but only five out of eight measurement events are considered:
pre0̄, 0, 5, pre5̄, post. These five events form a subgraph—a
5-cycle. The exclusivity relations in such a graph imply that
at most, two events can be assigned a logical value YES,
and hence in the NCHV theory, the following inequality must
hold:

p(pre0̄ ) + p(0) + p(5) + p(pre5̄) + p(post) � 2, (26)
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FIG. 2. Experimental setup. (a) Single-photon source preparation. A 405 nm continuous wave (CW) diode laser with 20 mW power pumps
a periodically poled potassium titanyI phosphate (PPKTP) crystal to produce photon pairs with central wavelength of 810 nm based on SPDC.
The H0 and PBS0 are used to regulate optical power. The two lenses (L1 and L2) before and after PPKTP are used for focusing and collimating
beams, respectively. Then, after filtering out the pumped laser with a long pass filter (LP), the photon pairs are split on PBS1 and are coupled
into single-mode fibers (SMF). (b) State preparation, state evolution, and state measurement. The numbers on the figure represent the position
of the walker. The unlabeled blue objects in the figure are all glass plates used to compensate for the phase. Ideally, after BD6, only a HWP is
needed on the path |2〉. However, in the experiment we used HWP15 that spanned three paths. Therefore, HWP16 and HWP17 are needed to
ensure that the polarization of the |0〉 and |4〉 paths is in the |V 〉 mode. Finally, we detect photons at the transmission end of PBS3 by adjusting
HWP18 and HWP19. The quantum walk photons are detected by SPAD1, whereas the heralding photon is detected by SPAD0. The effective
coincidence window (including the jitter of the detector) is about 2 ns.

where p(X ) denotes the probability that an event X happens.
The above inequality can be reformulated in terms of a

correlation inequality [26]. One can define five binary ±1
observables,

AX = 1 − 2�X , (27)

where X : pre0̄, 0, 5, pre5̄, post. Note that the orthogonality
between certain projectors implies joint measurability of the
corresponding observables. The correlation inequality yields

〈Apre0̄
A0〉 + 〈A0A5〉 + 〈A5Apre5̄

〉 + 〈Apre5̄
Apost〉 + 〈ApostApre0̄

〉
� −3. (28)

For two operators AX and AY that correspond to orthogonal
projectors �X �Y = 0, we have

〈AX AY 〉 = 〈(1 − 2�X − 2�Y )〉 = 1 − 2p(X ) − 2p(Y ).

(29)

Plugging this to (28) results in (26).
The DTQW scenario allows one to violate the above in-

equality (26) only up to 2 + 1
25 . In addition, violation of such

inequality would require implementation of joint or sequential
measurements, which is demanding and introduces additional
noise to the setup. Since we were unable to observe violation
of (26) in our setup, we propose the following contextuality
witness. We take advantage of the fact that in an ideal setting,
{pre0̄, 0, post0̄} and {pre5̄, 5, post5̄} form a complete set of
mutually exclusive events, and hence

p(pre0̄) + p(0) = 1 − p(post0̄ ), (30)

p(pre5̄) + p(5) = 1 − p(post5̄ ). (31)

Plugging the above into Eq. (26), we get the inequality

p(post) � p(post0̄ ) + p(post5̄ ), (32)

which is a contextuality witness. This inequality can be tested
in the laboratory and its violation would confirm that our
quantum walk model is contextual. We stress that this con-
firmation is under the assumptions of NCHV and exclusivity
(NCHV+E).

The pre-selection in the state |pre(0)〉 and post-selection in
the state |post(2)〉 imply that one can evaluate the above prob-
abilities in a relatively simple way. The probability p(post) is
simply the probability of post-selection. On the other hand,
the probabilities p(post0̄ ) and p(post5̄) are the probabilities
of post-selection in situations in which the positions 0 and 5
are blocked, respectively. The theoretical estimation of these
probabilities yields the violation

1
25 � 0 + 0. (33)

We confirmed this theoretical prediction in the single-photon
quantum walk experimental scenario.

E. Experimental verification

We now demonstrate an experimental implementation of
a one-dimensional single-photon DTQW and a violation of
Eq. (32). The experimental setup is illustrated in Fig. 2,
which is composed of four modules designed for single-
photon source preparation, state preparation, state evolution,
and state measurement (for more details, see Sec. III). In order
to demonstrate a violation of Eq. (32), we use three versions
of the setup.
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FIG. 3. Experimental results. (a) Coincidence photon counts.
The distribution of the number of photons measured post-selection
in three setups. The x coordinate represents the three experimental
setups and the y coordinate represents the coincidence photon counts.
Dark brown bars (in the first column) represent the coincidence
photon counts between SPAD0 and the output of �post(2). Red bars (in
the second column) represent the coincidence photon counts between
SPAD0 and the outputs of the complement of �post(2), i.e., �̄post(2).
Purple bars (in the third column) represent the total coincidence
photon counts. (b) The probability distributions for the three setups.
The plotted data are the raw data without subtraction of background
counts. Error bars indicate statistical errors.

Setup 1: In the first setup, there is no path blocked. This
allows us to evaluate the probability

p(post) = |〈post(2)|pre(2)〉|2. (34)

Setup 2: In the second setup, the position x = 0 is blocked
at time t = 0. Therefore, we can evaluate the probability

p(post0̄ ) = |〈post(2)|pre0̄(2)〉|2. (35)

Setup 3: In the third setup, the position x = 5 is blocked at
time t = 1. Hence, we can evaluate the probability

p(post5̄) = |〈post(2)|pre5̄(2)〉|2. (36)

As shown in Fig. 3, these are the experimental results.
Figure 3(a) represents the coincidence photon counts. All the
data shown in the figure are raw data (without removing back-
ground noise). The post-selection measurement probabilities
are shown in Fig. 3(b) and the values obtained are

p(post) = C�post(2)

C�post(2)+�̄post(2)

= 0.0498 ± 0.0014 (setup 1),

(37)

p(post0̄ ) = C�post(2)

C�post(2)+�̄post(2)

= 0.0056 ± 0.0005 (setup 2),

(38)

p(post5̄ ) = C�post(2)

C�post(2)+�̄post(2)

= 0.0075 ± 0.0006 (setup 3).

(39)

In the above, C�post(2) denotes the number of coincidence
counts for which the {\rm post}-selection happened and
C�post(2)+�̄post(2)

denotes the total number of coincidence counts.

It is obvious that these experimentally measured probabili-
ties violate Eq. (32),

p(post) = 0.0498 ± 0.0014

� p(post0̄ ) + p(post5̄ ) = 0.0131 ± 0.0011.
(40)

It can be noted that within the limits of experimental errors,
we can still get a violation of Eq. (32). The imperfection of the
experiment is mainly due to a systematic error caused by the
limited precision of wave plates and the imperfect visibility
of Mach-Zehnder interferometers. Since the single-photon de-
tection efficiency is not high, we must adopt the fair sampling
hypothesis, which is a standard assumption in experiments of
this type.

III. METHODS

A. Single-photon generation

As shown in Fig. 2(a), in the spontaneous parametric
down-conversion (SPDC), the pairs of orthogonally polarized
photons are produced in a polarization product state. We
separate them at the polarizing beam splitter 1 (PBS1). A
detection of a vertically polarized photon at SPAD0 heralds
a horizontally polarized photon in our setup [27]. Similar to
[28], we first conduct the Hanbury Brown-Twiss (HBT) exper-
iment to confirm that the light source used in our experiment
is a single-photon source. In Fig. 4, a clear dip represents
the minimum value of g(2) = 0.0293. This confirms that our
source is indeed a single-photon source.

B. Experimental DTQW setup

The photonic DTQW setup consists of three parts, shown
in Fig. 2(b). In the state preparation part, we use the half-wave
plate 1 (HWP1, referred to as H1) and the PBS2 to regulate the
light power and to ensure that the input light in the subsequent
system is horizontally polarized. The two degrees of freedom,
i.e., the single-photon polarization and the path, are used
to encode the coin states |±〉 and the position states |x〉 of
the walker, respectively. To prepare the initial state, we use
beam displacers (BDs) and HWPs. BDs transmit vertically

FIG. 4. Second-order correlation of a single-photon source.
There is a clear dip in 160 time bins and every bin is 64 ps.
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FIG. 5. Experimental setup for measuring a single observable.
|post(2)〉 [|post(2̄)〉, which represents the orthogonal of |post(2)〉] is
the eigenstate of �post(2) corresponding to the eigenvalue −1 [+1].
The number accompanying each HWP is the angle of its optical axis
relative to the horizontal polarization direction. The red line repre-
sents the |H〉 polarization in the path, and the blue line represents
the |V 〉 polarization. The red (blue) dotted line shows that there is no
photon in the |H〉 polarization (|V 〉 polarization) of this path.

polarized photons and displace horizontally polarized ones.
Initially, the system’s state is |2〉 ⊗ |H〉. After HWP2–HWP5,
BD1, and BD2, it becomes

|pre(0)〉 = 1√
5

[|0〉 ⊗ |V 〉 + (|2〉 + |4〉) ⊗ (|V 〉 + |H〉)].

(41)

The above state corresponds to Eq. (3). This ends the prepara-
tion (pre-selection) stage.

In the state evolution part, the unitary operator generating
a single step is realized via a combination of HWPs and BDs.
The elements H6 and BD3 evolve the system from t = 0 to
t = 1. The resulting state is

|pre(1)〉 = 1√
5

[(|1〉 + |3〉) ⊗ (|V 〉 + |H〉) + |5〉 ⊗ |H〉],

(42)

which corresponds to Eq. (4). Similarly, HWP7–HWP9 and
BD4 are used to evolve the system from t = 1 to t = 2. The
system’s state returns to |pre(0)〉 [since |pre(2)〉 = |pre(0)〉].

In the last part, we measure (post-select) the system in the
state

|post(2)〉 = 1√
5

[|0〉 ⊗ |V 〉 + (|2〉 + |4〉) ⊗ (|V 〉 − |H〉)]

(43)

that corresponds to Eq. (6). Therefore, we need to design a
proper measurement device. According to [29], it is a typical
single-observable measuring devices (see Fig. 5). The set-
tings of HWP10–HWP15 are chosen to transform the state

TABLE I. Setting angles of the wave plates for realizing the total
experimental setup.

HWP HWP2 HWP3 HWP4 HWP5
θ 13.3◦ 157.5◦ 22.5◦ 157.5◦

HWP HWP6 HWP7 HWP8 HWP9
θ 45◦ 45◦ 45◦ 45◦

HWP HWP10 HWP11 HWP12 HWP13
θ 22.5◦ 157.5◦ 45◦ 135◦

HWP HWP14 HWP15 HWP16 HWP17
θ 157.5◦ 31.7◦ −58.3◦ −58.3◦

|post(2)〉 onto |2〉 ⊗ |H〉. The angles of all the HWPs used
above are shown in Table I (see more details in the Supple-
mental Material [30]). Finally, output photons are detected
using a single-photon detector that consists of a single-photon
avalanche photodiode (SPAD) and time-correlated single-
photon counting (TCSPC). We register coincidences between
SPAD1 (D1) and the trigger SPAD0 (D0). For each mea-
surement, we record clicks for 1 s, registering about 11 000
heralded single photons.

IV. DISCUSSION

In this paper, we have proposed a LPPS paradox based
on a DTQW. Namely, we showed that under pre- and post-
selection assumption, a single-photon DTQW undergoes a
nonclassical long distance oscillation. Next, we related this
paradox to the Clifton’s proof of contextuality. Then, we trans-
formed this proof into a Bell-like inequality, whose violation
confirms contextuality of the underlying system. Finally, we
used an exclusivity assumption and transformed the inequality
into a contextuality witness. We experimentally implemented
a single-photon DTQW and confirmed contextuality in our
system up to 8 standard deviations. Therefore, we confirmed
that DTQWs cannot be described by a noncontextual hidden
variable theory under the assumption that outcomes of certain
measurements are exclusive.
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