
PHYSICAL REVIEW A 104, 012217 (2021)

Multilevel quantum thermodynamic swap engines

Massimiliano F. Sacchi *

CNR - Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
and QUIT Group, Dipartimento di Fisica, Università di Pavia, via A. Bassi 6, I-27100 Pavia, Italy

(Received 8 March 2021; revised 13 May 2021; accepted 14 July 2021; published 26 July 2021)

We study energetic exchanges and fluctuations in two-stroke quantum thermodynamic engines where the
working fluid is represented by two multilevel quantum systems, i.e., qudits, the heat flow is allowed by relax-
ation with two thermal reservoirs at different temperatures, and the work exchange is operated by a partial-swap
unitary interaction. We identify three regimes of operation (heat engine, refrigerator, and thermal accelerator),
present the thermodynamic uncertainty relations between the entropy production and the signal-to-noise ratio
of work and heat, and derive the full joint probability of the stochastic work and heat. Our results bridge the
gap between two-qubit and two-mode bosonic swap engines, and show which properties are maintained (e.g., a
nonfluctuating Otto efficiency) and which are lost for increasing dimension (e.g., small violations of the standard
thermodynamic uncertainty relations or the possibility of beating the Curzon-Ahlborn efficiency).
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I. INTRODUCTION

A growing interest has been recently devoted to thermody-
namic engines where the working systems are operated at the
nanoscale [1–3], from electronic devices [4,5] to biological or
chemical systems [6–8]. Differently from the usual scenery of
macroscopic thermodynamics, when the working substances
are elementary and small enough and generally when the dis-
crete nature of the energy spectrum is relevant, the fluctuations
of the thermodynamical variables become very important,
and the theoretical approach in terms of stochastic thermo-
dynamics [9–11] turns out to be very useful to address the
problem of quantifying the efficiency along with the stability
and reliability of quantum thermodynamic engines.

In fact, fluctuation relations [10–29] pose rigid con-
straints on the statistics of heat, work and entropy production
in terms of the symmetries of the elemental microscopic
dynamics. More recently, so-called thermodynamic uncer-
tainty relations (TURs) have been developed [30–50], where
the signal-to-noise ratio of observed work and heat has been
related to the entropy production. For example, these TURs
balance the trade-off between entropy production and fluctua-
tions of output power, namely, the precision of a heat engine,
such that working systems operating at vanishing entropy pro-
duction entail a divergence in the relative output power fluc-
tuations. Fluctuation relations and TURs have been indepen-
dently developed, but lately they have been connected within
various approaches and operational assumptions [36,51–59],
suited also to the analysis of quantum thermodynamic stroke
engines [54,60].

One of the most studied quantum thermodynamic engines
is based on the Otto cycle [60–71], with possible implementa-
tions by different physical systems as working fluid, e.g., ion
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traps, Cooper-pair boxes, or quantized modes of the radiation
field. The advantage of stroke Otto engines is that a deep study
is amenable, since heat and work strokes are clearly separated:
in a part of the dynamics, the systems are coupled to thermal
reservoirs and are allowed to relax with fixed Hamiltonian
by heat exchange, while in a different part they are isolated
from the baths and work is externally supplied or extracted
by a driven Hamiltonian. In fact, a thorough derivation of the
full stochastic heat and work distribution can be accomplished
when the working strokes are operated by a partial-swap uni-
tary interaction, when the working fluid is represented by two
bosonic modes or two qubits [60].

Building on the approach of Ref. [60], in this paper we
study a two-stroke thermodynamic engine where the working
fluid is abstractly given by two multilevel quantum systems
(i.e., qudits), each with equally spaced energy levels. These
are alternately coupled to their own thermal bath at different
temperatures allowing heat exchange, whereas the working
stroke is implemented by a unitary interaction with tunable
partial swap in order to extract or supply work. In the situation
of perfect swap operation, this model interpolates the case
of two qubits with that of two harmonic oscillators under
50/50 frequency conversion [60], and may find application
with different high-dimensional quantum systems, as Rydberg
atoms [72], polar molecules [73], trapped ions [74], NMR
systems [75], cold atomic ensembles [76,77], and discretized
degrees of freedom of photons [78].

By the joint estimation of work and heat via a two-
point-measurement scheme [11,26,79,80], we obtain the
characteristic function that provides all moments of work and
heat. Three regimes of operation are identified, where the
periodic protocol works as a heat engine, a refrigerator, or a
thermal accelerator. The model is shown to achieve the Otto
efficiency, independently of the dimension, the temperature
of the reservoirs, and the coupling parameter. We present
an exact relation between the signal-to-noise ratio of work
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and heat and the average entropy production of the engine,
thus linking together average extracted work, fluctuations, and
entropy production. From these relations we derive thermody-
namic uncertainty relations that are satisfied in all the regimes
of operations and for any dimension. Similarly to the case
of two-qubit stroke engines [54,60], a small violation of the
standard TUR is observed, which, however, is rapidly washed
out for increasing dimension of the working qudits or for
decreasing coupling strength. A bound of the efficiency in
terms of the first two moments of the work distribution is
also obtained. Finally, we provide the full joint probability of
the discrete stochastic work and heat in closed form, which
allows us to explicitly verify a detailed fluctuation theorem.
We conclude the paper with a preliminary analysis of the
finite-time cycle, i.e., by considering partial thermalization
strokes, and study the resulting output power in the case of
perfect-swap unitary interaction. In this case we show the
possibility of beating the Curzon-Ahlborn efficiency [81–83],
which, however, is reduced for increasing dimension.

II. A TWO-QUDIT SWAP ENGINE

Throughout the paper we fix natural units for both Planck
and Boltzmann constants, namely h̄ = kB = 1. The thermody-
namic engine under investigation is based on a working fluid
given by a couple of qudits A and B, i.e., two d-level quantum
systems, each one with equally spaced energy levels. We can
write their free Hamiltonian as

HC = ωC

d−1∑
n=0

n|n〉, (1)

with C = A, B. Initially, the two qudits are in thermal equi-
librium with their own ideal bath at temperature TA and TB,
respectively, and we fix TA > TB. Hence, the initial state is
described by the tensor product of Gibbs thermal states, i.e.,

ρ0 = e−βAHA

ZA
⊗ e−βBHB

ZB
, (2)

with βX = 1/TX and ZX = Tr[e−βX HX ] = 1−e−dβX ωX

1−e−βX ωX
. The two

qudits are then isolated from their thermal baths and are
allowed to interact in a time window [0, τw] via the time-
dependent interaction

H (t ) = κ e−i(HA+HB )t Eei(HA+HB )t , (3)

where κ is a real coupling parameter and E denotes the swap
operator, which acts on two-qudit states as E |ψ〉 ⊗ |ϕ〉 =

|ϕ〉 ⊗ |ψ〉. In the interaction picture where

ρI (t ) = U †
0 (t )ρ(t )U0(t ), (4)

with U0(t ) = exp[−i(HA + HB)t], the interaction
Hamiltonian is clearly

HI (t ) ≡ HI = H (0) = κ E , (5)

and hence one has ρI (t ) = e−iHI tρI (0)eiHI t . Going back to the
Schrödinger picture we obtain the evolution

ρ(t ) ≡ U (t )ρ(0)U †(t ) = U0(t )e−iHI tρ(0)eiHI tU †
0 (t ). (6)

Since E2 = I we can also write

Vθ ≡ e−iHI τw = cos θ I − i sin θE , (7)
with θ = κτw, and hence U (τw ) = U0(τw )Vθ .

After the interaction the two qudits are reset to their equi-
librium state of Eq. (2) via complete thermalization by their
respective baths. The procedure can be sequentially repeated
and leads to a two-stroke engine. For each cycle the energy
change in qudit A corresponds to the heat QH released by the
hot bath, i.e., QH = −
EA, and similarly for qudit B we have
QC = −
EB, corresponding to the heat dumped into the cold
reservoir (heat is positive when flowing out of a reservoir).
The work W is supplied (W > 0) or extracted (W < 0) during
the unitary interaction, and the first law W = −QH − QC =

EA + 
EB holds. The entropy production per cycle is then
given by � = −βAQH − βBQC = (βB − βA)QH + βBW .

We characterize the engine by the independent variables
W and QH and consider the characteristic function χ (λ,μ),
where λ and μ denote the counting parameters for work and
heat, so that all moments can be recovered as

〈W lQs
H 〉 = (−i)l+s ∂ l+sχ (λ,μ)

∂λl∂μs

∣∣∣∣
λ=μ=0

. (8)

By adopting the two-point measurement protocol
[11,26,79,80] typically considered in the derivation of
Jarzynski equality [84] to jointly estimate W and QH , in the
present scenario the characteristic function can be written as

χ (λ,μ) = Tr[U †(τw )(ei(λ−μ)HA ⊗ eiλHB )

×U (τw )(e−i(λ−μ)HA ⊗ e−iλHB )ρ0]. (9)

Equation (9) can be obtained along similar lines as
in Refs. [24,26], and a brief derivation is given in
Appendix A for the sake of the reader. The explicit evaluation
of the characteristic function is presented in Appendix B with
the following result:

χ (λ,μ) = cos2 θ + sin2 θ
sinh

(
βAωA

2

)
sinh

(
βBωB

2

)
sinh

[
d
2 (βAωA + iξ )

]
sinh

[
d
2 (βBωB − iξ )

]
sinh

( dβAωA

2

)
sinh

( dβBωB

2

)
sinh

[
1
2 (βAωA + iξ )

]
sinh

[
1
2 (βBωB − iξ )

] , (10)

where ξ = (ωA − ωB)λ − ωAμ. We note the identity
χ [iβB, i(βB − βA)] = 1, corresponding to the standard
fluctuation theorem 〈e−�〉 = 1. In fact, the stronger
relation χ [iβB − λ, i(βB − βA) − μ] = χ (λ,μ) holds
[85], which is equivalent to the detailed fluctuation

theorem [22,24,25,27]

p(W, QH )

p(−W,−QH )
= e(βB−βA )QH +βBW = e�. (11)
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FIG. 1. Average work (left), heat (center), and entropy production (right) for parameters TA = 2, TB = 1, θ = π/2, ωA = 1 versus ωB/ωA,
for dimension d = 2 (solid line), d = 4 (dotted line), and d = 8 (dot-dashed line). The three regimes of operation correspond to ωB/ωA < 1

2
(refrigerator), 1

2 < ωB/ωA < 1 (heat engine), and ωB/ωA > 1 (thermal accelerator).

We notice that, for θ = π/2, the unitary Vπ/2 performs a swap
gate which exchanges the states of the two quantum systems.
In this situation, in the limit d → ∞ the two-qudit model
recovers the two-mode bosonic Otto engine of Ref. [60] under
50/50 frequency conversion [86].

Since χ (λ,μ) is a function of the single variable ξ , one
has ∂μχ = ωA

ωB−ωA
∂λχ . Hence, from Eq. (8) one obtains the

symmetry relations

〈W lQs
H 〉 =

( ωA

ωB − ωA

)s
〈W l+s〉, (12)

and, from the first law, 〈Ql
C〉 = (−ωB/ωA)l〈Ql

H 〉. It follows
that the average entropy production per cycle is given by

〈�〉 ≡ −βA〈QH 〉 − βB〈QC〉 = βAωA − βBωB

ωA − ωB
〈W 〉. (13)

From the characteristic function we can now evaluate the
average work per cycle, which is given by

〈W 〉 = sin2 θ

2
(ωB − ωA){coth(βAωA/2)

− d coth (dβAωA/2) − [coth (βBωB/2)

− d coth(dβBωB/2)]}. (14)

Correspondingly, from Eq. (12), the heat exchanged with the
hot reservoir is 〈QH 〉 = ωA

ωB−ωA
〈W 〉. We note that, for any

positive integer d the function coth(x/2) − d coth(dx/2) is
monotonically decreasing versus x. Hence, we can identify
three regimes of operation of the quantum thermodynamic
machine, namely,

(a) 1 <
ωA

ωB
<

TA

TB
, heat engine,

(b)
ωA

ωB
>

TA

TB
, refrigerator,

(c)
ωA

ωB
< 1, thermal accelerator,

where we have, respectively,

(a) 〈W 〉 < 0, 〈QH 〉 > 0, 〈QC〉 < 0;

(b) 〈W 〉 > 0, 〈QH 〉 < 0, 〈QC〉 > 0;

(c) 〈W 〉 > 0, 〈QH 〉 > 0, 〈QC〉 < 0.

In Fig. 1 we plot the average work, heat, and entropy produc-
tion for dimensions d = 2, 4, and 8, for parameters TA = 1,
TB = 2, θ = π/2, ωA = 1 versus ωB/ωA.

As expected, from Eq. (13) it follows that the entropy
production 〈�〉 is always positive. Upon defining the mean
occupation number

NX = Tr[
e−βX HX

ZX

HX

ωX
] = 1/2[d − 1 + coth(βX ωX /2)

−d coth(dβX ωX /2)] ≡ g(βX ωX ), (15)

we can also rewrite concisely

〈W 〉 = sin2 θ (ωB − ωA)(NA − NB). (16)

The efficiency η of the heat engine is given by η =
〈−W 〉
〈QH 〉 = 1 − ωB

ωA
� 1 − TB

TA
≡ ηC , corresponding to the Otto

cycle efficiency. The Carnot efficiency ηC is achieved only for
ωA/ωB = TA/TB (i.e., with zero output work). Analogously,
the coefficient of performance for the refrigerator is given by
ζ = 〈QC 〉

〈W 〉 = ωB
ωA−ωB

� TB
TA−TB

= ζC . Notice that both η and ζ are
independent of the coupling strength θ , the temperature of the
reservoirs, and the dimension d .

The present model shares some similarities with those
studied in Refs. [70,71], where the same Otto efficiency
is achieved. In particular, in Ref. [71] the interaction be-
tween the working systems is modeled by a beam-splitter-like
Hamiltonian, and the same regimes of operation are obtained.
In fact, in both models the total excitation number of the
systems is preserved by the working interaction. Here, these
feature is easily seen by the symmetry relation

[HI (t ), HA/ωA + HB/ωB] = 0. (17)

We can find (numerically) the efficiency ηm at maximum
work per cycle. The result is plotted in Fig. 2, for different
values of the dimension d: one finds that ηm is larger than
the Curzon-Ahlborn efficiency ηCA = 1 − √

TB/TA, i.e., the
efficiency of the endoreversible Carnot cycle at maximum
power [81–83] and rapidly converges to ηCA for increasing
values of the dimension d (see Appendix C for the limiting
case d → ∞).
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FIG. 2. Efficiency at maximum work ηm versus the ratio TB/TA

for dimension d = 2 (dotted), 4 (dashed), and 8 (dot-dashed), along
with the Curzon-Ahlborn curve ηCA = 1 − √

TB/TA (solid line).

By the identity βAωA−βBωB

ωA−ωB
= − 1

TB
( ηC

η
− 1), one obtains

the relation

〈�〉 = 〈−W 〉
TB

(
ηC

η
− 1

)
(18)

between average extracted work, entropy production, and
efficiency of the heat engine. Analogously, one has 〈�〉 =
〈QC 〉

TA
( 1
ζ

− 1
ζC

) for the refrigerator. Notice that these relations
hold also for the two-qubit and two-mode bosonic Otto
engines [60].

III. THERMODYNAMIC UNCERTAINTY RELATIONS AND
PROBABILITY OF STOCHASTIC WORK AND HEAT

The second moments of work 〈W 2〉, heat 〈Q2
H 〉, and the

correlation 〈W QH 〉 can be obtained through Eqs. (8) and (10)
by lengthy but straightforward calculation, and one has

〈W 2〉 = sin2 θ

2
(ωB − ωA)2{d2 − 1 + coth2 (βAωA/2)

+ coth2 (βBωB/2) − coth (βAωA/2) coth (βBωB/2)

−d[coth (βAωA/2)− coth (βBωB/2)][coth (dβAωA/2)

− coth (dβBωB/2)]

− d2 coth (dβAωA/2) coth (dβBωB/2)}, (19)

〈Q2
H 〉 = ω2

A

(ωB − ωA)2 〈W 2〉, (20)

〈W QH 〉 = ωA

ωB − ωA
〈W 2〉. (21)

From the above equations, along with Eq. (13), we find an
exact identity relating the inverse signal-to-noise ratios and
the entropy production, namely,

var(W )

〈W 〉2
= var(Q)

〈QH 〉2
= cov(W, QH )

〈W 〉〈QH 〉
= (βBωB − βAωA) f (βAωA, βBωB, d )

〈�〉 − 1, (22)

with

f (x, y, d ) = {d2 − 1 + coth2 (x/2) + coth2 (y/2)

− coth (x/2) coth (y/2)

− d[coth (x/2) − coth (y/2)][coth (dx/2)

− coth (dy/2)] − d2 coth (dx/2) coth (dy/2)}
× {coth (x/2) − coth (y/2) − d[coth (dx/2)

− coth (dy/2)]}−1. (23)

We note that the only dependence on the coupling parameter θ

comes for the inverse of the average entropy production, 〈�〉.
Hence, the above ratios are minimized versus θ for θ = π

2 ,
for which also the entropy production achieves the maximum.
Then, the reduction of the noise-to-signal ratio associated
with work extraction (or cooling performance) comes at a
price of increased entropy production. We observe that, for
θ = π/2, the unitary stroke transforms the initial bi-thermal
state (2) with inverse temperatures βA and βB into a bi-thermal
state with final inverse temperatures βBωB/ωA and βAωA/ωB

without leaving final correlations between the two qudits. On
the other hand, operating at zero entropy production (i.e., for
βAωA → βBωB, thus approaching the Carnot efficiency) will
induce a divergence in Eq. (22).

For the heat-engine regime βAωA < βBωB and fixed values
of d and θ , numerical inspection shows that, for assigned
value of βAωA (of βBωB), the ratio var(W )

〈W 〉2 is minimized for
βBωB → ∞ (for βAωA → 0), and the ultimate minimization
is given by

var(W )

〈W 〉2
= d + 1 + 3(d − 1) cos2 θ

3(d − 1) sin2 θ
, (24)

achieved for βAωA → 0 and βBωB → ∞.
Note that, for both the heat engine and the refrigerator,

the sign of cov(W, QH ) is negative, whereas for the thermal
accelerator where external work is supplied to increase the
heat flow from hot to cold reservoir the covariance is positive.

For d = 2, since the function g in Eq. (15) is easily in-
verted, namely, βX ωX = ln 1−NX

NX
, Eq. (19) can be rewritten as

〈W 2〉 = sin2 θ (ωB − ωA)2(NA + NB − 2NANB), (25)

thus recovering the result for qubits [60]. Also, Eq. (23)
simplifies as

f (x, y, 2) = coth [(y − x)/2]. (26)

From numerical evidence one has (y − x) f (x, y, d ) � 2, with
equality in the limit x → y, and hence the following TUR
is obtained:

var(W )

〈W 〉2
� 2

〈�〉 − 1, (27)

which holds for all parameters and any dimension d . As in the
two-qubit case, the presence of the −1 term implies that the
standard TUR var(W )

〈W 〉2 � 2
〈�〉 can be slightly violated [54,60].

Remarkably, a similar small violation has been recently re-
ported in Ref. [87] for a different model of thermal machine
(i.e., a two-qubit steady-state and autonomous engine), where
also a stronger violation is found for a three-qubit model.
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FIG. 3. Plot of the signal-to-noise ratio of work 〈W 〉2/var(W ) and scaled entropy production 〈�〉/2 with coupling θ = π/2 for dimension
d = 2 (left) and d = 8 (right) as a function of parameters βAωA and βBωB. The region of parameter space where the standard TUR is violated
is shrunk for increasing dimension of the working systems.

In Fig. 3 we report the signal-to-noise ratio 〈W 〉2/var(W )
along with the function 〈�〉/2 for the cases d = 2 and d = 8
with θ = π/2. We generally observe that the region of param-
eter space for a violation of the standard TUR is shrunk for
increasing values of the dimension d . This is more apparent
in Fig. 4, where the product var(W )〈�〉/〈W 〉2 is reported
versus βBωB for fixed βAωA = 0.1, coupling θ = π/2 and
dimensions d = 2, 4, and 6. Indeed, we recall that, for the
two-mode bosonic engine, the standard TUR is never violated,
since var(W )

〈W 〉2 � 2
〈�〉 + 1 holds [60]. A similar shrinking effect

is observed also for decreasing values of the coupling θ at
fixed dimension d , along with a rapid decrease of the strength
of the violations, as shown, for example, in Fig. 5 for the
case d = 2 with coupling values θ = π/2, 5π/12, and π/3.
We report that the strongest violation of the standard TUR
is numerically obtained for d = 2, θ = π/2, βAωA → 0, and
βBωB 	 2.010, for which var(W )〈�〉/〈W 〉2 	 1.864.

From Eq. (18) and the bound 〈W 2〉
〈W 〉2 � 2

〈�〉 equivalent to
Eq. (27), we can obtain the following relation between the
average extracted work, second moment, and efficiency

〈−W 〉 � 〈W 2〉
2TB

(
ηC

η
− 1

)
, (28)

which can also be written as a bound on the efficiency, namely,

η � ηC

1 + 2TB〈−W 〉/〈W 2〉 . (29)

FIG. 4. Ratio var(W )〈�〉/〈W 〉2 versus βBωB with βAωA =
0.1, θ = π/2, and dimension d = 2 (solid line), 3 (dotted),
and 4 (dashed).

Hence, in order to increase the efficiency, one must either
reduce the output work or increase the second moment of
work distribution, thus undermining the engine reliability. For
the two-mode bosonic Otto engine, analogous equations as
(28) and (29) hold [60] when replacing 〈W 2〉 with var(W ).

Since the characteristic function is periodic in λ and μ with
period 2π

|ωA−ωB| and 2π
ωA

, the joint probability p(W, QH ) of the
stochastic work and heat is discrete, with W and QH as integer
multiples of ωA − ωB and ωA, respectively. Then one has

p(W = m(ωA − ωB), QH = nωA)

= ωA|ωA − ωB|
(2π )2

∫ π
|ωA−ωB |

− π
|ωA−ωB |

dλ

×
∫ π

ωA

− π
ωA

dμχ (λ,μ)e−im(ωA−ωB )λ−inωAμ. (30)

Since χ (λ,μ) is a function of the single variable ξ = (ωA −
ωB)λ − ωAμ, namely χ (λ,μ) = χ (0, μ − (ωA−ωB )λ

ωA
), by the

change of variables μ → ωAμ − (ωA − ωB)λ and λ → (ωA −
ωB)λ in Eq. (30) we obtain

p(W = m(ωA − ωB), QH = nωA)

= 1

(2π )2

∫ π

−π

dλ

∫ π−λ

−π−λ

dμχ
(

0,
μ

ωA

)
e−i(n+m)λ−inμ

FIG. 5. Ratio var(W )〈�〉/〈W 〉2 versus βBωB with βAωA = 0.1,
d = 2, and coupling strength θ = π/2 (solid line), 5π/12 (dotted),
and π/3 (dashed).
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FIG. 6. Probability of the stochastic work in ωA − ωB units, for βAωA = 1 and βBωB = 2 and dimension d = 8, with strength interaction
θ = π/4 (left), π/3 (center), π/2 (right). By exchanging n → −n, the same histograms represent the distribution of heat released by the hotter
reservoir in ωA units [see Eq. (32)].

=
∫ 2π

0

dμ

2π
χ (0,

μ

ωA
)e−inμ

∫ π

−π

dλ

2π
e−i(n+m)λ

= δm,−n

∫ 2π

0

dμ

2π
χ (0,

μ

ωA
)e−inμ. (31)

This means that the stochastic work and heat are perfectly
correlated, i.e.,

p(W = m(ωA − ωB), QH = nωA)

= p(W = m(ωA − ωB))δn,−m

= p(QH = nωA)δm,−n. (32)

This feature is due to the symmetry (17) and implies that
〈(−W/QH )n〉 = 〈−W/QH 〉n = (1 − ωB

ωA
)n, namely, there are

no efficiency fluctuations.
The simplest way to find explicitly the probability is to

proceed from Eq. (31) by using the expression of the char-
acteristic function in the last line of Eq. (B2), and one obtains

p(QH = nωA) =
∫ 2π

0

dμ

2π

(
cos2 θe−inμ + sin2 θ

1

ZAZB

d−1∑
l,s=0

e−lβAωA e−sβBωB ei(l−s−n)μ

)

= δn,0 cos2 θ + sin2 θ
1

ZAZB

d−1−max {0,n}∑
s=max {0,−n}

e−s(βAωA+βBωB )e−βAωAn, (33)

which can be summarized as

p(QH = nωA) = δn,0 cos2 θ + sin2 θ
1

ZAZB

1 − e−(d−|n|)(βAωA+βBωB )

1 − e−(βAωA+βBωB )

{
e−βAωAn for 0 � n � d − 1
e−βBωB|n| for 1 − d � n < 0.

(34)

In Fig. 6 we report the probability for the stochastic work in
(ωA − ωB) units for βAωA = 1 and βBωB = 2 and dimension
d = 8, pertaining to three increasing values of the strength
interaction, i.e., θ = π/4, π/3, and π/2.

The closed form for the probability in Eq. (34) allows one
to explicitly verify the detailed fluctuation theorem in Eq. (11)
as follows:

p(W = −n(ωA − ωB), QH = nωA)

p(W = n(ωA − ωB), QH = −nωA)

= e(βBωB−βAωA )n = e(βB−βA )nωA−βBn(ωA−ωB )

= e(βB−βA )QH +βBW . (35)

IV. FINITE-TIME ANALYSIS FOR PERFECT-SWAP
STROKES

The thermal strokes considered in the previous sections
implicitly assume infinite duration in order to guarantee a
complete relaxation of the qudits by weak coupling to the
temperatures of the respective thermal reservoirs. This means
that, indeed, the output power per cycle becomes vanishing.
However, the efficiency for a working cycle at finite times and

hence with nonzero output power is usually of great practical
importance [3,61,81–83,88–90].

In this section we provide a preliminary study of the finite-
time performance of the presented model for the specific case
of a perfect-swap operation θ = π/2, postponing a general
analysis for future work. In fact, as previously noticed after
Eq. (23), a bi-thermal state of the qudits remains factorized
and bi-thermal under the perfect-swap operation. Then, we
can provide a simple model for the effect of partial thermal-
ization in the case of finite-time stroke, without resorting to
a specific master-equation approach. After a number of tran-
sient cycles, the state of the two qudits will rapidly achieve the
steady state of the map given by the composition of the swap
stroke followed by the thermal stroke. Indeed, let us consider
a time-dependent relaxation of the mean occupation number
for both qudits towards their respective equilibrium values NA

and NB as

dNX (t )

dt
= −αX [NX (t ) − NX ] (36)

for X = A, B, where αX denotes the relaxation rate constants
and NX are given by Eq. (15). Clearly, we have NX (t ) =
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MULTILEVEL QUANTUM THERMODYNAMIC SWAP ENGINES PHYSICAL REVIEW A 104, 012217 (2021)

[NX (0) − NX ]e−αX t + NX . By taking thermal strokes with fi-
nite duration τq, at the end of the (n + 1)st cycle the state will
be bi-Gibbsian and the mean occupation numbers will satisfy
the recursive relations

N (n+1)
A = (

N (n)
B − NA

)
e−αAτq + NA,

N (n+1)
B = (

N (n)
A − NB

)
e−αBτq + NB. (37)

The cycles lead to a periodic state corresponding to the steady-
state solution given by

N∗
A = NA(1 − e−αAτq ) + NB(1 − e−αBτq )e−αAτq

1 − e−(αA+αB )τq
,

N∗
B = NB(1 − e−αBτq ) + NA(1 − e−αAτq )e−αBτq

1 − e−(αA+αB )τq
. (38)

From Eq. (38) we also note the symmetry relation

N∗
A − N∗

B = (1 − e−αAτq )(1 − e−αBτq )

1 − e−(αA+αB )τq
(NA − NB). (39)

For finite-time thermalization strokes, after a transient, the
characteristic function in the limit cycle is then still given by
Eq. (10) by replacing βX with the effective inverse tempera-
tures β∗

X = g−1(N∗
X )/ωX in terms of the inverse of the function

g given in Eq. (15). The average work in the steady cycles is
then given by

〈W 〉 = (ωB − ωA)(N∗
A − N∗

B ), (40)

and for Eq. (39) a simple scaling factor appears with respect
to Eq. (16). Since the entropy production is ascribed to the
temperature of the thermal baths one has

〈�〉 = (βBωB − βAωA)(N∗
A − N∗

B ), (41)

and so Eq. (13) still holds. The second moment in Eq. (19) and
the joint probability of the stochastic work and heat in Eq. (34)
are obtained by the replacement (βA, βB) → (β∗

A, β∗
B). Hence,

the efficiency of the swap engine remains a nonfluctuating
quantity even in the finite-time regime and is still given by
η = 1 − ωB

ωA
.

By neglecting the unitary stroke duration (e.g., we can take
κ � 1 and τw � 1, with θ = κτw as an odd multiple of π/2),
the output power per cycle is given by

P = 〈−W 〉/τq = (ωA − ωB)(N∗
A − N∗

B )/τq. (42)

By assuming for simplicity equal relaxation rates αA = αB =
α for the two reservoirs, one has

P = tanh(ατq/2)

τq
(ωA − ωB)(NA − NB), (43)

which is trivially maximized versus τq for τq → 0, giving
finite power P = α

2 (ωA − ωB)(NA − NB). This means that the
maximum power is achieved by a bang-bang approach with
very short-term strokes. By dropping the condition τw � 1,
notice that the optimal power will be smaller and obtained
for a nonzero finite value of τq, as shown in Fig. 7. These
considerations are analogous to the results of Ref. [61] per-
taining to finite-time four-stroke Otto engines. Notice that
the previous results about the efficiency at maximum work
(see Fig. 2) apply at maximum output power as well, since
the dependence on time in Eq. (43) is simply given by a

FIG. 7. Power in (ωA − ωB)(NA − NB ) units versus thermal-
ization stroke time τq with rates αA = αB = 1 and swap stroke
times τw → 0 (solid line), τw = 0.1 (dotted), τw = 1 (dashed), and
τw = 10 (dot-dashed). In all cases, the condition κτw = π/2 is
supposed to hold.

factor and the efficiency is unchanged and independent of the
cycle duration. We note that the possibility of surpassing the
Curzon-Ahlborn efficiency has been recognized in a number
of different scenarios [3,67,71,88–93].

As in the two-mode bosonic Otto engine [60], short
thermalization times are expected to be harmful for the signal-
to-noise ratios of work and heat, with significant modification
in the thermodynamic uncertainty relations. As an example,
in Fig. 8 we plot the signal-to-noise ratio for fixed value of
the parameter NB = 2 versus varying NA in the case of dimen-
sion d = 9, for different values of ατq, where it is apparent
the detrimental effect of decreasing the thermalization times.
These results can be obtained by replacing f (βAωA, βBωB, d )
with f (β∗

AωA, β∗
BωB, d ) in Eq. (22).

A deeper study of the finite-time scenario will be deferred
for future work, possibly by the explicit modeling of the
thermal relaxation via master equations and also by taking
into account the residual correlations between the qudits in
the steady state of the limit cycle in the case of partial-
swap strokes.

FIG. 8. Signal-to-noise ratio of the work for a nine-level swap
engine (θ = π

2 ) with mean occupation number NB = 2 versus vary-
ing NA for ideal thermalization (solid), and finite thermalization
stroke times ατq = 3 (dotted), 2 (dashed), and 1 (dot-dashed).
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V. CONCLUSIONS

By adopting the two-point-measurement scheme for the
joint estimation of work and heat, we have quantified the
work and heat fluctuations pertaining to two-qudit quantum
thermodynamic two-stroke Otto engines, where the work is
extracted or performed by a multilevel partial-swap interac-
tion, and thermal relaxation to two respective reservoirs at
different temperatures guarantees the cyclicity of the protocol.
Exact relations among work, heat, fluctuations, efficiency, and
reliability emerge.

We have derived the characteristic function for work and
heat and obtained the full joint distribution of the stochastic
work and heat. In all ranges of coupling parameter and dimen-
sion we have shown thermodynamic uncertainty relations that
reveal the interdependence among average extracted work,
fluctuations and entropy production, confirming that reducing
the noise-to-signal ratio of work or heat comes at a price of
increased entropy production.

The link between fluctuation theorems and thermody-
namic uncertainty relations appears to be relevant for the
design of quantum thermodynamic machines. In fact, the
presented results match the two-qubit swap engine with
the two-mode bosonic case. In particular, we have shown
that the small violation of the standard TUR for qubits is
rapidly washed out for increasing dimension of the working
qudits.

The effect of partial thermalization due to finite-time ther-
mal strokes has also been studied in the case of perfect-swap
unitary interaction. This results in a nonzero output power
engine where the allocation of thermal and working strokes
have been optimized. Thus, the efficiency at maximum power
can be evaluated, and violations of the Curzon-Ahlborn limit
are observed. Such violations are stronger for qubits and
decrease for increasing dimension. We note, however, that
partial thermalization sensibly decreases the signal-to-noise
ratio of work and heat.

APPENDIX A: DERIVATION OF THE CHARACTERISTIC FUNCTION χ(λ,μ) IN EQ. (9)

The characteristic function is given by the Fourier transform of the joint probability p(W, QH ) of the stochastic work W and
heat QH , namely

χ (λ,μ) =
∫

dW
∫

dQH p(W, QH ) eiλW +iμQH . (A1)

Let us adopt a two-point measurement protocol, where both the Hamiltonian HA and HB of the two isolated systems are measured
just before and after the action of the unitary interaction U (τw ). The probability pn,m for the initial measurement outcomes n and
m is given by the Gibbs weight of the initial state ρ0, namely

pn,m = 1

ZAZB
e−βAωAne−βBωBm. (A2)

The conditional probability q(l, s|n, m) pertaining to the final measurement outcomes l and s given initial outcomes n and m is
given by

q(l, s|n, m) = |〈l| ⊗ 〈s|U (τw )|n〉 ⊗ |m〉|2. (A3)

For this occurrence characterized by the set {n, m, l, s}, note that the work and heat are given by 
EA + 
EB = ωA(l − n) +
ωB(s − m) and −
EA = ωA(n − l ), respectively. Hence, the joint probability p(W, QH ) is obtained by the following average
over all occurrences:

p(W, QH ) =
∑

n,m,l,s

pn,m q(l, s|n, m) δ(W − ωA(l − n) − ωB(s − m))δ(QH − ωA(n − l )). (A4)

By replacing Eq. (A4) in Eq. (A1) and applying the δ functions one obtains

χ (λ,μ) = 1

ZAZB

∑
n,m,l,s

e−βAωAne−βBωBmeiλ[ωA(l−n)+ωB (s−m)]eiμωA(n−l )

×Tr[U †(τw )(|l〉〈l| ⊗ |s〉〈s|)U (τw )(|n〉〈n| ⊗ |m〉〈m|)]
= Tr[U †(τw )

(
ei(λ−μ)HA ⊗ eiλHB

)
U (τw )

(
e−i(λ−μ)HA ⊗ e−iλHB

)
ρ0]. (A5)

APPENDIX B: EVALUATION OF THE CHARACTERISTIC FUNCTION χ(λ,μ) IN EQ. (10)

For the unitary operator U (τw ) = U0(τw )Vθ , since U0(τw ) commutes with both HA and HB, Eq. (10) rewrites as

χ (λ,μ) = 1

ZAZB
Tr[V †

θ

(
ei(λ−μ)HA ⊗ eiλHB

)
Vθ (e−[i(λ−μ)+βA]HA ⊗ e−(iλ+βB )HB )]. (B1)

Notice that the equivalence of the two expressions (10) and (B1) implies that, by replacing the time-dependent interaction
Hamiltonian in Eq. (3) with a constant-quench Hamiltonian κE with strong parameter κ � 1 and short duration τw � 1 with
finite θ = κτw, then one obtains the same statistics for the work and heat.
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Since Vθ = cos θ I − i sin θE , from Eq. (B1) one has

χ (λ,μ) = cos2 θ + sin2 θ
1

ZAZB
Tr[E (ei(λ−μ)HA ⊗ eiλHB )E (e−[i(λ−μ)+βA]HA ⊗ e−(iλ+βB )HB )]

+i sin θ cos θ
1

ZAZB
{Tr[E

(
ei(λ−μ)HA ⊗ eiλHB

)
(e−[i(λ−μ)+βA]HA ⊗ e−(iλ+βB )HB )]

−Tr[(ei(λ−μ)HA ⊗ eiλHB )E (e−[i(λ−μ)+βA]HA ⊗ e−(iλ+βB )HB )]}
= cos2 θ + sin2 θ

1

ZAZB
Tr[e(iλ ωB−ωA

ωA
+iμ−βA)HA ⊗ e−(iλ ωB−ωA

ωB
+iμ ωA

ωB
+βB )HB ], (B2)

where we used the identity E ( f (HA) ⊗ g(HB))E = g(ωBHA/ωA) ⊗ f (ωAHB/ωB) that holds for arbitrary functions f and g to
simplify the factor of sin2 θ , and we applied the property Tr[E (X ⊗ Y )] = Tr[(X ⊗ Y )E ] = Tr[XY ] for all operators X and Y to
cancel out the two terms that multiply sin θ cos θ . Finally, by evaluating the trace we obtain

χ (λ,μ) = cos2 θ + sin2 θ
1

ZAZB

1 − e−d (βAωA+iξ )

1 − e−(βAωA+iξ )

1 − e−d (βBωB−iξ )

1 − e−(βBωB−iξ )
(B3)

= cos2 θ + sin2 θ
sinh

(
βAωA

2

)
sinh

(
βBωB

2

)
sinh

[
d
2 (βAωA + iξ )

]
sinh

[
d
2 (βBωB − iξ )

]
sinh

( dβAωA

2

)
sinh

( dβBωB

2

)
sinh

[
1
2 (βAωA + iξ )

]
sinh

[
1
2 (βBωB − iξ )

] ,

where ξ = (ωA − ωB)λ − ωAμ.

APPENDIX C: EFFICIENCY AT MAXIMUM WORK PER CYCLE FOR d → ∞
For d → ∞ the maximum work per cycle is obtained from Eqs. (15) and (16) with θ = π/2, and one has

|〈W 〉| = ωA − ωB

2

[
coth

(
βAωA

2

)
− coth

(
βBωB

2

)]
. (C1)

For fixed ratios ηC = 1 − TB
TA

and η = 1 − ωB
ωA

one can rewrite

|〈W 〉| = TB
η

1 − η
x

[
coth

(
1 − ηC

1 − η
x

)
− coth (x)

]
, (C2)

with x = βBωB

2 . Along similar lines as in Appendix D of Ref. [71], one easily shows that |〈W 〉| achieves the maximum for x → 0,
since ∂x|〈W 〉| < 0 for all x > 0. Hence, the maximum can be searched in the high-temperature limit [94], where

|〈W 〉| 	 TB
η(ηC − η)

(1 − ηC )(1 − η)
= TB

(
1 − ωA

ωB

)
+ TA

(
1 − ωB

ωA

)
, (C3)

which is maximized by the Curzon-Ahlborn value ηm = ηCA = 1 − √
TB/TA.

[1] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev.
Mod. Phys. 84, 1045 (2012).

[2] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep.
694, 1 (2017).

[3] Thermodynamics in the Quantum Regime, edited by F. Binder,
L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Funda-
mental Theories of Physics, Vol. 195 (Springer International
Publishing, New York, 2018).

[4] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
[5] B. Sothmann, R. Sánchez, and A. N. Jordan, Nanotechnol. 26,

032001 (2015).
[6] F. S. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz, Rep.

Prog. Phys. 81, 066601 (2018).
[7] F. Ritort, Nonequilibrium fluctuations in small systems: From

physics to biology, in Advances in Chemical Physics, edited by
S. A. Rice (John Wiley & Sons, Ltd, 2007), Vol. 137, Chap. 2,
pp. 31–123.

[8] R. Rao and M. Esposito, Phys. Rev. X 6, 041064 (2016).
[9] U. Seifert, Eur. Phys. J. B 64, 423 (2008).

[10] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,
1665 (2009).

[11] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[12] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett.

71, 2401 (1993).
[13] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694

(1995).
[14] C. Jarzynski, Phys. Rev. E 56, 5018 (1997).
[15] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).
[16] B. Piechocinska, Phys. Rev. A 61, 062314 (2000).
[17] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92, 230602

(2004).
[18] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[19] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani,

Phys. Rep. 461, 111 (2008).

012217-9

https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1088/1361-6633/aab3ed
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.71.2401
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1103/PhysRevA.61.062314
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1016/j.physrep.2008.02.002


MASSIMILIANO F. SACCHI PHYSICAL REVIEW A 104, 012217 (2021)

[20] K. Saito and Y. Utsumi, Phys. Rev. B 78, 115429 (2008).
[21] P. Talkner, M. Campisi, and P. Hänggi, J. Stat. Mech.: Theory

Exp. (2009) P02025.
[22] D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, New J.

Phys. 11, 043014 (2009).
[23] M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104,

090601 (2010).
[24] M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 105,

140601 (2010).
[25] N. A. Sinitsyn, J. Phys. A: Math. Theor. 44, 405001 (2011).
[26] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771

(2011).
[27] M. Campisi, J. Phys. A: Math. Theor. 47, 245001 (2014).
[28] P. Hänggi and P. Talkner, Nat. Phys. 11, 108 (2015).
[29] R. Rao and M. Esposito, Entropy 20, 635 (2018).
[30] A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101

(2015).
[31] P. Pietzonka, A. C. Barato, and U. Seifert, Phys. Rev. E 93,

052145 (2016).
[32] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,

Phys. Rev. Lett. 116, 120601 (2016).
[33] M. Polettini, A. Lazarescu, and M. Esposito, Phys. Rev. E 94,

052104 (2016).
[34] P. Pietzonka, F. Ritort, and U. Seifert, Phys. Rev. E 96, 012101

(2017).
[35] J. M. Horowitz and T. R. Gingrich, Phys. Rev. E 96, 020103(R)

(2017).
[36] K. Proesmans and C. Van den Broeck, Europhys. Lett. 119,

20001 (2017).
[37] B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018).
[38] T. Koyuk, U. Seifert, and P. Pietzonka, J. Phys. A: Math. Theor.

52, 02LT02 (2018).
[39] A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli, New

J. Phys. 20, 103023 (2018).
[40] K. Brandner, T. Hanazato, and K. Saito, Phys. Rev. Lett. 120,

090601 (2018).
[41] P. Pietzonka and U. Seifert, Phys. Rev. Lett. 120, 190602

(2018).
[42] V. Holubec and A. Ryabov, Phys. Rev. Lett. 121, 120601

(2018).
[43] K. Macieszczak, K. Brandner, and J. P. Garrahan, Phys. Rev.

Lett. 121, 130601 (2018).
[44] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Nat.

Commun. 10, 1666 (2019).
[45] S. Saryal, H. M. Friedman, D. Segal, and B. K. Agarwalla, Phys.

Rev. E 100, 042101 (2019).
[46] A. Dechant, J. Phys. A: Math. Theor. 52, 035001 (2019).
[47] K. Proesmans and J. M. Horowitz, J. Stat. Mech.: Theory Exp.

(2019) 054005.
[48] A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli, J.

Stat. Mech.: Theory Exp. (2019) 084017.
[49] G. Guarnieri, G. T. Landi, S. R. Clark, and J. Goold, Phys. Rev.

Research 1, 033021 (2019).
[50] J. M. Horowitz and T. R. Gingrich, Nat. Phys. 16, 15 (2020).
[51] T. Van Vu and Y. Hasegawa, Phys. Rev. E 100, 012134 (2019).
[52] P. P. Potts and P. Samuelsson, Phys. Rev. E 100, 052137 (2019).
[53] Y. Hasegawa and T. Van Vu, Phys. Rev. Lett. 123, 110602

(2019).
[54] A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi, Phys.

Rev. Lett. 123, 090604 (2019).

[55] Y. Zhang, arXiv:1910.12862.
[56] T. Van Vu and Y. Hasegawa, J. Phys. A: Math. Theor. 53,

075001 (2020).
[57] N. Merhav and Y. Kafri, J. Stat. Mech.: Theory Exp. (2010)

P12022.
[58] H. Vroylandt, K. Proesmans, and T. R. Gingrich, J. Stat. Phys.

178, 1039 (2020).
[59] D. S. P. Salazar, Phys. Rev. E 103, 022122 (2021).
[60] M. F. Sacchi, Phys. Rev. E 103, 012111 (2021).
[61] T. Feldmann, E. Geva, R. Kosloff, and P. Salamon, Am. J. Phys.

64, 485 (1996).
[62] T. D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
[63] Y. Rezek and R. Kosloff, New J. Phys. 8, 83 (2006).
[64] H. T. Quan, Y.-x. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 (2007).
[65] G. Thomas and R. S. Johal, Phys. Rev. E 83, 031135 (2011).
[66] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,

K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).
[67] M. Campisi, J. P. Pekola, and R. Fazio, New J. Phys. 17, 035012

(2015).
[68] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro,

A. J. Roncaglia, and M. Antezza, New J. Phys. 20, 113024
(2018).

[69] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S.
Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev. Lett. 123,
240601 (2019).

[70] O. A. D. Molitor and G. T. Landi, Phys. Rev. A 102, 042217
(2020).

[71] N. Piccione, G. De Chiara, and B. Bellomo, Phys. Rev. A 103,
032211 (2021).

[72] M. Saffman, T. G. Walker, and K. Molmer, Rev. Mod. Phys. 82,
2313 (2010).

[73] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

[74] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker,
and C. Monroe, Phys. Rev. X 5, 021026 (2015).

[75] I. A. Silva, B. Çakmak, G. Karpat, E. L. G. Vidoto, D. O.
Soares-Pinto, E. R. deAzevedo, F. F. Fanchini, and Z. Gedik,
Sci. Rep. 5, 14671 (2015).

[76] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino,
and J. Laurat, Nat. Commun. 6, 7706 (2015).

[77] D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and
G.-C. Guo, Light: Sci. Appl. 5, e16157 (2016).

[78] M. Erhard, M. Krenn, and A. Zeilinger, Nat. Rev. Phys. 2, 365
(2020).

[79] W. De Roeck and C. Maes, Phys. Rev. E 69, 026115 (2004).
[80] P. Talkner and P. Hänggi, J. Phys. A: Math. Theor. 40, F569

(2007).
[81] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
[82] B. Andresen, P. Salamon, and R. S. Berry, J. Chem. Phys. 66,

1571 (1977).
[83] J. Chen, J. Phys. D: Appl. Phys. 27, 1144 (1994).
[84] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[85] This can be easily inspected from Eq. (10), since the replace-

ments λ → iβB − λ and μ → i(βB − βA) − μ are equivalent to
βAωA + iξ ↔ βBωB − iξ .

[86] This can be explicitly seen by comparing the expression for the
characteristic function χ (λ,μ) in Eq. (B1) with Eq. (6) of Ref.
[60] when, in both equations, one takes θ = π/2.

012217-10

https://doi.org/10.1103/PhysRevB.78.115429
https://doi.org/10.1088/1742-5468/2009/02/P02025
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.105.140601
https://doi.org/10.1088/1751-8113/44/40/405001
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1088/1751-8113/47/24/245001
https://doi.org/10.1038/nphys3167
https://doi.org/10.3390/e20090635
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1103/PhysRevB.98.155438
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevLett.121.130601
https://doi.org/10.1038/s41467-019-09631-x
https://doi.org/10.1103/PhysRevE.100.042101
https://doi.org/10.1088/1751-8121/aaf3ff
https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1088/1742-5468/ab3457
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1103/PhysRevE.100.012134
https://doi.org/10.1103/PhysRevE.100.052137
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1103/PhysRevLett.123.090604
http://arxiv.org/abs/arXiv:1910.12862
https://doi.org/10.1088/1751-8121/ab64a4
https://doi.org/10.1088/1742-5468/2010/12/P12022
https://doi.org/10.1007/s10955-020-02484-5
https://doi.org/10.1103/PhysRevE.103.022122
https://doi.org/10.1103/PhysRevE.103.012111
https://doi.org/10.1119/1.18197
https://doi.org/10.1103/PhysRevLett.93.140403
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1103/PhysRevE.76.031105
https://doi.org/10.1103/PhysRevE.83.031135
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1088/1367-2630/17/3/035012
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1103/PhysRevLett.123.240601
https://doi.org/10.1103/PhysRevA.102.042217
https://doi.org/10.1103/PhysRevA.103.032211
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/nature12483
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1038/srep14671
https://doi.org/10.1038/ncomms8706
https://doi.org/10.1038/lsa.2016.157
https://doi.org/10.1038/s42254-020-0193-5
https://doi.org/10.1103/PhysRevE.69.026115
https://doi.org/10.1088/1751-8113/40/26/F08
https://doi.org/10.1119/1.10023
https://doi.org/10.1063/1.434122
https://doi.org/10.1088/0022-3727/27/6/011
https://doi.org/10.1103/PhysRevLett.78.2690


MULTILEVEL QUANTUM THERMODYNAMIC SWAP ENGINES PHYSICAL REVIEW A 104, 012217 (2021)

[87] A. Rignon-Bret, G. Guarnieri, J. Goold, and M. T. Mitchison,
Phys. Rev. E 103, 012133 (2021).

[88] C. Van den Broeck, Phys. Rev. Lett. 95, 190602
(2005).

[89] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,
Phys. Rev. Lett. 105, 150603 (2010).

[90] S. Deffner, Entropy 20, 875 (2018).

[91] P. A. Erdman, V. Cavina, R. Fazio, F. Taddei, and V.
Giovannetti, New J. Phys. 21, 103049 (2019).

[92] P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Phys. Rev. B 93,
041418(R) (2016).

[93] M. L. Bera, S. Julià-Farré, M. Lewenstein, and M. N. Bera,
arXiv:2106.01193.

[94] See also Eqs. (41) and (42) in Ref. [63].

012217-11

https://doi.org/10.1103/PhysRevE.103.012133
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.3390/e20110875
https://doi.org/10.1088/1367-2630/ab4dca
https://doi.org/10.1103/PhysRevB.93.041418
http://arxiv.org/abs/arXiv:2106.01193

