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Manipulation of a quantum system requires the knowledge of how it evolves. To impose that the dynamics
of a system becomes a particular target operation (for any preparation of the system), it may be more useful to
have an equation of motion for the dynamics itself, rather than the state. Here we develop a Markovian master
equation for the process matrix of an open system interacting with a reservoir, which resembles the Lindblad
Markovian master equation. We employ this equation to introduce a scheme for optimal local coherent process
control at target times and extend the Krotov technique to obtain optimal control. We illustrate utility of this
framework through several quantum coherent-control scenarios, such as optimal decoherence suppression, gate
simulation, and passive and indirect control of the reservoir, in all of which we aim to simulate a given terminal
process at a given final time.
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I. INTRODUCTION

In a real world a quantum system cannot be fully isolated
from its surrounding reservoir (or environment or bath). Such
system-reservoir couplings in general lead to a nonunitary de-
scription of the dynamics of the system [1–4]. Consequently,
useful quantum resources of an open system, such as quan-
tum coherence and correlations, often diminish rapidly. To
mitigate such adversarial effects, it seems necessary to em-
ploy ideas from quantum error correction [5–7] and quantum
control theory [8–11], such as quantum feedback control [12],
decoherence-free subspaces and subsystems [13], and dynam-
ical decoupling [14–16].

If the system is initially uncorrelated with the reservoir,
its dynamics can be faithfully described by quantum “oper-
ations” or “channels” (completely positive, trace-preserving
linear maps), or equivalently, by “process matrices” [5]. These
objects relate the instantaneous density matrix (i.e., state) of
the system to its initial density matrix. Numerous methods,
such as quantum process tomography, have been developed
for characterization of process matrices [5,17–24]. In addi-
tion, under some assumptions one can obtain master equations
for dynamics of the state [1–3]. These master equations enable
one to see how manipulation of the preparation or system
Hamiltonian by external agents can affect the state of the sys-
tem at any time. The ability to manipulate system dynamics
has spurred quantum control applications [25–44].

However, for some applications it may still be more useful
to have dynamical or master equations which describe the
dynamics of the dynamics (the process matrix) rather than the
dynamics of the state (the density matrix). A relevant example
is a control scenario where one is interested to achieve a
particular quantum operation in a physical system by applying
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suitable control fields. Since here the operation is of interest,
a dynamical equation for how the associated process matrix
evolves can provide more direct information about the target
operation. Such equations can be particularly useful in dissi-
pative control or reservoir engineering scenarios, which are of
significant theoretical and experimental interest [45–54].

In this paper, assuming Markovian evolution of the open
system, we derive an equation of motion for the process
matrix (for a precursor study see Ref. [24]). Next we use
this equation to construct a fairly general scheme for optimal
control of the dynamics of open quantum systems, where the
achieved operation is guaranteed to have the highest fidelity
with the desired operation. We restrict ourselves to coherent-
control operations where an external field is applied locally
only on the system and modifies its Hamiltonian (assuming
that the field does not modify the reservoir or the way it acts
on the system). We use this scheme to study optimal coherent
strategies for gate simulation, decoherence suppression, and
passive, indirect control of the reservoir. Our optimization
strategy is based on developing an extension of the Krotov
method for quantum processes. In decoherence suppression,
an optimal control field is applied to the open system to sim-
ulate a unitary evolution at a specified time. In quantum gate
simulation, we show how a quantum gate can be simulated
optimally when we are confined to coherent manipulation of
the open system. This optimal control framework also allows
us, only by controlling the system, to make the reservoir
mimic another reservoir with different properties. For exam-
ple, we show that how one can modify the system Hamiltonian
such that at a specified time a dissipative reservoir looks like
a depolarizing reservoir. We illustrate these scenarios for a
practical model of a Rydberg ion under typical decoherence,
which is of interest in quantum technologies.

The structure of this paper is as follows. In Sec. II we derive
our master equation for the process matrix. In addition, in
this section we introduce the main components of the optimal
control theory to manipulate instantaneously the dynamics of
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an open system. Next, in Sec. III we solve this dynamical
optimization problem based on a monotonically convergent
algorithm, i.e., the Krotov algorithm. We focus on optimal co-
herent control of terminal processes in Sec. IV and apply this
to three different scenarios. Section V concludes the paper.
The Appendixes include some details and derivations.

II. COHERENT CONTROL OF QUANTUM PROCESSES

Consider an open quantum system S of N-dimensional
Hilbert space which interacts with its surrounding reservoir
(or environment) B with a large number of degrees of free-
dom. The central problem in the optimal control theory is the
dynamical manipulation of such a system to attain a given
objective under some constraints [10]. For example, the objec-
tive can be dictating the dynamics of the system at a predeter-
mined final (terminal) time tf to become as much as possible
similar to a given target dynamics. This can be achieved by
manipulating the system and/or its reservoir. In this paper
we introduce a procedure for the dynamical manipulation
of the system S by applying the external fields only to the
system.

A. Dynamical variable: Process matrix

In our dynamical control scheme, we work with an object
referred to as the “process matrix,” which has a pivotal role in
the dynamics of the open system. Here we recall the definition
of this object and some of its important properties [5].

Assume that the initial state of the total system (main sys-
tem + reservoir) is in a tensor-product form �(t0) = �S (t0) ⊗∑

i ri|bi〉〈bi|, where the set of eigenvalues and eigenvectors
of the initial state of the reservoir B is denoted by {ri, |bi〉}.
Hence the time evolution of S at time t � t0 is described as

�S (t ) = E (t,t0 )(�S (t0)) (1)

by a completely positive and trace-preserving linear map
E (t,t0 ) in a Kraus representation form as [5]

E (t,t0 )(◦) =
N2∑

λ,μ=1

χλμ(t, t0)Cλ ◦ C†
μ, (2)

where {Cλ}N2

λ=1 is a fixed orthonormal operator basis for the
N2-dimensional Liouville space of S such that Tr[C†

λCμ] =
δμν . In Eq. (2), the “process matrix” χ (t, t0) is defined as

χ (t, t0) = B†(t, t0) B(t, t0), (3)

B(i, j),μ(t, t0) = √
ri Tr[〈bi|U †(t, t0)|b j〉Cμ], (4)

where U (t, t0) is the unitary operator generated by the total
time-dependent Hamiltonian. In this paper we consider that
the system is driven by an external control field Vfield(t ),
which acts only on the system. Thus, the total Hamiltonian
becomes HSB(t ) = HS + Vfield(t ) + HB + Hint, where HS (HB)
is the system (reservoir) Hamiltonian, and Hint denotes the
system-reservoir interaction. In addition, in practical applica-
tions it is useful to consider that the external control Vfield(t )

can be adjusted by some knobs ε(t ) = {εm(t )} as

Vfield(t ) = ε(t ) · H =
∑

m

εm(t )Hm, (5)

where Hm are some fixed control operators.
Given a fixed operator basis {Cλ}N2

λ=1, the positive semidefi-
nite matrix χ (t, t0) [Eq. (3)] encapsulates the dynamics E (t,t0 )

in a faithful and one-to-one fashion. For example, the trace-
preserving property of the dynamical linear map E (t,t0 ) at all
times t � t0 implies that Tr[χ (t, t0)] = N . Thus this matrix is
the dynamics itself, and thereby we give it a pivotal role in
this paper. Another appealing feature of the process matrix is
that a plethora of techniques, referred to as process tomogra-
phy, have been developed to obtain this matrix experimentally
[17–23].

There is a one-to-one isomorphism, referred to as the Choi-
Jamiolkowski isomorphism [55,56], between any completely
positive map E (t,t0 ) and the density matrix of a composite sys-
tem comprised of the open system S and an ancilla of the same
Hilbert space dimension, which is given by �E(t ) = (E (t,t0 ) ⊗
IS )(|�+〉〈�+|), where |�+〉 is a maximally entangled state
of the composite system. One can see that in the logical
operator basis {C̃(i, j) = |i〉〈 j|}N

i, j=1, with |i〉 being the compu-
tational basis, the process matrix χ̃ (t, t0) is proportional to the
corresponding density matrix �E(t ) [57], χ̃ (t, t0) = N�E(t ).
In addition, the process matrix χ̃ (t, t0) is related to process
matrix χ (t, t0) in an arbitrary operator basis {Cα} through a
unitary transformation χ̃ (t, t0) = V†χ (t, t0)V , where the uni-
tary operator V is defined as Vα,(i, j) = Tr[C†

αC̃(i, j)] for α ∈
{1, . . . , N2} and i, j ∈ {1, . . . , N}.

B. Dynamical equation of the dynamics

After defining the process matrix as a dynamical vari-
able, we need to determine how the process matrix evolves
by considering the dissipative and external field effects in
the dynamics space DS = {χ (t, t0); ∀t � t0}. Here we restrict
ourself to the special case of quantum Markovian evolutions
[2], where the dynamical map (2) satisfies the divisibility
condition for all t, s such that t0 � s � t ,

E (t,t0 ) = E (t,s)E (s,t0 ). (6)

It is straightforward to see that this condition on the dynamics
in turn implies the following Markovian master equation in
the Lindblad form for the density matrix �S (t ):

d�S (t )

dt
= − i

h̄
L (�S (t )) = − i

h̄
[HS (t ), �S (t )]

+
N2−1∑
α=1

γα (t )
(

Lα (t )�S (t )L†
α (t )

− 1

2
{L†

α (t )Lα (t ), �S (t )}
)

, (7)

where the Lindblad jump operators are defined as
Lα (t ) = ∑N2−1

η=1 u∗
αη(t )Cη, with u(t ) being the unitary

operator diagonalizing the positive semidefinite matrix
a(t ) = [aξν (t )] = [limx→0 χξν (t + x, t )/x] (for ξ, ν ∈
{1, . . . , N2 − 1}) as u(t )a(t )u†(t ) = diag(γα (t )). The
coefficients γα (t ) are referred to as the Lindblad rates. The
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Hermitian operator HS (t ) is also defined as HS (t ) = (M(t ) −
M†(t ))/(2i), where M(t ) = (h̄/

√
N )

∑N2−1
λ=1 aλN2 (t )Cλ,

aλN2 (t ) = limx→0 χλN2 (t + x, t )/x.
Interestingly, an alternative microscopic, first-principles

approach to derive the above Lindblad master equation has
also been formulated [1], which can help to find the validity
conditions for Eq. (7) and also underlying physical meanings
of its various components such as HS (t ). This approach is
based on the dynamics of the total system described by the
von Neumann equation d

dt �SB(t ) = −(i/h̄)[HSB(t ), �SB(t )],
partial tracing over the reservoir, and the weak-coupling,
Born-Markov, and the secular approximations [1,3,58]. The
weak-coupling approximation implies that

‖Hint‖ � max
t

‖HS + Vfield(t ) + HB‖, (8)

where ‖ · ‖ is the standard operator norm. In addition, Eq. (7)
requires validity of particular assumptions about several
timescales in the total system. In particular,

τB � δtS � τS, (9)

1/ min
ω =ω′

|ω − ω′| � δtS, (10)

where τB is the relaxation time of the reservoir (the time at
which the correlation functions of the reservoir decay), δtS ≈
1/ maxt ‖HS + Vfield(t )‖ is the timescale of the variations of
the driven system, τS is the timescale for the relaxation of the
systems, and ω (or ω′) indicates the energy gaps of HS . The as-
sumptions (8)–(10) lead to time independence of the Lindblad
rates and operators [59,60]. In some sense, these assump-
tions guarantee that the control fields do not considerably
modify how the reservoir affects the system. In more general
scenarios, in the dynamical equation the Lindblad operators
would also depend on the time-dependent Hamiltonian of the
system (and the control field) [61–63]. Despite this change in
the dynamical equation, our general control scheme (outlined
in the next sections) would still hold—albeit with different
results. We remark that this scenario, with field-dependent
Lindblad operators, is in some sense still a coherent-control
scenario because we do not yet assume any modification of
the structure of the reservoir or its coupling with the system.

In addition, through the microscopic approach, the Her-
mitian operator HS (t ) in Eq. (7) appears to be the sum of
the bare system, the field-system interaction, and the time-
independent Lamb-shift Hamiltonian (environment-induced
correction to the bare system Hamiltonian), HS (t ) = HS +
Vfield(t ) + HLamb. This form is in the lab frame.

To obtain a master equation for the dynamics χ (t, t0) in the
Markovian regime, first we translate the divisibility condition
(6) in the language of the process matrix,

χαβ (t, t0) =
N2∑

μ,η=1

N2∑
λ,ν=1

χλν (t, s)χμη(s, t0) [Fλ]αμ [Fν]∗βη,

(11)

where F is a rank-3 tensor defined as [Fλ]αμ ≡ Tr[C†
αCλCμ].

From Eq. (11) and by differentiating the process matrix,
we can obtain a linear differential equation as d

dt χ (t, t0) =
− i

h̄ K (χ (t, t0)), for α, β ∈ {1, . . . , N2}, where the time-

dependent generator K is given by

− i

h̄
[K ]αβ,μη

= lim
x→0

1

x

(
N2∑

λ,ν=1

χλν (t + x, t )[Fλ]αμ[Fν]∗βη − δαμδβη

)
.

(12)

Following the next steps similar to the formal derivation of
the Lindblad equation for the density matrix yields an ex-
pression for the generator K . We have relegated the details
to Appendix A. From hereon we assume t0 = 0 and use the
shorthand (t ) for (t, 0). In addition, we assume the basis oper-
ators {Cα} are traceless, Tr[Cα] = 0 for α ∈ {1, . . . , N2 − 1},
except for CN2 = IS/

√
N . These steps transform the dynam-

ical master equation of the system (7) into the following
Markovian dynamical equation for the process matrix itself:

dχ (t )

dt
= − i

h̄
K (χ (t )) = − i

h̄
[HS (t ), χ (t )] +

N2−1∑
α=1

γα (t )

×
(

Lα (t )χ (t )L†
α (t ) − 1

2
{L†

α (t )Lα (t ), χ (t )}
)

, (13)

where γα (t )’s are the same factors as in the Lind-
blad equation (7), [Y(t )]μν ≡ Tr[C†

μ Y (t )Cν], with Y (t ) ∈
{HS (t ), L1(t ), . . . , LN2−1(t )}, and the initial value condition is
χμν (0) = NδμN2δνN2 , for μ, ν ∈ {1, . . . , N2}. Equation (13),
which describes the dynamics, is one of the main results
of this paper and has evident similarity with Eq. (7). It is
straightforward to see that the conditions (8)–(10) yield that
γα (t )’s and Lα (t )’s become time independent. In addition,
for simplicity and noting that the Lamb-shift correction is of
second order with respect to Hint , we neglect HLamb.

It is important to note that the above equation directly
addresses the dynamics of an open system without refer-
ence to its state. This is an appealing property which can
be of significant practical importance, especially when one
is interested to design or simulate a particular operation,
dynamics, or gate, rather than a particular state. In this
sense, our dynamical master equation (13) can be taken
as the basis for an enhanced quantum dynamical control
scheme for open systems, which may have numerous appli-
cations in diverse areas such as quantum computation [64].
This lifting from the dynamics of a state to the dynamics
of the dynamics can be compared with the closed-system
scenario in which rather than the Schrödinger equation
d
dt �S (t ) = −(i/h̄)[HS (t ), �S (t )] one can work with the dy-
namical equation d

dt US (t, t0) = −(i/h̄)HS (t )US (t, t0), where
�S (t ) = US (t, t0) �S (t0)U †

S (t, t0).
Remark 1. From the definition of χ̃ (t, t0) in Sec. II A

and Eq. (13) one can obtain an equation for the Choi-
Jamiolkowski density matrix �E(t ) as

d�E(t )

dt
= − i

h̄
[H̃S (t ), �E(t )] +

N2−1∑
α=1

γα (t )
(

L̃α (t )�E(t )̃L†
α (t )

− 1

2
{̃L†

α (t )̃Lα (t ), �E(t ) }
)

, (14)
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where Z̃(t ) is defined as Z̃(t ) = V†Z(t )V , with Z(t ) ∈
{HS (t ), L1(t ), . . . , LN2−1(t )}.

C. Objective of the control

To analyze how effectively the applied fields ε(t ) perform
toward achieving our objective, we need to choose a relevant
figure-of-merit. A fairly general figure-of-merit is a real scalar
functional in the form of

J = F (χ (tf ), tf ) + J d [χ (t )] + J f [ε(t )]. (15)

The final time-dependent objective F can be constructed
based on a measure which compares how close the achieved
dynamics at t = tf , χ (tf ), is to a given desired dynamics, � tf .
For example, we can employ the quantum operator fidelity
defined as [40,65]

F (χ (tf ), tf ) = −w0
Tr[χ†(tf ) � tf ]

(Tr[χ†(tf )χ (tf )] Tr[�†
tf � tf ])1/2

, (16)

where w0 � 0 is a weight and the negative sign is a convention
put to simply transform the optimization into a minimization
problem. This quantity is guaranteed by the Cauchy-Schwarz
inequality to be bounded as −w0 � F (χ (tf ), tf ) � 0. For sim-
plicity, later in this paper, when we discuss several examples
in Sec. IV, we shall restrict ourselves to the case w0 = 1, in
which case −F becomes the process fidelity.

Note that in the context of optimal open-system quantum
control theory, to achieve a desired quantum gate O at a
predetermined terminal time tf , various measures or fidelities
have been proposed to represent the final time-dependent
objective F [64]. However, the majority of these measures
are based on carving the dynamics on pure or logical
states rather than taking the dynamics into account directly.
For example, one can name the pure state-based fidelity
[66,67] such as Fp = ∫

d|�〉 〈�|O†E (tf ,0)(|�〉〈�|)O|�〉
and the logical basis-based one [64,68] such as Fl =
(1/N )

∑N
i, j=1 Tr[O|i〉〈 j|O†E (tf ,0)(|i〉〈 j|)]. In contrast, our

dynamics-based objective (16) is directly related to the
dynamics, without reference to any state.

The functional J d depends on the dynamics of the system,
χ (t ), at the intermediate times 0 � t < tf . In order to steer
the dynamics χ (t ) toward a desired one �(t ) through the
external fields, one can write this intermediate time-dependent
objective J d as

J d [χ (t )] = −wd

tf

∫ tf

0
dt

Tr[χ†(t ) �(t )]

(Tr[χ2(t )] Tr[�2(t )])1/2
, (17)

where wd � 0 is a weight for this objective. In this work,
however, for simplicity and in order to demonstrate basic
utility of our proposed control scheme, we restrict ourselves
to the dynamical control problem of the process at a given
terminal time tf , rather than at an interval, which means that
we simply set wd = 0 in the current study. Nevertheless, our
scheme can be straightforwardly applied to the cases where
one aims to control a dynamics χ (t ) so that it can resemble a
desired dynamics �(t ) for a given time interval 0 � t < tf .

A clear advantage of our objective measures (16) and
(17) is that, in light of the existence of various experimental

FIG. 1. Schematic of the optimal control problem for the ter-
minal process. This dynamical control occurs in the space DS

containing all process matrices. The red dotted curve shows the
trajectory of the dynamics of an open quantum system S generated by
HSB = HS + HB + Hint . The green dashed curve indicates the trajec-
tory of the dynamics generated by the optimal Hamiltonian ĤSB(t ) =
HSB + V̂field(t ). This Hamiltonian forces the terminal system process
at t = tf to be optimally close to the target terminal process � tf .

techniques such as process tomography to estimate process
matrices [22], they are also experimentally accessible.

The field-dependent functional J f has been introduced to
take into account all operational or experimental constraints
on the control fields. For example, we assume

J f [ε(t )] =
∫ tf

0
dt G f (ε(t ), t ), (18)

G f (ε(t ), t ) =
∑

m

wm
(
εm(t ) − ε (ref )

m (t )
)2

/ fm(t ), (19)

where wm � 0 and ε (ref )
m (t ) are, respectively, a weight for

this objective and a reference field. The shape function fm(t )
can switch the external field εm(t ) on and off smoothly [29]
(see also Refs. [36,38] for energy-constrained protocols). By
setting ε (ref )

m (t ) = 0, the functional (18) implies a constraint
on the energy of the control field.

The main goal of our dynamical control scheme is to mini-
mize the total functional J (15) containing only the final time-
and the field-dependent objectives [Eqs. (16) and (18)] such
that the dynamics of the system is governed by the master
equation (13). Figure 1 depicts a schematic of this scheme.
In the following section we proceed to solve this problem
via a monotonically convergent optimization approach—the
Krotov method [69–74].

III. SOLVING THE DYNAMICAL OPTIMIZATION
PROBLEM: KROTOV METHOD

To solve the optimal control problem discussed in the
previous section, we can resort to one of the existing itera-
tive methods. Here in particular we focus on monotonically
convergent methods. One of such methods is the Zhu-Rabitz
(ZR) method [30,31], where after obtaining the control equa-
tions by variational approaches, a particular monotonically
convergent algorithm is employed to solve these equations.
In the generalized form of this technique [75,76], the speed of
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convergence and numerical accuracy of the algorithm can also
be adjusted via appropriate convergence parameters.

An alternative method to solve an optimization problem
in a monotonically convergent fashion is the Krotov method
[70,71]. Having a dynamical equation and an objective func-
tional, in this method a particular algorithm is employed
which enforces monotonic convergence of the control ob-
jective after each iteration and leads to the final update
equations. This method has been used in controlling states of
closed or open systems, and it encompasses a wide range of
optimization problems including nonconvex state-dependent
functionals, intermediate time-dependent functionals, and the
nonlinear master equation for the state [71,77].

Note that the ZR method is reduced to the Krotov method
by choosing the convergence parameters suitably [75]. Al-
though for some convergence parameters the ZR method
exhibits faster convergence and also a higher numerical ac-
curacy than the Krotov method [76], to the best of our
knowledge the ZR method has not yet been generalized to the
case of nonconvex final time-dependent objectives such as the
one we have introduced in Eq. (16). Hence here we focus on
the Krotov method and extend it to the problem of controlling
the process of an open system. We have relegated the details
to Appendix B and only mention the main results here in the
following.

In the following it seems more convenient to vectorize the
dynamics (process matrix) χ (t ) and the field-dependent gen-
erator (denoted by K ε) [78,79] in an extended Hilbert space
(often referred to as the Liouville space) as χ (t ) → |χ (t )〉〉
and K ε → Kε, respectively. For any |χ1〉〉 and |χ2〉〉 in this
space, the inner product is defined as 〈〈χ1|χ2〉〉 = Tr[χ†

1 χ2].
In this representation the final time-dependent objective (16)
takes the following form:

F (χ (tf ), tf ) = −w0

〈〈
χ (tf )|� tf

〉〉[〈〈χ (tf )|χ (tf )〉〉〈〈� tf

∣∣� tf

〉〉]1/2 . (20)

Each iteration of the Krotov method contains two con-
secutive steps. At the first step we have the dynamics
|χ (n)(t )〉〉 as an input of the current iteration (n + 1) (n �
0) governed by the dynamical equation d|χ (n)(t )〉〉/dt =
−(i/h̄)Kε(n) |χ (n)(t )〉〉, with the initial boundary condition on
the α’s component |χ (n)(0)〉〉α = NδαN4 , where Kε(n) shows
the time-dependent generator with ε(n)(t ). The ε(n)(t ) are the
control fields updated in the previous iteration (and when n =
0, these are the initial guess fields). Having these fields, an
adjoint dynamics |�(t )〉〉 evolves backward in time according
to

d|�(t )〉〉
dt

= − i

h̄
K†

ε(n) |�(t )〉〉, (21)

with the following boundary condition at the final time tf :

|�(tf )〉〉 = −
( ∂F
∂〈〈χ (tf )|

)∣∣∣
χ (n) (tf )

, (22)

where |χ (n) (tf ) on the right-hand side (RHS) indicates the evalu-
ation of the partial derivative at |χ (n)(tf )〉〉 and 〈〈χ (n)(tf )|. Note
that for the full control of an open system at a specified time
interval—that is, when J d = 0—the RHS of Eq. (21) needs
to be modified [77]. For the dynamical control of a system at

a predetermined time with the final time-dependent objective
(20), the boundary condition (22) can be written as

|�(tf )〉〉 =w0

2

( ∣∣�tf

〉〉[〈〈
χ (n)(tf )

∣∣χ (n)(tf )
〉〉〈〈

� tf

∣∣� tf

〉〉]1/2

−
〈〈
χ (n)(tf )

∣∣�tf

〉〉∣∣χ (n)(tf )
〉〉[〈〈

χ (n)(tf )
∣∣χ (n)(tf )

〉〉3〈〈
� tf

∣∣� tf

〉〉]1/2

)
. (23)

At the next step of the n + 1th iteration, the control field
εm(t ) needs to be updated according to the equation(

∂G f

∂εm

)∣∣∣∣
ε(n+1)

= 2

h̄
Im

{
〈〈�(t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

|χ (n+1)(t )〉〉
}

+ σ (t )

h̄
Im

{
〈〈�χ (n+1)(t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

× |χ (n+1)(t )〉〉
}
, (24)

where |�χ (n+1)(t )〉〉 = |χ (n+1)(t )〉〉 − |χ (n)(t )〉〉 is the change
in the dynamics and |χ (n+1)(t )〉〉 follows the dynamical equa-
tion d|χ (n+1)(t )〉〉/dt = −(i/h̄)Kε(n+1) |χ (n+1)(t )〉〉. These two
equations are coupled and should be solved simultaneously.
Due to the nonconvex nature of the final time-dependent
objective (20), a coefficient σ (t ) has been introduced in
Eq. (24) to guarantee monotonic convergence of the ultimate
algorithm. This time-dependent coefficient is determined ana-
lytically by the relation

σ (t ) = −ĀeζB (tf −t ), ζB ∈ R+, (25)

where the constant coefficient Ā is given by

Ā = max{ζA, 2A + ζA}, ζA ∈ R+, (26)

A = sup
{�χ (tf )}

�F + 2Re〈〈�χ (tf )|�(tf )〉〉
〈〈�χ (tf )|�χ (tf )〉〉 , (27)

with �F = F (χ (n)(tf ) + �χ (tf ), tf ) − F (χ (n)(tf ), tf ). For
a convex final time-dependent objective such as Fc =
−w0〈〈χ (tf )|� tf 〉〉, we have A = 0 and then Ā = 0 by setting
ζA = 0. Since in this specific case σ (t ) is zero, then the Krotov
method reduces to its first-order version—see Eq. (24) with
σ (t ) = 0.

By considering Eq. (19) as the field-dependent function G f ,
Eq. (24) leads to the following update equation:

ε (n+1)
m (t ) = ε (ref )

m (t ) + fm(t )

h̄wm

{
Im〈〈�(t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

× |χ (n+1)(t )〉〉 + σ (t )

2
Im〈〈�χ (t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

× |χ (n+1)(t )〉〉
}
. (28)

Following Refs. [80,81], throughout this paper we set
ε (ref )

m (t ) = ε (n)
m (t ). By this choice the field-dependent func-

tional (18) vanishes when the fields approach their optimal
values. Then, in this asymptotic limit the monotonic conver-
gence of the total and the final time-dependent objectives, J
and F , are equivalent. The updated control field ε(n+1)(t )
is considered as a guess field for the next iteration. Then
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the above procedure is iterated until the algorithm achieves
a desired convergence threshold.

A prohibitive issue to apply the second-order correction
of the Krotov method, i.e., the second term in Eq. (24) or
the third term in Eq. (28), is to calculate the supremum over
all variations of the terminal dynamics {�χ (tf )} in order to
obtain the constant coefficient Ā [Eqs. (26) and (27)]. A partial
remedy for this is to replace A in Eq. (27) with a numerical
ansatz as [77]

A(n+1) = �F (n+1) + 2Re〈〈�χ (n+1)(tf )|�(tf )〉〉
〈〈�χ (n+1)(tf )|�χ (n+1)(tf )〉〉 , (29)

where �F (n+1) = F (χ (n+1)(tf ), tf ) − F (χ (n)(tf ), tf ).
However, the parameter A(n+1) depends on |�χ (n+1)(tf )〉〉 =
|χ (n+1)(tf )〉〉 − |χ (n)(tf )〉〉 with an unknown dynamics
|χ (n+1)(tf )〉〉, which is to be determined in the current iteration
n + 1. In order to resolve this difficulty, we can substitute
the parameter A(n) calculated in the previous iteration into
Eq. (26). Note that this procedure may compromise the
monotonic convergence of the algorithm. In such a case,
this failed iteration needs to be repeated until monotonic
convergence is guaranteed by considering A(n+1) instead of A
in Eq. (26). Another potential approach to resolve this issue is
to set Ā = ζA � 0 and to find some ζA by trial and error such
that the monotonic convergence can be retrieved [77].

IV. APPLICATION: DYNAMICAL CONTROL OF A
RYDBERG ION

Here we choose a related practical example to illustrate
our dynamical control scheme. Rydberg neutral atoms and
ions are appealing candidates in quantum technologies for
implementation of quantum computation with high fidelities
[82–85]. We consider a trapped Rydberg ion 88Sr+ [85] hav-
ing an energy level |r〉 ≡ 42S1/2 as a Rydberg state. Only
four energy levels of 88Sr+ have been shown in Fig. 2. The
two low-lying levels with the gap wavelength λ0 = 674 nm
act as a register qubit, i.e., {|0〉 ≡ 4D5/2, |1〉 ≡ 4S1/2}. The
Rydberg state is addressable via two time-dependent lasers.
The pump laser εp(t ) couples the state |0〉 to an intermediate
state |i〉 ≡ 6P3/2. The trapped ion in the state |i〉 is also excited
to the Rydberg state by a Stokes laser εs(t ). We consider these
control laser pulses as in the following:

εm(t ) = qm(t ) cos(ωmt ), m ∈ {s, p}, (30)

where qm(t ) and ωm are the time-dependent amplitude and
central frequency, respectively. Following Ref. [86], we
consider an appropriate rotating frame defined by a suit-
able unitary operator defined as below in the logical basis
{|0〉, |1〉, |i〉, |r〉}:

U(t ) = diag(1, 1, eiωpt , ei(ωp+ωs )t ). (31)

From here forward in this paper we shall work in this partic-
ular rotating frame without denoting a separate notation for
quantities therein. After applying the rotating-wave approxi-
mation (ωs, ωp � ω0 = (2πc)/λ0 with c being the speed of

FIG. 2. Four energy levels of the Rydberg ion 88Sr+ driven by
two laser pulses. Energy levels |0〉 ≡ 4D5/2 and |1〉 ≡ 4S1/2 as a
register qubit with the transition frequency ω0 = (2πc)/λ0, in which
λ0 = 674 nm (c is the speed of light). The state |0〉 is coupled to an
intermediate state |i〉 ≡ 6P3/2 via a pump laser �p(t ) with detuning
�p = 40π MHz. The ionic transition |i〉 ↔ |r〉 ≡ 42S1/2 (Rydberg
state) is driven by the Stokes laser �s(t ) with detuning �s = −�p.
The Rydberg state decays into the |1〉 state within τr ≈ 2.3 μs. The
decay time of the state |i〉 to the state |1〉 is τi ≈ 35 ns [85].

ligh), the Hamiltonian of the system becomes [85,86]

HS (t ) = h̄

2

⎛⎜⎜⎜⎝
0 0 �p(t ) 0

0 −2ω0 0 0

�p(t ) 0 2�p −�s(t )

0 0 −�s(t ) 2(�p + �s)

⎞⎟⎟⎟⎠,

(32)
where the detuning �p (�s) is defined as �p = ωi −
ωp (�s = ωr − ωi − ωs) and (1/2)�p(t ) = (1/2)μ0i qp(t )
((1/2)�s(t ) = (1/2)μir qs(t )) is the time-dependent Rabi fre-
quency of the pump (Stokes) laser pulse with the dipole
moment μ0i (μir) for the |0〉 ↔ |i〉 (|i〉 ↔ |r〉) transition and
ωr being the frequency of the |0〉 ↔ |r〉 transition. The fre-
quency of the former (latter) transition has been denoted by ωi

(ωr−ωi). In the following we assume �p = −�s = 40π MHz
and refer to �p(t ) and �s(t ) (rather than εp(t ) and εs(t )) as
the pump and Stokes laser pulses, respectively. This physical
model in the rotating frame has been depicted in Fig. 2.

It has been known that the dominant effects of the sur-
rounding environment of this trapped ion manifest as two
spontaneous decays [85]: (a) |i〉 → |1〉 with decay time τi ≈
35 ns and (b) |r〉 → |1〉 with decay time τr ≈ 2.3 μs. The as-
sociated Lindblad jump operators and rates of these processes
are

Li(t ) = e−iωpt |1〉〈i|, γi = 1/τi, (33)

Lr (t ) = e−i(ωp+ωs )t |1〉〈r|, γr = 1/τr . (34)

From the dynamical equation (13), transformed into the ro-
tating frame, with the time-dependent Hamiltonian (32) and
Lindblad operators (33) and (34) we can obtain a dynamical
equation for the dynamics of this trapped ion. Note that the
traceless operator basis {Cα} for this system is comprised
of the generalized Gell-Mann basis matrices [87] for qudits.
As an application of this dynamical equation we answer the
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FIG. 3. Process fidelity −F (red) and minus total functional
−J (green) vs the iteration number n for the phase gate simulation
with ϕ = π [see Eq. (38)] and tf = 900 ns. Inset shows the control
parameter A(n) defined in Eq. (29) as a function of the iteration
number n. Here ζA = 0.01 and ζB = 0 [see Eqs. (25) and (26)].

following question in the next subsections by our coherent
process control scheme: How can the dynamics of this Ry-
dberg ion at a given final time be steered to a desired target
process?

In the following we consider three scenarios for the desired
final process � tf . For the optimization we need the shape
functions for the pump and Stokes lasers. Following Ref. [67],
here we choose the Blackman shape functions, given by

fm(t ) = [1 − g − cos(kmπt/tf ) + gcos(lmπt/tf )]/2, (35)

for m ∈ {s, p}, where g = 0.16 and kp = 4, lp = 8 (ks =
2, ls = 4) for the pump (Stokes) laser. We also consider the
following guess lasers to start the optimization process:

�(0)
m (t ) = Em fm(t ), m ∈ {s, p}, (36)

where Em is the peak amplitude, and we set Em = 94π MHz
for both laser pulses [85].

A. Scenario I: Gate simulation

In the first scenario, the desired target process (in the rotat-
ing frame) is considered to be a specific unitary gate O, that
is, [

�
(G)
tf

]
αβ

≡ Tr[OC†
α] Tr[OC†

β]∗, (37)

where α, β ∈ {1, . . . , 16}. For example, here we aim to obtain
the optimal Stokes and pump lasers which steer the dynamics
of the register qubit ({|0〉, |1〉}) to be similar to the phase gate
applied at a specified final time (here tf = 900 ns),

O = |0〉〈0| + eiϕ |1〉〈1| + |i〉〈i| + |r〉〈r|. (38)

This operation acts trivially on the passive subspace {|i〉, |r〉}
[80]. Interestingly, Ref. [85] reports experimental realization
of this gate on the register subspace by preparing the system
as a pure state in this subspace. In contrast, our optimization
scheme allows us to obtain any desired gate regardless of the
preparation of the system in the register subspace.

Figure 3 shows the process fidelity −F and the total func-
tional −J vs the iteration number n of the Krotov algorithm,
both of which demonstrate similar behaviors. This figure in-
dicates that the fidelity can improve only by a factor of ≈27%
(up to iteration 5900) through the optimization with the guess
lasers chosen as in Eq. (36). Two plateaus are observed in

FIG. 4. Optimal pump laser (top/red) and Stokes laser
(bottom/blue) vs time for the phase-gate simulation with ϕ = π

[see Eq. (38)] and tf = 900 ns. Insets indicate the spectra of these
lasers. The lasers and their spectra have been shown in the rotating
frame. The green and orange plots show the initial guess fields [see
Eq. (36)]. Here wp = ws = 0.01 [see Eq. (19)].

the ranges 797 < n < 927 and 1057 < n < 1893, before the
saturation of the fidelity at the value ≈0.646. However, these
plateaus are preliminary and the algorithm can still yield
larger fidelities when it is given sufficiently larger iterations.
This figure confirms that the iterative algorithm converges
to the final objective −J monotonically by the optimization
procedure developed in Sec. III. This monotonic convergence
occurs by incurring an extra numerical cost in updating the
control laser pulses at each iteration, which is due to the last
term in Eq. (28)—see the inset of Fig. 3.

The optimal pump and Stokes lasers are shown in Fig. 4,
respectively. It interesting to note that despite striking differ-
ences of the optimal and guess pulses, there is still a rough
similarity between them—such a behavior has also been re-
ported earlier in Ref. [67]. Note that in associated spectra
the maximum peaks belong to the zero frequency, which in
the laboratory frame correspond to the frequencies of the
lasers whose detunings with the frequency of the |0〉 ↔ |i〉
and |i〉 ↔ |r〉 transitions are given by �p and �s, respectively.
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FIG. 5. Process fidelity −F (red) and minus total functional −J
(green) vs the iteration number n for the decoherence suppression
at tf = 500 ns. Inset indicates the control parameter A(n) defined in
Eq. (29) as a function of the iteration number n. Here ζA = ζB = 0
[see Eqs. (25) and (26)].

B. Scenario II: Decoherence suppression

In this scenario, we are interested to see whether (and how
well) the pump and Stokes laser pulses applied to the trapped
Rydberg ion can suppress the reservoir at a predetermined
time tf such that we have �S (tf ) = U †

S (tf , 0)�S (0)US (tf , 0),
where US (tf , 0) is generated by the bare system Hamiltonian
in the rotating frame,

HS = h̄(−ω0|1〉〈1| + �p|i〉〈i| + (�s + �p)|r〉〈r|). (39)

That is, the target process is given by[
�

(D)
tf

]
αβ

≡ Tr[US (tf , 0)C†
α] Tr[US (tf , 0)C†

β ]∗, (40)

for α, β ∈ {1, . . . , 16}. We set tf = 500 ns for the target time
of this scenario. The environment acts on the ion through
two quantum channels with decay times τi ≈ 35 ns and τr ≈
2.3 μs [see Eqs. (33) and (34) for the jump rates and opera-
tors of these channels]. Since τi < tf < τr , practically in this
example we aim to suppress the detrimental effects of the
spontaneous emission process |i〉 → |1〉 at tf = 500 ns.

The fidelity −F as a function of the iteration number n of
the Krotov algorithm has been shown in Fig. 5. The fidelity
reaches the value ≈0.687 after 5133 iterations. To go beyond
this iteration, we have observed that the algorithm needs an
exhaustive search on the space of the control parameter A(n)

due to the ad hoc workaround for the numerical issue in-
troduced in Sec. III. In the algorithm we have set ζA = 0.
From Eqs. (25), (26), and (28) this can lead to the Krotov
method, which is first order in |χ (t )〉〉. We have also shown the
control parameter A(n) as a function of the iteration number
in the inset of Fig. 5. Except for the first iteration, in order
to start the optimization process, the algorithm updates this
parameter with nonzero values. The behavior seen at this inset
(implying that A(n) > 0) in turn necessitates the second-order
contribution in the updating equation (28) to ensure mono-
tonic convergence of the algorithm. A distinctive feature of
this plot and also Fig. 3 is the appearance of plateaus in
some ranges of the iteration number, which indicate trappings
in the algorithm (perhaps of the similar nature for trappings
observed in Ref. [76]).

Figure 6 indicates the optimal pump and Stokes laser
pulses, respectively. Note the similarity and differences of
the optimal and guess fields. The spectra of these fields have

FIG. 6. Optimal pump laser (top/red) and Stokes laser
(bottom/blue) vs time for the decoherence suppression process
[see Eq. (40)] at tf = 500 ns. Insets indicate the spectra of these
lasers. The lasers and their spectra have been shown in the rotating
frame. The green and orange plots show the initial guess fields [see
Eq. (36)]. Here wp = ws = 0.01 [see Eq. (19)].

been depicted in the insets of these figures. We observe that
a wide range of frequencies have significant contributions in
the spectra of these optimal lasers. Since the bosonic reservoir
contains a large number of frequencies, one may intuitively
argue that a broadband spectra for the control laser fields may
be needed to optimally alleviate the effect of the reservoir.

C. Scenario III: Passive and indirect control of the reservoir

In this scenario we want to optimally control the reservoir
indirectly by applying appropriate external fields on the sys-
tem alone. In particular, we aim to modify the effect of the
reservoir passively such that it looks differently (as we wish)
to the system. This may have vast applications in quantum
reservoir engineering by limited control only on the system. In
addition, designing systems which can somehow “imposter”
another system has recently attracted much attention [88,89].

In Fig. 2, one of the effects of the reservoir on the Rydberg
ion manifests as transferring population from |i〉 to |1〉. Let us,
for example, make this effect look like a depolarizing channel
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FIG. 7. Process fidelity (red) and minus the total functional
(green) vs iteration number n for the passive control of the reservoir
[see Eq. (43)] and tf = 900 ns. Inset indicates the control parameter
A(n) defined in Eq. (29) as a function of the iteration number n. Here
ζA = ζB = 0 [see Eqs. (25) and (26)].

[5] on the subspace {|1〉, |i〉},

D(ch)
p (�) = [1 − p(t )]� + (p(t )/3)

3∑
α=1

σα�σα, (41)

with 0 � p(t ) � 1 and the operators σα are defined as

σ1 ≡ |1〉〈i| + |i〉〈1| + |0〉〈0| + |r〉〈r|,
σ2 ≡ −i|1〉〈i| + i|i〉〈1| + |0〉〈0| + |r〉〈r|, (42)

σ3 ≡ |1〉〈1| − |i〉〈i| + |0〉〈0| + |r〉〈r|.
It can be seen that the reduction of these operators on the
subspace {|1〉, |i〉} acts similarly to the Pauli operators for
a qubit. We assume here that p(t ) = (1 − e−6t/τi )/2. This is
indeed the error probability of a depolarizing channel acting
on a qubit with the depolarizing time τd = τi/6 and the Kraus
operators W0(�t ) = √

1 − p(�t )I2 − i�tH0 and Wα (�t ) =√
p(�t )/3σα (H0 and �t are the free Hamiltonian of the

qubit and a short time interval, respectively, and I2 is the
identity operator on the two-dimensional subspace {|1〉, |i〉}).
The desired channel (41) leads to the following target process
at t = tf in the generalized Gell-Mann basis for N = 4,[
�

(ch)
tf

]
αβ

={(4 − 3p(tf ))/2}δα16δβ16 + {p(tf )/6}(2δα7δβ7

+ δα1δβ1 + 3δα6δβ6 + δα11δβ11 + 2δα10δβ10

+ 2δα1δβ7 + 2δα1δβ10) − {
√

6p(tf )/9}(δα7δβ11

+ δα1δβ11 + δα10δβ11 − 3δα6δβ16) + {
√

2p(tf )/3}
× (δα7δβ16 + δα1δβ16 − δα6δβ11 + δα10δβ16)

+ {
√

3p(tf )/9}(δα1δβ6 + δα6δβ7 − 3δα11δβ16

+ δα6δβ10) + α ↔ β, (43)

where α, β ∈ {1, . . . , 16} and α ↔ β denotes terms similar
to the previous after exchanging α ↔ β. We set tf = 900 ns
for the target time of this simulation. Figure 7 indicates the
process fidelity −F and the total functional −J vs the iteration
number n of the Krotov algorithm. The optimization process
improves the channel fidelity from ≈0.133 to ≈0.769 after
performing 6000 iterations. During the first 200 iterations, the
fidelity increases by a factor of 37%. Monotonic convergence
of the total objective −J is evident from this figure. We ob-

FIG. 8. Optimal pump laser (top/red) and Stokes laser
(bottom/blue) vs time for the passive control of the reservoir
[see Eq. (43)] at tf = 900 ns. Insets indicate the spectra of these
lasers. The lasers and their spectra have been shown in the rotating
frame. The green and orange plots show the initial guess fields [see
Eq. (36)]. Here wp = ws = 0.01 [see Eq. (19)].

serve that in Figs. 3, 5, and 7, the convergence becomes slow
when the algorithm approaches an optimal solution. In princi-
ple, this issue can be circumvented by combining the Krotov
method and the quasi-Newton method [90]. However, we have
not implemented this approach in this paper. The optimal laser
pulses and their spectra have been shown in Fig. 8.

V. SUMMARY AND CONCLUSIONS

We have obtained an equation of motion for the process
matrix associated with the dynamics of an open quantum
system under the weak-coupling and Markovian assumptions.
This equation is in the Lindblad form and resembles the
master equation for the state or density matrix of the open
system. Next, by using this equation we have developed an
open-system optimal control scheme where by local coherent
manipulation of an open quantum system—through applying
a control field—one can optimally implement quantum op-
erations on the system under these conditions. The suitable
optimal control field is given by minimizing a proper figure-
of-merit in which physical constraints have been included.
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This scheme can be straightforwardly extended to situations
where applying a control field on the system may also affect
how the reservoir acts on the system, and hence this scheme
can enable various reservoir engineering scenarios.

We have illustrated the utility of our scheme in three
quantum control scenarios: decoherence suppression, gate
simulation, and passive reservoir engineering. In the gate
simulation scenario, the goal has been to force the system
to evolve at a given time as closely as possible to a given
unitary gate. In the decoherence suppression scenario, the
objective has been to suppress as much as possible the ef-
fect of the interaction with the reservoir such that in a given
time the evolution of the open system is simply given by
its own Hamiltonian. The passive reservoir control scenario
is an extension of the previous scenarios, in which sim-
ply by applying coherent-control fields we have aimed to

make the original reservoir look like another reservoir. Since
these control scenarios are limited to coherent control of
the system, i.e., without assuming the ability to manipulate
the reservoir, they are subjective to the shape of applicable
control fields and may not achieve some operations with
any desired high fidelity. However, our framework on its
own is applicable to more general cases and can provide a
feasible approach accessible with any given set of control
operations.
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APPENDIX A: DERIVATION OF THE PROCESS DYNAMICAL EQUATION

Here we present the derivation of the dynamical equation of χ (t ) based on a formal approach. By using Eq. (11) and by
differentiating the process matrix, we obtain the following linear differential equation:

dχαβ (t )

dt
= lim

x→0

1

x
(χαβ (t + x) − χαβ (t )) ≡ − i

h̄

N2∑
μ,η=1

[K ]αβ,μη χμη(t ), α, β ∈ {1, . . . , N2}. (A1)

From the definition of the operator Fλ, i.e., [Fλ]αμ ≡ Tr[C†
αCλCμ], we can write the time-dependent generator K as

− i

h̄
[K ]αβ,μη = lim

x→0

1

x

( N2∑
λ,γ=1

χλγ (t + x, t )[Fλ]αμ[Fγ ]∗βη − δαμδβη

)
(A2)

= lim
x→0

1

x

(
1

N
χN2N2 (t + x, t )δβηδαμ + 1√

N

N2−1∑
λ=1

(χλN2 (t + x, t )δβη[Fλ]αμ + χN2λ(t + x, t )δαμ[Fλ]∗βη )

+
N2−1∑
λ,γ=1

χλγ (t + x, t )[Fλ]αμ[Fγ ]∗βη − δαμδβη

)
. (A3)

Now we introduce the time-dependent coefficients aλγ (t ) as

aN2N2 (t ) ≡ lim
x→0

[χN2N2 (t + x, t ) − N]/x,

aN2λ(t ) ≡ lim
x→0

χN2λ(t + x, t )/x, λ ∈ {1, . . . , N2 − 1},

aλγ (t ) ≡ lim
x→0

χλγ (t + x, t )/x, λ, γ ∈ {1, . . . , N2 − 1}, (A4)

which lead to the following compact form for the components of the generator:

− i

h̄
[K ]αβ,μη = 1

N
aN2N2 (t ) δβηδαμ + 1√

N

N2−1∑
λ=1

(aλN2 (t ) δβη[Fλ]αμ + aN2λ(t ) δαμ[Fλ]∗βη ) +
N2−1∑
λ,γ=1

aλγ (t )[Fλ]αμ[Fγ ]∗βη. (A5)

We shall now obtain the coefficients aλγ (t ) in terms of the operator basis of the Liouville space, i.e., {Cα}N2

α=1. The trace-

preserving property of the evolution map E (t,t0 ) leads to
∑N2

α,β=1 χαβ (t, t0)C†
βCα = IS . Substituting t0 → t and t → t + x into

the latter equation and then separating the terms including CN2 = IS/
√

N from the others yields

1

N
aN2N2 (t ) IS + 1√

N

N2−1∑
λ=1

(aλN2 (t )Cλ + aN2λ(t )C†
λ ) +

N2−1∑
ξ,ν=1

aξν (t )C†
νCξ = 0, (A6)

where we have used the definition of the coefficients aξν (t ) [Eq. (A4)]. Now we introduce the Hermitian operator

HS (t ) = 1

2i
(M†(t ) − M(t )), (A7)
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where M(t ) = (h̄/
√

N )
∑N2−1

λ=1 aλN2 (t )Cλ, by which we can rewrite Eq. (A6) as

1

N
aN2N2 (t ) IS + 2

h̄
M†(t ) − 2i

h̄
HS (t ) +

N2−1∑
ξ,ν=1

aξν (t )C†
νCξ = 0. (A8)

After multiplying both sides of Eq. (A8) by Cλ (λ ∈ {1, . . . , N2 − 1}) and taking partial trace over system S, we obtain

aN2λ(t ) = i

h̄

√
N Tr[HS (t )Cλ] −

√
N

2

N2−1∑
ξ,ν=1

aξν (t )[Fξ ]νλ. (A9)

Note that we have supposed here that the operator basis {Cα} are traceless except that CN2 = (1/
√

N )IS , i.e., Tr[Cα] = 0 for
α ∈ {1, . . . , N2 − 1}. Moreover, by taking a partial trace over the system from both sides of Eq. (A6), we obtain

aN2N2 (t ) = −
N2−1∑
ν,ξ=1

aνξ (t ) δνξ . (A10)

Thus, by substituting Eqs. (A9) and (A10) into Eq. (A5), the components of the generator K can be obtained as

− i

h̄
[K ]αβ,μη = − 1

N

N2−1∑
ν,ξ=1

aνξ (t ) δνξ δβηδαμ +
N2−1∑
λ,γ=1

aλγ (t ) [Fλ]αμ[Fγ ]∗βη − i

h̄

N2−1∑
λ=1

Tr[C†
λHS (t )][Fλ]αμδβη

+ i

h̄

N2−1∑
λ=1

Tr[CλHS (t )][Fλ]∗βηδαμ − 1

2

N2−1∑
ν,ξ=1

N2−1∑
λ=1

aνξ (t )[Fξ ]∗νλ[Fλ]αμδβη − 1

2

N2−1∑
ν,ξ=1

N2−1∑
λ=1

aξν (t )[Fξ ]νλ[Fλ]∗βηδαμ.

(A11)

By using Eqs. (A4) and (3), we can prove
∑N2−1

ξ,ν=1 υ∗
ξ aξν (t ) υν = limx→0(1/x)

∑
λ,μ r2

μ| ∑N2−1
ξ=1 υ∗

ξ Tr[〈bλ|U (t + x, t )|bμ〉C†
ξ ]|2 �

0 for any (N2 − 1)-dimensional vector υ and for any time t . Hence the (N2 − 1)-dimensional matrix a(t ) = [aξν (t )] is positive
semidefinite. By substituting Eq. (A11) into Eq. (A1), a set of coupled differential equations are obtained:

dχαβ (t )

dt
= − 1

N

N2−1∑
ξ,ν=1

N2∑
μ,η=1

aξν (t ) δνξ δβηδαμ χμη(t ) +
N2−1∑
ξ,ν=1

N2∑
μ,η=1

aξν (t )[Fξ ]αμ[Fν]∗βη χμη(t )

− i

h̄

N2∑
μ,η=1

N2∑
λ=1

Tr[C†
λHS (t )][Fλ]αμδβη χμη(t ) − 1

2

N2−1∑
ξ,ν=1

N2∑
μ,η=1

N2−1∑
λ=1

aξν (t )[Fν]∗ξλ[Fλ]αμδβη χμη(t )

− 1

2

N2−1∑
ξ,ν=1

N2∑
μ,η=1

N2−1∑
λ=1

aξν (t )[Fξ ]νλ[Fλ]∗βηδαμ χμη(t ) + i

h̄

N2∑
μ,η=1

N2∑
λ=1

Tr[CλHS (t )][Fλ]∗βηδαμ χμη(t ), (A12)

where the upper limits of the summation over λ in the third and sixth terms have been changed to N2 because HS (t ) is a traceless
operator [see Eq. (A7)]. By using the orthonormality of the operator basis {Cα}, the first term in Eq. (A12) is absorbed into the
fourth and fifth terms by changing the upper limits of their summations over λ to N2. Hence Eq. (A12) can be recast as

dχαβ (t )

dt
=

N2−1∑
ξ,ν=1

N2∑
μ,η=1

aξν (t )[Fξ ]αμ[Fν]∗βη χμη(t ) − i

h̄

N2∑
μ,η=1

N2∑
λ=1

Tr[C†
λHS (t )][Fλ]αμδβη χμη(t )

− 1

2

N2−1∑
ξ,ν=1

N2∑
μ,η=1

N2∑
λ=1

aξν (t )[Fν]∗ξλ[Fλ]αμδβη χμη(t ) − 1

2

N2−1∑
ξ,ν=1

N2∑
μ,η=1

N2∑
λ=1

aξν (t )[Fξ ]νλ[Fλ]∗βηδαμ χμη(t )

+ i

h̄

N2∑
μ,η=1

N2∑
λ=1

Tr[CλHS (t )][Fλ]∗βηδαμ χμη(t ). (A13)

Equation (A13) can still be brought into a more compact form. By expanding the Hermitian operator HS (t ) in terms of the
operator basis {Cλ}N2

λ=1 as HS (t ) = ∑N2

λ=1 Tr[C†
λHS (t )]Cλ, it is straightforward to prove the following equality:

N2∑
λ=1

Tr[C†
λHS (t )][Fλ]αμ = Tr[C†

αHS (t )Cμ]. (A14)
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After some algebra, we also obtain another useful relation,

N2∑
λ=1

[Fν]∗ξλ[Fλ]αμ =
N2∑
λ=1

Tr[C†
λC†

νCξ ] Tr[C†
αCλCμ] = Tr[C†

αC†
νCξCμ]

=
N2∑
λ=1

Tr[C†
λCνCα]∗ Tr[C†

λCξCμ] =
N2∑
λ=1

[Fν]∗λα[Fξ ]λμ

= [F †
ν Fξ ]αμ, (A15)

where we have used C†
νCξ = ∑N2

λ=1 Tr[C†
λC†

νCξ ]Cλ and CξCμ = ∑N2

λ=1 Tr[C†
λCξCμ]Cλ. Thus, by using Eqs. (A14) and (A15), one

can get another form for Eq. (A13) as

dχαβ (t )

dt
= i

h̄

N2∑
η=1

χαη(t ) Tr[C†
ηHS (t )Cβ] − i

h̄

N2∑
μ=1

Tr[C†
αHS (t )Cμ]χμβ (t ) +

N2−1∑
ξ,ν=1

N2∑
μ,η=1

aξν (t )[Fξ ]αμ χμη(t )[F †
ν ]ηβ

− 1

2

N2−1∑
ξ,ν=1

N2∑
μ=1

aξν (t )[F †
ν Fξ ]αμ χμβ (t ) − 1

2

N2−1∑
ξ,ν=1

N2∑
η=1

aξν (t ) χαη(t )[F †
ν Fξ ]ηβ . (A16)

Since the coefficient matrix a(t ) = [aξν (t )] is a positive semidefinite matrix, we can diagonalize it via a time-dependent unitary
matrix u(t ). Then we have u(t )a(t )u†(t ) = γ (t ), where γ (t ) = diag(γα (t )) (α ∈ {1, . . . , N2 − 1}) is the Lindblad coefficient
matrix. Here, we define the time-dependent Lindblad operators as Lλ(t ) = ∑N2−1

ξ=1 u∗
λξ (t )Cξ . Having these Lindblad coefficient

matrix and operators as well as introducing the N2-dimensional matrices HS (t ) and Lα (t ) eventually lead to the dynamical
equation of the dynamics (13).

APPENDIX B: KROTOV METHOD

In this Appendix, we adapt and extend the Krotov method,
as discussed in Ref. [77], to the process control of an open
quantum system. For this purpose we first consider the process
matrix χ (t ) as an N4-component vector |χ (t )〉〉 and the field-
dependent generator Kε as an N4-dimensional matrix Kε in
the extended Hilbert space. This is equipped with the scalar
product 〈〈χ1|χ2〉〉 = Tr[χ†

1 χ2] for any |χ1〉〉 and |χ2〉〉 belonging
to this extended space. Here we summarize the problem of
controlling the terminal process of an open system. One of
the main goals of optimal control theory is to find the optimal
fields ε(t ) = {εm(t )} that minimize the following total objec-
tive functional:

J = F (χ (tf ), tf ) +
∫ tf

0
dt G f (ε(t ), t ), (B1)

with a final time-dependent function F and a field-dependent
function G f . In Eq. (B1) the notation χ (tf ) is to emphasize
the dependence of the function F to {|χ (tf )〉〉, 〈〈χ (tf )|}. The
process also follows a dynamical equation as

d|χ (t )〉〉
dt

= − i

h̄
Kε|χ (t )〉〉,

|χ (0)〉〉α = NδαN4 , α ∈ {1, . . . , N4}.
(B2)

We proceed to solve this optimization problem via the Krotov
method. From here forward and for brevity we may use the
shorthand χ instead of {|χ〉〉, 〈〈χ |} as the dynamical variable
of all intermediate time-dependent functions and omit the
time variable (t ) from ε(t ), |χ (t )〉〉, and 〈〈χ (t )|. Introducing
an arbitrary process-dependent and scalar function ϒ(χ, t ),

we can rewrite the total functional (B1) as

J ϒ = Mϒ (χ (tf ), tf ) − ϒ (χ (0), 0) −
∫ tf

0
dt Rϒ (χ, ε, t ),

(B3)
where the modified final time-dependent function Mϒ and the
intermediate time-dependent function Rϒ are given by

Mϒ (χ (tf ), tf ) = F (χ (tf ), tf ) + ϒ (χ (tf ), tf ), (B4)

Rϒ (χ, ε, t ) = −G f (ε, t ) + ∂ϒ

∂t
− i

h̄

∂ϒ

∂|χ〉〉Kε|χ〉〉

+ i

h̄
〈〈χ |K†

ε

∂ϒ

∂〈〈χ | . (B5)

In fact, the dynamical constraint (B2) has been incorporated
in the total functional J ϒ using the function ϒ . As we see
later, the freedom in the choice of this function enables one
to design a monotonically convergent algorithm. That is, the
algorithm approaches the minimum of the modified functional
J ϒ after each iteration,

J (n+1)
ϒ � J (n)

ϒ , ∀n � 0, (B6)

where

J (n)
ϒ = Mϒ (χ (n)(tf ), tf ) − ϒ (χ (0), 0)

−
∫ tf

0
dt Rϒ (χ (n), ε(n), t ). (B7)

Choosing the process-dependent function ϒ suitably is the
principal core of the Krotov method. In summary, the Kro-
tov method contains two successive steps, which we explain
below.
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1. First step

Having the control fields ε(n) leads to the dynamics
d|χ (n)〉〉/dt = (−i/h̄)Kε(n) |χ (n)〉〉, with K evaluated at ε(n).
These control fields ε(n) can be the guess fields at the begin-
ning (when n = 0) of the optimization process or the updated
fields in the previous iteration (when n > 0). In this step we
fix and determine the arbitrary scalar function ϒ such that the
total functional J ϒ is maximized over the dynamics χ (n). This
can be formulated in terms of the following conditions:

(i) Rϒ (χ (n), ε(n), t ) = min
χ

Rϒ (χ, ε(n), t ) ∀t ∈ [0, tf ],

(B8)

(ii) Mϒ (χ (n)(tf ), tf ) = max
χ (tf )

Mϒ (χ (tf ), tf ). (B9)

Note that the χ on the RHSs of the above equations do not
need to satisfy Eq. (B2); in this stage they are arbitrary dynam-
ics. According to Eqs. (B8) and (B9), the solution {ε(n), χ (n)}
is the worst possible solution for the minimization problem. In
order to characterize this function, we assume that the RHS of
dynamical equation (B2) and its Jacobian are bounded. Let us
assume that the objective F and the function G f are bounded
and twice differentiable. By adapting results of Ref. [77], one
can show that under these assumptions the following relation
for the real-valued function ϒ is a solution to the extremiza-
tion problem posed by Eqs. (B8) and (B9):

ϒ(χ, t ) = 〈〈χ |�〉〉 + 〈〈�|χ〉〉 + 1
2σ (t ) 〈〈�χ |�χ〉〉, (B10)

where

|�χ (t )〉〉 = |χ (t )〉〉 − |χ (n)(t )〉〉 (B11)

is the change in the dynamics. Here the coefficient |�(t )〉〉 is
defined as |�(t )〉〉 = (∂ϒ/∂〈〈χ |)|χ (n) , and by extrapolating the
arguments of Ref. [77] the coefficient σ (t ) can be represented
as

σ (t ) = ã(ec̃(tf −t ) − 1) + b̃, ã, b̃,−c̃ < 0. (B12)

As a result, the extremization problem introduced in Eqs. (B8)
and (B9) reduces to finding suitable coefficients ã, b̃, and c̃.
Before analytical calculation of these coefficients, we evaluate
the necessary conditions to satisfy Eqs. (B8) and (B9). First,
we need to obtain a closed form for the function Rϒ [Eq. (B5)]
by inserting ϒ from Eq. (B10). Note that Eq. (B10) also yields

∂ϒ

∂|χ〉〉 = 〈〈�| + 1

2
σ (t ) 〈〈�χ |, (B13)

∂ϒ

∂〈〈χ | = |�〉〉 + 1

2
σ (t ) |�χ〉〉, (B14)

∂ϒ

∂t
= 〈〈χ |�̇〉〉 + 〈〈�̇|χ〉〉 + 1

2
σ̇ (t ) 〈〈�χ |�χ〉〉

+ 1

2
σ (t ) 〈〈χ̇ (n)|�χ〉〉 + 1

2
σ (t ) 〈〈�χ |χ̇ (n)〉〉, (B15)

where the dot is the shorthand for time derivative (d/dt ).
By using Eqs. (B5) and (B13)–(B15) along with |χ̇ (n)〉〉 =
(−i/h̄)Kε(n) |χ (n)〉〉 we obtain the modified function Rϒ as

Rϒ (χ, ε, t ) = − G f (ε, t ) + 〈〈χ |�̇〉〉 + 〈〈�̇|χ〉〉 + 1

2
σ̇ (t ) 〈〈�χ |�χ〉〉 − i

2h̄
σ (t ) 〈〈χ (n)|K†

ε(n) |�χ〉〉 + i

2h̄
σ (t ) 〈〈�χ |Kε(n) |χ (n)〉〉

− i

h̄
〈〈�|Kε|χ〉〉 − i

2h̄
σ (t ) 〈〈�χ |Kε|χ〉〉 + i

h̄
〈〈χ |K†

ε |�〉〉 + i

2h̄
σ (t ) 〈〈χ |K†

ε |�χ〉〉. (B16)

Thus the necessary condition to satisfy Eq. (B8),
(∂Rϒ/∂〈〈χ |)|(χ (n),ε(n) ) = 0, reduces to

d|�(t )〉〉
dt

= − i

h̄
K†

ε(n) |�(t )〉〉. (B17)

The boundary condition of this dynamical equation is
obtained from Eq. (B9). In a similar vein, the necessary condi-
tion for satisfying this relation, i.e., (∂Mϒ/∂〈〈χ (tf )|)|χ (n) (tf ) =
0, can be read from Eqs. (B4) and (B10) as

|�(tf )〉〉 = −
(

∂F
∂〈〈χ (tf )|

)∣∣∣∣
χ (n) (tf )

. (B18)

a. Analytical calculation of σ(t )

To calculate the constant parameters of the function σ (t )
in Eq. (B12), one can first work out the following inequality
equivalent to Eq. (B9) (the strict maximum condition for Mϒ

at χ (n)(tf )):

�Mϒ = Mϒ (χ (n)(tf ) + �χ (tf ), tf ) − Mϒ (χ (n)(tf ), tf ) < 0,

(B19)

for all variations of the terminal dynamics �χ (tf ) =
χ (tf ) − χ (n)(tf ). Using Eqs. (B4) and (B10), and assuming
〈〈�χ (tf )|�χ (tf )〉〉 = 0, the inequality (B19) gives

�F + 2Re〈〈�χ (tf )|�(tf )〉〉
〈〈�χ (tf )|�χ (tf )〉〉 + 1

2
σ (tf ) < 0, ∀�χ (tf ),

(B20)
where

�F = F (χ (n)(tf ) + �χ (tf ), tf ) − F (χ (n)(tf ), tf ). (B21)

Thus, from Eq. (B12), the worst-case scenario to fulfill the
strict condition (B20) is

2A + b̃ < 0, (B22)

A = sup
�χ (tf )

�F + 2Re〈〈�χ (tf )|�(tf )〉〉
〈〈�χ (tf )|�χ (tf )〉〉 . (B23)

Now let us consider an inequality equivalent to the relation
(B8), i.e.,

�Rϒ = Rϒ (χ (n) + �χ, ε(n), t ) − Rϒ (χ (n), ε(n), t ) � 0,

(B24)
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for all �χ = χ − χ (n) and t ∈ [0, tf ]. Employing Eqs. (B16)
and (B17) we get the following equation for �Rϒ :

�Rϒ = 〈〈�χ |�χ〉〉
(

1

2
σ̇ (t ) + σ (t )

h̄

Im〈〈�χ |Kε(n) |�χ〉〉
〈〈�χ |�χ〉〉

)
.

(B25)

From this equation and the fact that x/2 � −|x| ∀x ∈ R, we
obtain a lower bound for �Rϒ as follows:

�Rϒ � 〈〈�χ |�χ〉〉
(

1

2
σ̇ (t ) − |σ (t )|B

)
, (B26)

B = 2

h̄
sup

{�χ}; t∈[0,tf ]

∣∣∣∣ Im〈〈�χ |Kε(n) |�χ〉〉
〈〈�χ |�χ〉〉

∣∣∣∣. (B27)

Here we assume 〈〈�χ |�χ〉〉 = 0, or equivalently, �χ = 0. If
it is demanded that this lower bound be positive,

1
2 σ̇ (t ) − |σ (t )|B > 0, (B28)

then the strict minimum condition for Rϒ at χ (n), i.e., �Rϒ >

0, will hold. By using the fact that |σ (t )| � σ (t ), ∀t ∈ [0, tf ],
the condition (B28) can be reformulated as

1
2 σ̇ (t ) − σ (t )B > 0. (B29)

From Eq. (B12) we obtain the inequalities σ̇ (t ) � −ãc̃ and
σ (t ) � b̃, which in turn yield

(1/2)σ̇ (t ) − Bσ (t ) � −(ãc̃/2) − Bb̃. (B30)

Then, imposing the following condition is equivalent to satis-
fying the condition (B29):

− 1
2 ãc̃ − Bb̃ > 0, (B31)

which does not depend on time t .

We proceed to find the parameters ã, b̃, and c̃ of the in-
equalities (B22) and (B31). We set ã and b̃ as

ã = b̃ = −Ā, Ā = max{ζA, 2A + ζA}, (B32)

where ζA > 0. If Ā = ζA (Ā = 2A + ζA), then we have 2A −
ζA < 0 (−ζA < 0) for the inequality (B22). Thus the latter
inequality is satisfied with the choice of b̃ as in Eq. (B32).
By this choice the inequality (B31) also becomes

c̃ + 2B > 0. (B33)

Since B � 0 [Eq. (B27)], then one solution for the parameter
c̃ is

c̃ = ζB, ζB > 0. (B34)

By substituting Eqs. (B32) and (B34) into Eq. (B12), we
obtain the following form for σ (t ):

σ (t ) = −ĀeζB (tf −t ). (B35)

Note that we can also set the parameters ζA and ζB to zero.
For more details on this particular choice, see the end of this
section.

2. Second step

The dynamics-dependent function ϒ obtained in the previ-
ous step [Eq. (B10)] with the choice of σ (t ) as in Eq. (B35)
enables us to find a local minimum for the total functional J ϒ

[Eq. (B3)] with respect to the control fields ε(t ). According to
Eq. (B3), this implies that

ε(n+1) = arg{max
ε

Rϒ (χ, ε, t )}, ∀t ∈ [0, tf ]. (B36)

The optimal field ε(n+1) obtained in this step needs to be
compatible with the dynamics χ (n+1) given by

d|χ (n+1)〉〉
dt

= − i

h̄
Kε(n+1) |χ (n+1)〉〉, |χ (n+1)(0)〉〉α = NδαN4 , α ∈ {1, . . . , N4}. (B37)

Thus the maximization problem (B36) and the dynamical equation (B37) should be solved simultaneously. We first consider one
of the necessary conditions for the maximization problem (B36), i.e., (∂Rϒ/∂εm)|(χ (n+1),ε(n+1) ) = 0. Employing Eq. (B16) one can
obtain an expression for the partial derivative ∂Rϒ/∂εm as

∂Rϒ

∂εm
= −∂G f

∂εm
− i

h̄
〈〈�|

(
∂Kε

∂εm

)
|χ〉〉 − i

2h̄
σ (t ) 〈〈�χ |

(
∂Kε

∂εm

)
|χ〉〉 + i

h̄
〈〈χ |

(
∂K†

ε

∂εm

)
|�〉〉 + i

2h̄
σ (t ) 〈〈χ |

(
∂K†

ε

∂εm

)
|�χ〉〉. (B38)

Then the local maximum condition for the function Rϒ at ε(n+1), i.e., (∂Rϒ/∂εm)|(χ (n+1),ε(n+1) ) = 0, becomes(
∂G f

∂εm

)∣∣∣∣
ε(n+1)

= 2

h̄
Im

{
〈〈�(t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

|χ (n+1)(t )〉〉
}

+ σ (t )

h̄
Im

{
〈〈�χ (n+1)(t ) |

(
∂Kε

∂εm

)∣∣∣∣
ε(n+1)

|χ (n+1)(t )〉〉
}
, (B39)

where |�χ (n+1)(t )〉〉 = |χ (n+1)(t )〉〉 − |χ (n)(t )〉〉. In this work we restrict ourselves to the field-dependent function G f similar
to Eq. (19), which is quadratic in the fields. We also assume that the field-dependent generator Kε depends on the fields
ε linearly through the field-system interaction Hamiltonian Vfield(t ). Having such a constraint and field-dependent generator
as well as using Eq. (B38), we obtain another necessary condition for the local maximum of the function Rϒ at ε(n+1), i.e.,
(∂2Rϒ/∂ε2

m)|(χ (n+1),ε(n+1) ) < 0, as follows:

wm/ fm(t ) > 0. (B40)

After these two steps, the change of the total functional J ϒ by iteration becomes

�J (n+1)
ϒ =J (n+1)

ϒ − J (n)
ϒ = Mϒ (χ (n+1)(tf ), tf ) − Mϒ (χ (n)(tf ), tf )

−
∫ tf

0
dt {Rϒ (χ (n+1), ε(n+1), t ) − Rϒ (χ (n+1), ε(n), t ) + Rϒ (χ (n+1), ε(n), t ) − Rϒ (χ (n), ε(n), t )}, (B41)
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where for writing the RHS of the second equality we
have used Eq. (B7). Equations (B8) and (B9) lead to the
inequalities Rϒ (χ (n+1), ε(n), t ) � Rϒ (χ (n), ε(n), t ), ∀t ∈
[0, tf ] and Mϒ (χ (n+1)(tf ), tf ) � Mϒ (χ (n)(tf ), tf ). We
also obtain the inequality Rϒ (χ (n+1), ε(n+1), t ) �
Rϒ (χ (n+1), ε(n), t ), ∀t ∈ [0, tf ] from Eq. (B36). From
these inequalities and Eq. (B41), the monotonic decrease
of the modified total functional J ϒ with respect
to the iteration number, i.e., �J (n+1)

ϒ � 0, ∀n � 0,
is proved.

Remark. Note that the choice ζi = 0 (i = A, B) may not
cause any change in the modified total functional J ϒ with
the change in the dynamics χ . This means we have �Mϒ =
0, ∀�χ (tf ) and �Rϒ = 0 ∀�χ (t ), t ∈ [0, tf ]. Thus, by this
choice in the worst case, the total objective functional J ϒ

remains unchanged during the first step of the Krotov method.
However, after minimizing the modified total functional J ϒ

with respect to the field in the second step, the strict mono-
tonic convergence almost always is preserved even by the
choice ζi = 0 for one or both of i = A and i = B.
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